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In memory of Detlef Durr

“Detlef Diirr's world line began on March 4, 1951,
and ended on January 3, 2021."
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An unusual approach to QFT:
@ Let's use wave functions.

@ Specifically, a particle-position representation of the quantum state
vector.

This will have to do with
@ the 1930 model of Landau and Peierls for QED
@ multi-time wave functions
@ unusual delta functions
@ the problem of Born's rule for photons

@ interior-boundary conditions.
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My motivation

to explore the possibility of a generaliza-
tion of Bohmian mechanics with world
lines for electrons and photons that can
begin and end.
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Landau and Peierls (LP)

Quantenelektrodynamik im Konfigurationsraum.
Von L. Landau und R. Peierls in Ziirich.
(Eingegangen am 12, Februar 1930.)

Das elektromagnetische Feld und seine Wechselwirkung mit der Materie wird

durch eine Schrodingergleichung im Konfigurationsraum der Lichtquanten

beschrieben. Die Resultate sind identisch mit denen von Heisenberg und
: Pauli.

wrote down a Schrodinger equation for the particle-position
representation of the state vector, describing a simplified version of QED,
in which

@ electrons (x) can emit and absorb photons (y), x = x+y

@ positrons are not considered

@ negative energies are not excluded

b = P(x1... X, Yq...¥,) o0 Q = U Qlmn) — U (R3)™ x (R3)"
m,n=0 m,n=0
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Free part of LP model

@ The free electron equation is the Dirac equation
(in"0, — m)y = 0.
@ The free photon equation is the (complexified) Maxwell equation
20" 01, A =0,

where [uv] means anti-symmetrization in the index pair as in
5[/“’] = %(SMV - Sl/;t)- That is,

0"F,, =4nJ,

with field tensor F,,, = 20),A,) (so JjxF,,) = 0) and source term J,,.
o Eg, oD = oD (x, y) with x,y € R® s € {1...4}, u € {0...3}.
e E.g., disentangled d>(1 % (x,y) = ¥s(x) Au(y)-
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Multi-time wave function

@ In contrast to the Pauli-Fierz [1938] model, the Landau-Peierls
model is relativistic in content, but not written in a Lorentz invariant
way: LP used single-time wave fcts.

e single-time ® = ®(x;...x,, t) with x; € R®

o multi-time ¥ = W(x;...x,) with each x; € R*
[Eddington 1929, Dirac 1932, Dirac-Fock-Podolsky 1932, Bloch 1934]

@ on the set of spacelike space-time configurations
oo
S = U {(Xl...Xm) € (M*)™: x; = xi or x;X xx for all j, k}
m=0

X means spacelike separated

e For us, Von .,

lllgf.’j_”s)mwmu"(xl...xm,y1...y,,) )

Roderich Tumulka Multi-Time Landau-Peierls QED



Multi-time LP equations
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3d Dirac delta distribution

o

ordinary §3(x) = 6(x1) 6(x2) 5(x3), /}R3 d*x 53(x) f(x) = £(0)

introduce D = (55 on

S ={xeM*: x =0 or xx0} that can be
integrated over any (smooth) Cauchy surface 2
0 € ¥ C M* against (smooth) f : ¥ — C,

[0 = [ V(dx)n,() D7) ) = £(0) (4

¥ b

Proof that such a D exists: On M*4 define_

Dr(x° x) = (6*(x),0,0,0) and set D = D|y4. A calculation

confirms (*). Likewise for any Lorentz transform of D.
Alternative proof: Consider the free Dirac propagator S on M*,

P(x) = . dy S(x = (0,¥))7° to(y).

S'is Lorentz inv., so [¢ Sy*f = [5, Sy*f" = 14£(0). Thus,
Syt — I, D",
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Multi-time LP equations [Lienert, Tumulka 2020]

(i’y‘,'uaxhu - mx)w(mm)( - Xmy Y1-- yn) —
evn+1 qu+T+;l> (X1 Xm, Y1---¥n, X)) (1)

20,, 0 y(mn) (X1 Xmy Y1---Yn) =

78 [u pr=v]
4e o
253 'VJ Vv \UETk’ 1)(x1...x,.,,7yl...yk,l,ykﬂ...yn) (2)
3
Z 8}‘/Ll<kw§l’:77n)(X1.Xm,y1yn) = 0 (3)
px=1
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Multi-time LP equation (1)

(i} O — m )W (X1 X, 1Y) =
evVn+ 1P WD (o oxon, y1yms ) (1)

Compare to the Dirac equation in an external electromagnetic field with
vector potential A,(x),

(170, — mb(x) = €77 Ay(x) H(x).
For multi-time wave fct of non-interacting particles, that would give
(i’yj O mx)\ll('"’”)(xl...xm,y1...y,,) = efypr(xj)\U(m’")(xl...xm,yl...y,,).
The factor v/n + 1 in (1) is due to our normalization convention (use of

ordered configurations). The role of the vector potential A, is played
by the wave fct of the next photon.
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Multi-time LP equation (2)

20), 0 y(mn) (X1 Ximy Y1---Yn) =

Yics [# pr=v]

4me m,n—
25 ’YJ Vjv wffk’ 1)(X1--~Xm7}/1~--)/k717)/k+1~-~}/n) (2)

Compare to the Maxwell eq
28/1'8[HAV] (y) =4nd,(y).
For multi-time wave fct of non-interacting particles and “A, = WV ,."

alt a}’k [,U«WLT HZ]( Xm,}/1-~.y,7) = 47TJk’V.

In (2),

m
e
Jk,VZTZ (v — %) Vi ’YJVW(E" )(Xl Xms Y1e--Yk—15 Yk+1-+-Yn)-
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Multi-time LP equation (3)

S U s 30) = 0 @)
pe=1

Compare to the Coulomb gauge condition

3

Z A, =0

p=1

in view of “A, = V,."
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Field operators "ng, /A\,,

\Ug’_"_’_"s)mm_“un(xl...xm,y1...y,,) =

7/151 (x1)-- 1[’5," (Xm)Am(YI) T Aﬂn (Yn)

1
T )
In!
Proposition [Lienert, Tumulka 2020]

(1), (2), (3) on %, follow from z/AJs(x)W]) =

0
> (1925 [0 + ieAu(x)] = my ) (x) = 0

s/

28#3[HAAD] (X) = 4me TZB(X) T Q/G(X)

23: "AL(x)=0

p=1

and canonical comm. relations { (x)*, s (X’ )} — a7 6Z(x —x') etc.
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The multi-time approach allows for dealing with gauge more clearly.

@ A particular choice of gauge was built into LP's formula for the
Hamiltonian.

@ In the multi-time approach, the gauge condition (3) is a separate
equation from (1) and (2).

@ What is more, in the multi-time approach, we can switch between
the A,-representation and the F,, -representation:

Let df, =600, —660,. Then F,, = dfj,A,, and d = dfj, can be applied

to a single yk.

For example, consider a quantum state of 1 electron and 1 photon that

are not entangled, and drop interaction (creation/annihilation) terms:
WED (6, y) = ¥s(x) Auly)-

Then d, WY (x, y) = z/;s( ) Fu(y). Nothing like that is possible in the

single-time approach, as any time derivative would also affect x (and ).

More on gauge later.
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Agreement with LP

@ LP assumed for every photon only positive frequencies.
o LP considered the F,, -representation instead of the

A,-representation and called it F. In the multi-time framework,

Fm.n) (X1 Xm, Y1 Yn) == dy, -+ dynlU(””")(Xl...xm,y1...yn) .

S1..-SmyH1V1-- [hnVn

@ Using Coulomb gauge, positive frequency and square-integrability,
one can reconstruct A, = (Ao, A) from F,, via pseudo-differential

operators
Ag=—divA~'E, A= —curlA!B.

@ Use this for closing (1) for F.

@ Restrict to equal times, t =x? =x0 = ... =x0 =)0 = ... =)0

@ Then one obtains from (1), (2), (3) the LP (1-time) Hamiltonian
and the LP constraint up to

o factors of \/n that they seem to have forgotten
o a factor of 2 in one place that | think is mistaken.
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Interior-boundary conditions
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Interior-boundary conditions (IBCs) (i)

Another advantage of the particle-position representation:

In non-relativistic models of x <5 x + y, the 83 in the creation term
makes the Hamiltonian UV divergent. The divergence disappears if we
demand a certain condition on the wave function ®(™"(x1...Xm, y1...y,,)
at configurations with x; = y,, the IBC.

[Teufel, Tumulka 2015; Lampart, Schmidt, Teufel, Tumulka 2017; Lampart 2018]

In the simplified case of a single x-particle fixed at 0 € R3, the IBC
reads, for all unit vectors w € S?,

em,

——— o (y,y.).
27r\/m (yl yn)

lim ( rd™ D (y, ... =
rl\mo<r (V1Y rw)

[Moshinsky 1951; Teufel, Tumulka 2015]
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Interior-boundary conditions (IBCs) (ii)

Known: the 8 Maxwell eqgs are 6 time evolution eqs and 2 constraints,
divB = 0 and div E = 47J. For Jo(y) = e > 7", 6*(y — x;), we obtain
for small r > 0 that

dmre = / d*ydivE(y) = r2/d2ww -E(xj+ rw)
B,(Xj) SZ

by the Ostrogradski-Gauss integral theorem. Now let r — 0.

The same consideration applied to (2) leads to an IBC:

1
i /de r Zw Ynt1, [’W#’ZTJFO])(X Xms Y1---Yns (XJQ’XJ T rw)) -

r—0

4re
2=yl ”)( Xy Y1e--Yn)-

Jn

Whether that helps with any UV problem remains to be seen.

Roderich Tumulka Multi-Time Landau-Peierls QED



Questions of gauge
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Status of choice of gauge (i)

@ LP thought the gauge condition was a matter of “convenience.”
This sounds as if any gauge condition could be easily replaced with
any other gauge condition, like a choice of basis or of coordinates.

o Likewise, we initially expected that any we could drop all gauge
conditions. We expected we could drop (3), and that the solution
would be unique up to a gauge transformation. Alas, how wrong!
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Status of choice of gauge (ii)

Consider, e.g., at t = 0 a disentangled state with 1 electron, 1 photon,

W0, x,0,y) = vs(x) Auly)
w90, x) = 0.
Then, by (1),
9O (x) = entp(x) AL (x).
So, it seems the prob. of 1 electron at x and O photons at time dt is
2

() = WO dt, )| = &y (x)A (0)

Now replace A,, by another Au that is gauge equivalent. Then
(observable) probabilities have changed.

(3) is not like a choice of basis or coordinates, it is one of the defining
egs of the theory. Among possible equations for (3), only one is correct.
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The problem of Born's rule for photons
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The problem of Born's rule for photons

@ Born's rule: Specifies prob density p or current j* in terms of wave
fct.

Let's focus on single particle.
For Dirac wave fct 1 : R* — C*,  j5(x) = ¢(x) v 1(x).
For photon, ji, =7

There is a convincing answer for plane waves:
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Jhy, for plane waves

o Suppose A, (x) = a, e " F,,(x) = 2i ap, kj e**" with
future-lightlike k* and kka, =0 <« O"F,, = 0.

@ In the classical regime (many photons with equal wave fcts), photon
wave fct becomes electromagnetic field.

o Classically, energy density is T, = Re[F;\F,*| — zgu Fx,F.

@ Thus, here, T,, = a} a’ Kk, .

@ If each photon has momentum hk*, then T,, = hk,j, up to
constant factor.

@ Thus,
= azat Kt (4)
up to constant factor.
@ Also OK for local plane waves (as occur in the scattering regime).

@ But not every Maxwell field is a local plane wave. So the problem
remains.
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The desired law for jffh should have these properties:

@ The expression is quadratic in A, and its derivatives.

@ The expression is local, i.e., j¥(x) depends only on A, and its
derivatives at x.

@ Jj* is future timelike-or-lightlike.
Q 0,/* =0if A, obeys the free Maxwell equations.
@ For a plane wave, j* agrees with (4) up to a constant factor.

@ No choices need to be made, i.e., if the law requires a special gauge
or Lorentz frame then it also specifies this gauge or Lorentz frame.

@ The law can be generalized to curved space-time.
Several proposals for j# have been made [Landau, Peierls 1930;
Bialynicki-Birula 1994; Kiessling, Tahvildar-Zadeh 2018; etc.],
none of them satisfies all of the properties above;
some of them may be useful approximations.

It seems the correct answer has not been found yet.

Hope/guess: Maybe there is a formula for j* in terms of A, and its
derivatives that applies only in a particular gauge.
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Consistency
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Multi-time equations can be inconsistent.

Theorem [Petrat, Tumulka 2013]

For W(q, t1...ty) with fixed number N of time variables, the multi-time
system

2~ Hew
’8tk k

is consistent if and only if

iatj - I—IJ7 i@tk - Hk = 0.
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Consistency results for multi-time QFT models (i)

A model of QED due to Dirac, Fock, and Podolsky [1932] involves 1 time
variable for each of M Dirac particles and 1 time variable for the
quantized electromagnetic field.

The equations are formally consistent [Bloch 1934]. After introducing a UV
cut-off, also rigorously consistent [Nickel, Deckert 2019].
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Consistency results for multi-time QFT models (ii)

Another model [Petrat, Tumulka 2013] involves \U(m’")(Xl...Xm,yl...yn) with
m + n time variables, x < x + y, both x and y Dirac particles: On .%,,,

(i} O — m W™ (x1 X Y1 yn) =
evn+1gmt \Il(m’”+1)(x1...xm,yl...yn,xj) (1)

Fnt1
v

(it Oy — my)\ll(m’")(xl...xm,yl...y,,) =

e — mon—
5 253()@ —xj) hi; W% "D (X Xy V1o Yh1s Yk 1oYn)  (2)
j=1

with suitable coefficients g, h.

The equations are formally consistent [Petrat, Tumulka 2013]. After
introducing a UV cut-off, also rigorously consistent [Lill, Nickel, Tum. 2020].

The proof makes use of propagation locality and interaction locality.
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Propagation locality

Wave fcts cannot propagate faster than light.

Interaction locality

No interaction terms in the time evolution law for the wave fct between
spacelike separated regions.

Conjecture [Lienert, Tumulka 2020]

| A

For every 1-time Hamiltonian H satisfying propagation locality and
interaction locality, there is a unique consistent multi-time evolution on
. satisfying propagation locality and interaction locality and agreeing
with the H-evolution on horizontal (i.e., simultaneous) configurations.

Interaction locality is OK for LP. However, while the Maxwell egs are
propagation local for F,,, it may depend on the gauge whether the
evolution of A, is. For the time being, the problem remains open.
(Connected to the problem of Born's rule: One usually proves
propagation locality by using that j* is timelike-or-lightlike.)
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Outlook
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@ LP’s approach appears as simple and natural
@ Becomes even more natural in the multi-time framework

@ Open problems:
o Lorentz invariant formulation of the IBC
o Which equation for (3)?
e Born rule for photons
o Consistency proof
o What about positrons, Dirac sea?
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Thank you for your attention
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