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Two problems of quantum fluctuations in cosmology

Late universe: Want to avoid Boltzmann brains that arise by
fluctuation

Early universe: Want seeds of galaxy formation from quantum
superposition

Bohmian mechanics helps with both problems.
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The problem of Boltzmann brains
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Boltzmann brains

[Albrecht 2002; Dyson, Kleban, and Susskind 2002; Albrecht and Sorbo 2004; Bousso

and Freivogel 2007; Boddy, Carroll, and Pollack 2014, 2015]

A “Boltzmann brain” is this: Let M be the present macro-state of
your brain. For a classical gas in thermal equilibrium, it has
probability 1 that after sufficient waiting time, some atoms will “by
coincidence” (or “by fluctuation”) come together in such a way as
to form a subsystem in a micro-state belonging to M. That is, this
brain comes into existence not by childhood and evolution of life
forms, but by coincidence; this brain has memories (duplicates of
your present memories), but they are false memories: the events
described in the memories never happened to this brain!

Boltzmann brains are, of course, very unlikely. But they will happen
if the waiting time is long enough, and they will happen more
frequently if the system is larger (bigger volume, higher number of
particles).
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The problem of Boltzmann brains

The problem is this: If the universe continues to exist forever, and if
it reaches universal thermal equilibrium at some point, then the
overwhelming majority of brains in the universe will be Boltzmann
brains. According to the “Copernican principle,” we should see what
a typical observer sees. Thus, the theory predicts that we are
Boltzmann brains. But we are not. (Because most Boltzmann brains
find themselves surrounded by thermal equilibrium, not by other
intelligent beings on a planet.)

How can any of our serious theories avoid making this incorrect
prediction?
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Concrete version of the Boltzmann brain problem

It is expected (e.g., from ΛCDM) that the late universe will be close
to de Sitter space-time, and the state of matter will be close (in
terms of local observables) to the Bunch-Davies vacuum, a quantum
state invariant under the isometries of de Sitter space-time. The
probability distribution it defines on configuration space gives > 99%
weight to thermal equilibrium configurations, but positive probability
to brain configurations, in fact > 99% probability to configurations
containing brains if 3-space is large enough (in particular if infinite).

Question: Does this mean there are Boltzmann brains in the
Bunch-Davies vacuum? What is the significance of this particular
wave function for reality? Does a stationary state mean that nothing
happens?

Or does the factual situation visit different configurations over time
according to |ψ|2?
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Bohmian mechanics
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Bohmian mechanics

Picture: Gernot Bauer (after Chris Dewdney)

wave-particle duality (in the literal sense)
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Bohmian mechanics

For non-relativistic QM: [Slater 1923, de Broglie 1926, Bohm 1952, Bell 1966]

Dynamical laws:

dQk

dt
=

~
mk
∇kIm logψ

(
Q1(t), . . . ,QN(t)

)
(1)

i~
∂ψ

∂t
= Hψ (2)

The law of motion (1) is equivalent to dQ/dt = j/ρ, where
Q = (Q1, . . . ,QN) is the configuration, ρ = |ψ|2 is the standard
probability density, and j is the standard probability current vector
field in configuration space.

Quantum equilibrium assumption:

Q(t = 0) is random with distribution density |ψ(t = 0)|2. (3)
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Equivariance

Equivariance theorem: It follows that at any time, Q(t) has distribution
|ψ(t)|2.
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Empirical predictions of Bohmian mechanics

Central fact

Inhabitants of a Bohmian world would observe outcomes in agreement
with the predictions of quantum mechanics.
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How Bohmian mechanics helps with Boltzmann brains
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Freezing in Bohmian mechanics

In Bohmian mechanics, there is the phenomenon of “freezing.”

Theorem

If ψ is a non-degenerate eigenstate of a real H then the Bohmian
configuration does not move.

That is because the conjugate of ψ must be another eigenstate with
the same eigenvalue, so ψ must be real up to a global phase. As a
consequence, Bohmian velocities (and particle creation rates) vanish.

(Surprising because the momenum distribution is not concentrated
on the origin. In Bohmian mechanics, momentum corresponds not
to the instantaneous velocity but to the asymptotic velocity that the
particle would reach if the potential were turned off.)

It follows that, if non-relativistic Bohmian mechanics were true, and
if the late universe were in a non-degenerate eigenstate, then the
configuration would be frozen. Arguably, the Boltzmann brain
problem is absent then, as the brain, even if it existed, would not be
functioning.
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Concrete Model

De Sitter space-time has metric

ds2 = dt2 − e2Htδijdx
idx j

(H = Hubble parameter = expansion speed; i , j = 1...3)

Simple quantum field theory: Hermitian scalar quantum field ϕ(x , t)

Wave functional Ψ(ϕ, t) on space of field configurations ϕ

common rescaling: dt = eHt dη (η = conformal time), y = eHtϕ

−∞ < t <∞ but −∞ < η < 0: t →∞ corresponds to η → 0−
Schrödinger equation:

i
∂Ψ

∂η
=

1

2

∫
d3x

[
− δ2

δy(x)2
+ δij ∂

iy(x) ∂jy(x)

+
i

η

(
δ

δy(x)
y(x) + y(x)

δ

δy(x)

)]
Ψ
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Concrete Model

[Hiley and Aziz Mufti 1995; Pinto-Neto, Santos, and Struyve 2012]

Bohmian model with field ontology: actual field configuration ϕ(x , t)

dy(x)

dη
=
δIm log Ψ

δy(x)
− 1

η
y(x)

In terms of Fourier modes yk, (R3+ = half space, note y−k = y∗k )

i
∂Ψ

∂η
=

∫
R3+

d3k

[
− δ2

δy∗k δyk
+ k2 y∗k yk +

i

η

(
δ

δy∗k
y∗k + yk

δ

δyk

)]
Ψ

dyk
dη

=
δIm log Ψ

δy∗k
− 1

η
yk
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Freezing in the Bunch-Davies state

[Goldstein, Struyve, and Tumulka 2015]

Bunch-Davies state: (f = fk(η) =
√

1 + 1/k2η2/
√

2k)

Ψ =
∏

k∈R3+

1√
2πf

exp

{
− 1

2f 2
|yk|2 + i

[(
f ′

f
+

1

η

)
|yk|2 − phase(k, η)

]}
Solution to Bohmian eq. of motion:
yk(η) = c̃k fk(η) or

ϕk(t) = ck
√

1 + k2 exp(−2Ht)/H2 (4)

Note that ∃ lim
t→∞

ϕk(t) = ck (freezing).
t

ϕk

ck

In fact, at any time only the modes with wave lengths large
compared to the Hubble distance 1/H are frozen. But the simple
behavior (4) is as good as freezing for removing the Boltzmann brain
problem: Too simple to support the complex behavior of a
functioning brain.
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Freezing in a generic state

Ψ will not be close to the Bunch-Davies state in Hilbert space. It
will look locally similar, but Bohmian mechanics depends nonlocally
on the wave function.

This issue is taken care of by the following

Theorem [Ryssens 2012; Tumulka 2015]

For a large class of wave functions and most initial field configurations,
the asymptotic long-time behavior of ϕ is

ϕk(t) ≈ ck
√

1 + k2 exp(−2Ht)/H2 for t > t0 ,

where t0 is independent of k (but depends on the wave function). In
particular, ∃ lim

t→∞
ϕk(t).
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Idea of proof

consider a single mode k
rescale field variable z = γ(η)−1y
rescale and phase-transform wave function,

Φ(z , η) = eα(η)+iβ(η)z∗zΨ(γ(η) z , η)

rescale time dτ = γ−2 dη
If scaling functions α, β, γ are chosen suitably, the evolution of Φ
reduces to a non-relativistic Schrödinger equation in a 2d harmonic
oscillator potential

i
∂Φ

∂τ
= − ∂2Φ

∂z∗∂z
+ ω2z∗zΦ

and non-relativistic Bohmian equation of motion

dz

dτ
=
∂Im log Φ(z , τ)

∂z∗

which do not become singular as τ → 0− (⇔ η → 0− ⇔ t →∞).
Thus, lim

τ→0−
z(τ) exists, so, for τ sufficiently close to 0,

z(τ) ≈ const. ⇔ y(η) ≈ γ(η)×const. ⇔ ϕ(t) ≈
√

1 + exp(−2Ht).
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Upshot

For almost any ψ, freezing occurs: the Bohmian configuration does
not move, or moves in a simple way. While there is a positive
probability for a brain configuration to occur, this subsystem would
not function as a brain because it is frozen. (In fact, the probability
of a brain configuration in our Hubble volume is tiny.)

Thus, Boltzmann brains do not occur in Bohmian mechanics, at
least according to this particular model.

By the way, for Everett’s [1957] many-worlds interpretation of QM,
Boddy, Carroll, and Polack [2014, 2015] have argued that in the
stationary Bunch-Davies state nothing moves, but Wallace [2014]
disagrees.
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Thank you for your attention
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