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Overview

In non-rel quantum theories, the position operators form a POVM
(positive-operator-valued measure, def to come) on configuration
space Q acting on Hilbert space H .

I consider the free standard quantized Dirac field (def to come).

Many physicists don’t consider a position POVM for the quantized
Dirac field, only field operators.

I think we should have a position POVM.

There is an obvious choice Pobv of POVM for the quantized Dirac
field.

I think Pobv is physically wrong. Today I propose a different POVM
Pnat, which I think is physically correct.

Considerations here are non-rigorous. Even the existence of Pnat

depends on a mathematical conjecture which I can neither prove nor
disprove.

Malament’s theorem seems to exclude position operators in
relativistic theories. I will explain why it doesn’t apply to Pnat.
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Reminder: PVM and POVM

Definition: PVM

A PVM (projection-valued measure) on a measurable space Q acting on
a Hilbert space H associates with every subset B ⊆ Q a projection
P(B) such that P(Q) = I and P(B1) + P(B2) + . . . = P(B1 ∪ B2 ∪ . . .)
(“σ-additive”) whenever Bi ∩ Bj = ∅ ∀i 6= j .

Ex: H = L2(Q,Cd), P(B)ψ(q) = 1q∈Bψ(q).

Ex: The position operators on Rn, Xiψ(x1 . . . xn) = xiψ(x1 . . . xn)
jointly correspond to the PVM P(B) = 1q∈B on Q = Rn, H = L2(Rn).

Definition: POVM

The same, just P(B) doesn’t have to be a projection, it can be a positive
operator. (So every PVM is a POVM.)

Ex: Q(B) = PK P(B)PK acting on subspace K ⊆H with P a PVM

A POVM P and a unit vector ψ always define a prob distribution on Q,
P(B) = 〈ψ|P(B)|ψ〉.
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What a position POVM is good for

characterize the distribution of results of an ideal detector

define the distribution of Bohmian particles

define the probabilities of macroscopic configurations of pointers or
cats [e.g., C. Beck 2021]

You can often do without a position POVM (and use only a momentum
POVM, which is easier) if you only consider t = −∞ and t =∞.
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The quantized Dirac field (1)

[following Thaller’s 1992 book]

Let c = 1 = ~, H1 = L2(R3,C4), H1 = −iα · ∇+ mβ (Dirac),
H1± = pos. (neg.) spectral subspace of H1, P1± = proj to H1±

Cψ(x) = iα2ψ
∗(x) charge conjugation operator

(anti-unitary), C (H1∓) = H1±, CH1C
−1 = −H1.

fermionic Fock space F (K1) =
∞⊕
n=0

Anti K ⊗n
1

H := F (H1+)⊗F (H1−) ∼= F (H1+)⊗F (H1+)

H 3 ψ = ψn,n
s1...sns1...sn

(x1 . . . xn, x1 . . . xn) = ψnn(x1 . . . xn, x1 . . . xn)

with n ∈ N0 and x j , x i ∈ R3 and sj , s i ∈ {1, 2, 3, 4} and x = (x , s)

(let me call ψ Thaller’s representation)

|Ω〉 = (1, 0, 0 . . .) vacuum state sea state

H = lift of H1 is a positive operator, |Ω〉 = ground state
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The quantized Dirac field (2)

For f ∈H1+ and g ∈H1−, the electron annihilation/creation
operators and positron annihilation/creation operators are

a(f )ψnn(x1...xn, x1...xn) =
√
n + 1

4∑
s=1

∫
d3x f (x)∗ ψn+1,n(x , x1...xn, x1...xn)

a†(f )ψnn(x1...xn, x1...xn) =
1√
n

n∑
j=1

(−1)j+1f (xj) ψ
n−1,n(x1...x̂j ...xn)

b(g)ψnn(x1...xn, x1...xn) = (−1)n
√
n + 1

4∑
s=1

∫
d3xCg(x)∗ψn,n+1(x1...xn, x , x1...xn)

b†(g)ψnn(x1...xn, x1...xn) =
(−1)n√

n

n∑
=1

(−1)+1Cg(x) ψ
n−1,n(x1...x̂...xn)

For f ∈H1, the field operator is

Ψ(f ) = a(P1+f ) + b†(P1−f ) .
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The quantized Dirac field (3)

Anti-commutation relations for f1, f2 ∈H1:

{Ψ(f1),Ψ(f2)} = {Ψ†(f1),Ψ†(f2)} = 0,

{Ψ(f1),Ψ†(f2)} = 〈f1|f2〉H1 I .
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The obvious POVM

ρnnobv(x1 . . . xn, x1 . . . xn) =
∑
s1...sn
s1...sn

∣∣∣ψnn(x1...xn, x1...xn)
∣∣∣2

corresponds to Pobv(B) =
∫
π−1(B)

dq ρobv(q) = 〈ψ|Pobv(B)|ψ〉 with π

the unordering map,

π(x1...xn, x1...xn) = ({x1...xn}, {x1...xn}) ,

and Pobv a POVM on

Q = Qel ×Qpos = Γ(R3)× Γ(R3)

with Γ(S) = {q ⊂ S : #q < ∞} the set of
finite subsets of S . In fact,

Pobv(B) = PH 1π−1(B)PH

from the PVM 1π−1(B) on F (H1) ⊗
F (H1) ⊆ L2(Q, spin-space).
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The natural POVM

Charge operators: For A ⊆ R3,

Q(A) :=

∫
A

d3x Q(x) = −
∫
A

d3x
4∑

s=1

: Ψ†(x) Ψ(x) :

= −
∫
A

d3x
4∑

s=1

Ψ†(x) Ψ(x) +∞

satisfy [Q(A),Q(B)] = 0 and have spectrum Z.

Diagonalize all Q(A) simultaneously. That defines a PVM on their
joint spectrum, which is the definition of Pnat.

My conjecture

The joint spectrum consists (up to Pnat-null sets) of locally bounded
functions q(A).
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What the conjecture means

Consider, instead of R3, a box [0, L)3 of side length L, and
H1 = −iα · ∇+ βm with periodic boundary conditions (“3-torus
T3”).

When subdividing A ⊂ T3 into disjoint A1 ∪ A2, then
q(A) = q(A1) + q(A2).

Subdivide repeatedly into ever-smaller volumes.

In the limit we might end up with finite or infinite amounts of
positive and negative charge. The conjecture says it is finite in a
finite volume (such as T3).

As a consequence of the conjecture, Pnat is a PVM on

Q = Γ(T3)× Γ(T3) .

In R3, Pnat is a PVM on Qloc.fin = Γloc.fin(R3)× Γloc.fin(R3)

with Γloc.fin(S) = {q ⊂ S : #(q ∩ Br (x)) <∞∀r > 0 ∀x ∈ S} the
space of locally finite configurations.

But I expect that in reality 3-space has finite volume (is
approximately S3).
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Another approach to Pnat: discretize (1)

Consider, instead of R3 or T3, a finite lattice L :=
(
[0, L) ∩ L

NZ
)3

with N3 sites, and H1 = −iα · ∇+ βm with ∇ the difference
operator,

∇jψ(x) =
ψ(x + L

N e j)− ψ(x)
L
N

,

and periodic boundaries.

H1 = L2(L,C4) has dim 4N3, H = F (H1) has dim 16N3

,
H =

⊗
x∈LHx , where Hx = F (C4) = F0 ⊕F1 ⊕F2 ⊕F3 ⊕F4

has dim 16 = 1 + 4 + 6 + 4 + 1

Ψs(x) annihilation operator, Ψ†s (x) creation operator
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Another approach to Pnat: discretize (2)

Write F (H1) 3 ψ = ψ`(x1 . . . x`), |ψ|2 defines a prob distribution
over the configuration space QN = {0, 1, 2, 3, 4}L (unordered
configuration = occupation numbers).

I call the “particles” in this configuration pre-particles (b/c I claim
they are not ontologically the real particles), the PVM Ppre.

The bottom configuration has 0 pre-particles.

|B〉 = bottom state (unique up to phase) has 0 pre-particles.

The level configuration qL has 2 pre-particles at each lattice site.

A level state is a state concentrated on the level configuration.

Level space L = {level states} =
⊗
x∈L

F2(C4) = range Ppre({qL })
is a subspace of dim 6N3

.
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Another approach to Pnat: discretize (3)

{e1, e2, e3, e4} := canonical ONB of C4, |ij〉 = ei ∧ ej . Then
{|12〉, |13〉, |14〉, |23〉, |24〉, |34〉} is an ONB of F2(C4), and
{⊗x∈L|ix jx〉 : ix < jx} is an ONB of L .

The sea state is |Ω〉 = ϕ1 ∧ ϕ2 ∧ . . . (up to phase) with {ϕ1, ϕ2 . . .}
an ONB of the negative spectral subspace of H1.

The sea state is not level, |Ω〉 /∈ L . It is an eigenstate of
Ψ†(ϕk)Ψ(ϕk), but not of Ψ†(x)Ψ(x).
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Another approach to Pnat: discretize (4)

“Pnat,N(q) = Ppre(q + qL ),” range Pnat,N({∅}) = L

becomes

Continuum limit N →∞ (L fixed), L → T3

Consider only states that differ from |Ω〉 by finitely many
pre-particles

Set Pnat = lim
N→∞

Pnat,N .

Conjecture implies

〈Ω|Pnat,N({∅})|Ω〉 N→∞−−−−→ 〈Ω|Pnat({∅})|Ω〉 ∈ (0, 1)

but 〈Ω|Pnat({∅})|Ω〉 L→∞−−−→ 0.
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Ontology

I propose an ontology with a variable but
finite number of electron and positron
point particles, Q = Γ(T3) × Γ(T3), and
Bohmian trajectories (later slide).

Born rule: P(B) = 〈ψ|Pnat(B)|ψ〉

Note that range Pnat({∅}) has dim ∞,
unlike usual.
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Dirac sea ontology (1)

[Bohm and Hiley 1993, Colin and Struyve 2007, Deckert, Esfeld, and Oldofredi 2019]

Take what I called “pre-particles” as the ontology: an actual
infinitude of particles. One kind of particles.

What does a typical configuration for |Ω〉 look like?

?

I always pictured it like the left image, like a countable dense set.
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Dirac sea ontology (2)

If my conjecture is correct, then the picture should look like the
middle image:
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Dirac sea ontology (3)

If my conjecture is correct, then my proposal is the continuum limit
of the Dirac sea ontology except for a reinterpretation:

→

Roderich Tumulka (Tübingen) Positron Position Operators



Dirac sea ontology (4)

I used to worry about the Dirac sea ontology for this reason:

Consider |ψ〉 = a†(f )|Ω〉.
Where is the particle?

Roderich Tumulka (Tübingen) Positron Position Operators



Another proposed ontology

[Teufel, personal communication]

Consider F (L2(R3,C4)): states that are “finitely many particles away”
from the bottom state |B〉. H = lifted H1 (i.e., allow negative energies).
“Positron” is just a name for an electron with negative energy.

Standard objection (presumably valid)

Unstable. No thermal equilibrium state exists. Interaction would lead to
particles with greater and greater magnitude of energy.
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Common use of Pobv

While it is standard in QFT to never mention a POVM, often remarks
about how to interpret ψ ∈H are inspired by Pobv:

Thaller (1992) p. 277: “the probability that there are just n particles
and [n] antiparticles at a given time is [‖ψnn‖2]”

Thaller (1992) p. 277: “[|Ω〉] describes the possibility that there are
no particles at all”

Schweber (1961) p. 230: “The basis vectors
[a†(P1+x1) · · · a†(P1+xn)b†(P1−x1) · · · b†(P1−xn)|Ω〉] span the
states in which there exist [n] particles and [n] antiparticles.”

Schweber (1961) p. 231: “[ψ01(x)] is the probability amplitude for
finding the antiparticle [at x ].”
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Against Pobv (1)

Difficulty 1

A function f ∈H1+ that vanishes in an open set vanishes everywhere.
In particular, ρobv can never have compact support.
So how do you collapse ψ = ψ10 after detecting a particle in the compact
region A ⊂ R3? Will a particle, detected at t = 0 in A = closure(Br (0)),
have positive probability at any t > 0 to be in R3 \ B2r (0)?
There seems to be a conflict with propagation locality (PL).

Roderich Tumulka (Tübingen) Positron Position Operators



Against Pobv (2)

Difficulty 2

Pobv seems to violate the principle of interaction locality (IL) (which says
that the Hamiltonian contains no interaction terms between spacelike
separated regions). Actually, it seems that no interaction would obey (IL)
with Pobv while conserving particle number.

Illustration: Assuming otherwise, consider a 2-electron wave fct ψ20 at
times 0 and t. Let Ft = exp(−iH0t) be the free time evolution. By (IL),
ψt agrees with Ftψ0 outside the t-neighborhood of the diagonal. If both
ψt and ψ0 lie in H1+ ⊗H1+, then so does ψt − Ftψ0. But the only
function in H1+ ⊗H1+ that vanishes outside the t-neighborhood of the
diagonal is 0. So, the evolution agrees with Ft ⇒ contradiction.
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Explicit formula for ρnat on T3

ρnnnat(x1 . . . xn, x1 . . . xn) =

1

3n+n

∑
s1...sn
s1...sn

〈ψ|Ψ†(x1) · · ·Ψ†(xn)Ψ(x1) · · ·Ψ(xn) ×

× Pnat({∅})Ψ†(xn) · · ·Ψ†(x1)Ψ(xn) · · ·Ψ(x1)|ψ〉,

provided the locations are pairwise distinct.
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Spontaneous pair creation

usually means this: In an external field Aµ(t, x) with
Aµ(t = −∞, x) = 0 = Aµ(t =∞, x),
ψ(t = −∞) = |Ω〉 may evolve to ψ(t =∞) with ψ11 6= 0.
[Greiner and Reinhardt 1984, Pickl and Dürr 2008]

but here means something else: [H,Pnat(Qnn)] 6= 0.

That is, even if Aµ(t, x) = 0, for some states some probability gets
transported to a different sector of Pnat-particle number.

(This doesn’t happen to |Ω〉, though. Since |Ω〉 is stationary and its
own time reverse, all currents vanish.)
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Bohmian trajectories

x

t

e−e+ pairs spontaneously appear (emerging
from the same point x), i.e., configuration
(q; q)→ (q, x ; q, x), at rate (per dx)

2 Im+ 〈ψ|Pnat(q, x ; q, x)HPnat(q, q)|ψ〉
〈ψ|Pnat(q, q)|ψ〉

[Dürr et al. 2004-2006]

Particles move at (subluminal) velocity

dXµj

j

dt
∝ J0...0µj0...0(X )

J0...0(X )
with

Jµ1...µnµ1...µn(x1...xn, x1...xn) =
1

3n+n

∑
s1...s

′
1...

s1...s
′
1...

(γ0γµ1 )s1s′1
· · · (γ0γµ1 )s′1s1

· · · ×

×〈ψ|Ψ†s1
(x1) · · ·Ψs1 (x1) · · ·Pnat({∅})Ψ†s′n

(xn) · · ·Ψs′n(xn) · · · |ψ〉.

When e− and e+ meet, both disappear.
(All this can be obtained from the lattice approximation. [Vink 1993])
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What if the conjecture is wrong?

It is still possible to simultaneously diagonalize all Q(A), and this
would define a PVM on some kind of locally infinite configurations.

It is not obvious whether a Bohmian motion could be defined for
such configurations.

And it is not obvious whether one could read off from such a
configuration whether Schrödinger’s cat is dead or alive.

And this means it is not obvious whether such a PVM would even
define probabilities for Schrödinger’s cat being dead or alive.
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Reeh-Schlieder theorem

Theorem [Reeh and Schlieder 1961]

Let R 6= ∅ be a bounded open region in Minkowski space-time. The set
of all polynomials in a†t (P1+x), at(P1+x), b†t (P1−x), bt(P1−x)
(Heisenberg-evolved) with (t, x) ∈ R applied to |Ω〉 is dense in H .

Sounds paradoxical:

Starting from the vacuum, you only act with operators localized in
R.

You get any state, also with non-small particle probability at
spacelike separation from R.

But the sense of paradox evaporates when you accept that |Ω〉 does not
mean vacuum at all. Think of it as an anti-symmetrized product of plane
waves. Then |Ω〉 looks like a highly entangled state.
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Malament’s theorem (1)

[Malament 1996, Halvorson and Clifton 2002]

This is a family of theorems of the following type: Assume a Hilbert
space H , a Hamiltonian H bounded from below, a POVM P on
particle configurations acting on H , and a number of
reasonable-sounding, relativity-inspired hypotheses about P. Then a
contradiction follows.

These theorems are often taken to exclude a particle ontology or
position operators in relativistic QFT.

So how does Pnat get around it?
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Malament’s theorem (2)

Malament’s Theorem

Suppose H is a Hilbert space (for 1 particle), H bounded from below, P
a PVM on R3 acting on H , and U a unitary representation of the
translation group of R3 on H . Suppose further that (i) P is translation
covariant w.r.t. U and (ii) propagation locality holds,
e−iHtP(A)e iHt ≤ P(B|t|(A)) with Br (A) = ∪x∈ABr (x). Then a
contradiction follows.

Let us leave aside that Pnat on T3 may not fall under this theorem
because the theorem assumes R3.

On either T3 or R3, Pnat violates the assumption that the 1-particle
sector, range P(Q10), is invariant under the time evolution.

On either T3 or R3, Pnat violates the assumption of propagation
locality (next slide).

It would be interesting to know which violation is more essential.
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Locality properties

Locality: events at x ∈ R4 can’t influence events at spacelike
separated y ∈ R4. (Wrong, by Bell’s theorem.)

Interaction locality (IL): there is no interaction term in the
Hamiltonian between spacelike separated regions. (Sounds right.)

Propagation locality (PL): Wave functions don’t propagate faster
than light. (Sounds right.)

It is hard to separate PL from no particle creation from the vacuum
(NCFV).

A definition of PL given by [Lienert and Tumulka 2017], more or less
e−iHtP(∀(A))e iHt ≤ P(∀(B|t|(A))) with ∀(A) = {q ∈ Q : q ⊆ A},
turns out equivalent to NCFV. Pnat violates this definition, but all
speeds of electrons and positrons are ≤ c .

Definition of IL by [Lienert and Tumulka 2017]: H = HA ⊗HAc ,
P(B ⊂ ∀(A)) acts on HA, evolution to Cauchy surface (next slide)
Σ ⊃ A is of the form I ⊗ U. That seems to be true for Pnat (as
obtained from the Dirac sea perspective).
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Curved space-time and Cauchy surfaces (1)

also [Deckert and Merkl 2014–2016]

Cauchy surface ≈ spacelike 3-surface

Given curved space-time (M , g) (globally hyperbolic) so that

Cauchy surfaces are compact (finite 3-volume).

It is known how to define the 1-particle Dirac eq on (M , g).
ψ is a cross-section of a rank-4 complex vector bundle D over M .

That defines H1Σ for every Cauchy surface Σ and unitary evolution
UΣ′

1Σ : H1Σ →H1Σ′ .

Suppose we are given “sea spaces” KΣ so that UΣ′

1ΣKΣ differs from

KΣ′ by only finitely many dimensions (UΣ′

1ΣKΣ ∩KΣ′ has finite
codim in both).

Then it is defined how to construct HΣ = F (K ⊥
Σ )⊗F (KΣ)

and the unitary time evolution UΣ′

Σ : HΣ →HΣ′

and Pnat on QΣ = Γ(Σ)× Γ(Σ) acting on HΣ.

Roderich Tumulka (Tübingen) Positron Position Operators



Curved space-time and Cauchy surfaces (2)

What is missing: A law selecting KΣ.

You can’t use the negative spectral subspace of H1Σ b/c H1Σ

depends on a choice of lapse and shift function.

In Minkowski space-time, there is a natural choice: On a hyperplane
Υ, choose KΥ = H1Υ−. Theorem: On every hyperplane Υ′,
UΥ′

Υ H1Υ− = H1Υ′−.

Thus, it is consistent to define KΣ = UΣ
ΥH1Υ− for any Σ. But not

for general (M , g).
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Thank you for your attention
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