Of MITE and MATE

or Macroscopic and Microscopic Thermal Equilibrium

Roderich Tumulka Eberhard-Karls University Tübingen

Rutgers, 25 August 2017

S. Goldstein, D. Huse, J. L. Lebowitz, and R. Tumulka:

- Physical Review Letters 115: 100402 (2015)
- Annalen der Physik 529: 1600301 (2017)

Macroscopic thermal equilibrium (MATE)

A quantum system in state $\psi \in \mathscr{H}$ is in MATE when all macro observables assume rather sharp values in ψ that agree with their thermodynamic equilibrium values.

(As we will discuss, most ψ in a given micro-canonical energy shell are in MATE.)

For generic macroscopic systems most ψ have a stronger property:

Microscopic thermal equilibrium (MITE)

A quantum system in state $\psi \in \mathscr{H}$ is in MITE when all micro observables (i.e., those referring only to a small subsystem S) have a probability distribution in ψ that coincides with their thermal probability distribution. (This property is a sign of a high degree of entanglement in ψ between S and its complement.)

"Ordinary" systems (satisfying eigenstate thermalization hypothesis = ETH) approach MATE and MITE. Systems with many-body Anderson localization (MBL) do not necessarily.

One often says that

"a system with Hamiltonian H is in a thermal state if $\rho = Z^{-1}e^{-\beta H}$ for some $\beta \in \mathbb{R}$ " (classically or quantum)

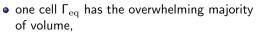
- But one often wants to consider an individual closed, macroscopic system in thermal equilibrium. Is *this particular* thermos bottle of coffee in thermal equilibrium?
- A classical system always has a phase point X, not a probability distribution ρ over phase space Γ .
- So a system should be in thermal equilibrium whenever X belongs to a certain set Γ_{eq} . This set does not necessarily have a precise definition, just as it is not precisely defined which 0-1 sequences of length N "look random."
- Just like a randomly chosen 0-1 sequence looks random with high probability, a phase point chosen with distribution $\rho = Z^{-1}e^{-\beta H}$ lies in Γ_{eq} with high probability.

通 と く ヨ と く ヨ と

Thermal equilibrium in classical mechanics

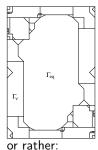
- State: point $X = (\mathbf{q}_1, \dots, \mathbf{q}_N, \mathbf{p}_1, \dots, \mathbf{p}_N)$ in phase space
- energy shell $\Gamma_{\rm mc} = \{X : E \Delta E \le H(X) \le E\}$
- depending on a choice of macro-variables, partition $\Gamma_{\rm mc}$ into macro-states Γ_{ν} corresponding to different (small ranges of) values of the macro-variables,

$$\Gamma_{
m mc} = \bigcup_{
u} \Gamma_{
u}$$



$$rac{{
m vol}\,{\Gamma}_{
m eq}}{{
m vol}\,{\Gamma}_{
m mc}}pprox 1.$$

• <u>Def:</u> A system is in equilibrium \Leftrightarrow its phase point lies in the set Γ_{eq} .



- Like a classical pure state $X \in \Gamma$, a quantum pure state $\psi \in \mathcal{H}$ can be in thermal equilibrium.
- Example: Put a hot brick on top of a cold one. What happens? Thermal behavior: Energy gets transported from the hot to the cold one.
- This occurs also, of course, for a pure state ψ during unitary evolution (say, if the system of two bricks is closed). Interaction with an environment is not needed.

-

• $H = \sum_{\alpha} E_{\alpha} |\phi_{\alpha}\rangle \langle \phi_{\alpha}|$

- micro-canonical energy shell \mathscr{H}_{mc} spanned by eigenvectors ϕ_{α} of H with $E \Delta E \leq E_{\alpha} \leq E$
- The width ΔE represents the macroscopic resolution of energy.

• Typically,
$$d_{
m mc}:= \dim \mathscr{H}_{
m mc} pprox 10^{10^{11}}$$

- $P_{
 m mc}=$ projection to $\mathscr{H}_{
 m mc}$
- $ho_{
 m mc} = d_{
 m mc}^{-1} \, P_{
 m mc}$ micro-canonical density matrix
- $\mathbb{S}(\mathscr{H}_{\mathrm{mc}}) = \left\{ \psi \in \mathscr{H}_{\mathrm{mc}} : \|\psi\| = 1 \right\} = \mathsf{unit} \mathsf{ sphere}$
- $u_{
 m mc}$ = uniform probability measure on $\mathbb{S}(\mathscr{H}_{
 m mc})$ (normalized area)

Macro states in quantum mechanics

• macro states correspond to subspaces \mathscr{H}_{ν} , mutually orthogonal,

$$\mathscr{H}_{\mathrm{mc}} = \bigoplus_{\nu} \mathscr{H}_{\nu}$$

 \bullet thermal equilibrium subspace $\mathscr{H}_{eq} \subset \mathscr{H}_{mc}$ with

$$\frac{\dim \mathscr{H}_{\rm eq}}{\dim \mathscr{H}_{\rm mc}} = 1 - \varepsilon$$

In practice, usually $\varepsilon \leq \exp(-10^{-15}N)$ for N degrees of freedom, so $\varepsilon < 10^{-10^5}$ for $N > 10^{20}$.

<u>Def:</u> A system is in MATE $\Leftrightarrow \psi$ is close to $\mathscr{H}_{eq} \Leftrightarrow$

$$\langle \psi | \mathcal{P}_{
m eq} | \psi
angle \geq 1 - \delta$$
 .

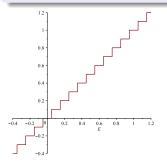
say with $\delta = 10^{-200}$, so $0 < \varepsilon \ll \delta$.

3. 3

Macro observables

John von Neumann 1929

- M_1, \ldots, M_K macro observables (e.g., net spin in a macro 3-region)
- The *M_j* commute approximately.
- Change the M_i a little so as to make them commute exactly.
- Coarse grain the M_j to macro resolution.
- The joint eigenspaces of the M_j provide an orthogonal decomposition ℋ = ⊕_νℋ_ν into macro spaces ℋ_ν.



Are almost commuting operators near commuting ones?

Theorem (Huaxin Lin 1995): Yes for 2 operators

If $\|[A,B]\| \ll 1$ then there are \tilde{A} and \tilde{B} near A, B with $[\tilde{A}, \tilde{B}] = 0$.

Theorem (M.D.Choi 1988): No in general

There are self-adjoint $d \times d$ matrices A_1, A_2, A_3 with $\|[A_i, A_j]\| \le 3/d$, so that for any commuting $\tilde{A}_1, \tilde{A}_2, \tilde{A}_3$,

$$\|A_1 - \tilde{A}_1\| + \|A_2 - \tilde{A}_2\| + \|A_3 - \tilde{A}_3\| \ge \sqrt{1 - 8/d}$$
.

Theorem (Yoshiko Ogata 2013): Yes for averages

Let $\mathscr{H} = (\mathbb{C}^d)^N$, let L_{jk} be $L_j : \mathbb{C}^n \to \mathbb{C}^n$ acting on the k-th factor space, and let

$$A_{jN} = \frac{1}{N} \sum_{k=1}^{N} L_{jk} \, .$$

Then there are commuting operators M_{jN} with $\lim_{N\to\infty} ||M_{jN} - A_{jN}|| = 0$.

Fact: Most ψ lie in MATE.

 $u_{
m mc}(MATE) > 1 - \varepsilon/\delta \approx 1.$

Proof: $\mathbb{E}_{\psi}\langle \psi | P_{eq} | \psi \rangle = \operatorname{tr}(P_{eq} \rho_{mc}) = \dim \mathscr{H}_{eq} / \dim \mathscr{H}_{mc} = 1 - \varepsilon$, but the average of $f(\psi) = \langle \psi | P_{eq} | \psi \rangle$ could not be that high if no more than $1 - \varepsilon / \delta$ of all ψ 's had $f(\psi) > 1 - \delta$.

Most $\psi \in \mathbb{S}(\mathscr{H}_{mc})$ lie not only in MATE but have a stronger property based on canonical typicality: Microscopic thermal equilibrium = MITE

Canonical typicality

- Let S be a small subsystem and $\rho_S^\psi = \mathrm{tr}_{S^c} |\psi\rangle\langle\psi|$ the reduced density operator.
- For most $\psi \in \mathbb{S}(\mathscr{H}_{\mathrm{mc}})$ is $ho_{\mathcal{S}}^{\psi}$ "canonical,"

$$\rho_{S}^{\psi} \approx \rho_{S}^{\mathrm{car}}$$

with $\rho_S^{\text{can}} = \operatorname{tr}_{S^c} \rho^{\text{can}}$. If the interaction between S and S^c is weak, then $\rho_S^{\text{can}} = (1/Z_S) e^{-\beta H_S}$.

 $\begin{array}{l} \underline{\text{Def:}} \ \psi \in \textit{MITE} \Leftrightarrow \left\| \rho_S^\psi - \rho_S^{\rm can} \right\| < \varepsilon \ \text{for every spatial subsystem } S \\ \text{with diameter} \ \leq \ell_0 \,, \\ \text{where } \ell_0 \ \text{is such that } \rho_S^{\rm mc} \approx \rho_S^{\rm can} \ \text{for subsystems with diameter} \leq \ell_0. \end{array}$

In classical mechanics there is no analog of MITE for pure states

because every subsystem is then also in a pure state and not close to a thermal $\rho.$

- ∢ ≣ ▶

Theorem about canonical typicality (Popescu-Short-Winter 2005)

Let $\varepsilon > 0$, \mathscr{H}_S , \mathscr{H}_{S^c} of finite dimension d_S , d_{S^c} , and $\mathscr{H}_{\mathrm{mc}} \subset \mathscr{H}_S \otimes \mathscr{H}_{S^c}$ an arbitrary subspace of dimension d_{mc} . If $d_S < \frac{1}{2}\varepsilon\sqrt{d_{\mathrm{mc}}}$, then

$$u_{
m mc} \Big\{ \psi \in \mathbb{S}(\mathscr{H}_{
m mc}) : \left\|
ho_{\mathcal{S}}^{\psi} -
ho_{\mathcal{S}}^{
m mc}
ight\| < arepsilon \Big\} \geq 1 - 4 \exp \Big(- rac{d_{
m mc} arepsilon^2}{72 \pi^3} \Big)$$

where $||A|| = \operatorname{tr} \sqrt{A^*A}$ (trace norm).

This means for a system of N spins that, for any subsystem S of up to N/2 spins, $\rho_S^{\psi} \approx \rho_S^{\text{mc}}$. For small S (e.g., 10^{-3} of full diameter), $\rho_S^{\text{mc}} \approx \rho_S^{\text{can}}$ (equivalence of ensembles) \Rightarrow canonical typicality.

Rule of thumb: For subsystems of $<\frac{1}{2}$ the volume, typically $\rho_S^{\psi} \approx \rho_S^{\rm mc}$.

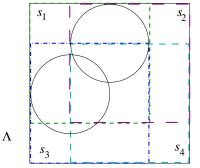
One can show that that is not so for subsystems of $> \frac{1}{2}$ the volume.

Entanglement-driven

Canonical typicality reflects the high degree of entanglement between S and S^c .

Subsubsystem property

If $\rho_S^{\psi} \approx \rho_S^{\rm mc}$ for some subsystem *S*, then the same is true for every smaller $S' \subset S$. (Take the partial trace on both sides.)



In a cube of side length 1, there are 8 smaller cubes s_i of side length $0.79 < 2^{1/3}$ and thus volume $< \frac{1}{2}$ so that every set of diameter < 0.29 is contained in one s_i .

<u>Def:</u> Let \mathscr{A} be a set of observables. A system (in ψ or ρ) is in \mathscr{A} -TE iff for every $A \in \mathscr{A}$, the probability distribution over the spectrum of A is approximately equal to the thermal distribution defined by ρ^{mc} .

- $\mathscr{A}_{MATE} = \{M_1, \dots, M_K\} = macro observables$
- $\mathscr{A}_{\text{MITE}} = \bigcup_{S} \mathscr{A}_{S}$ over all regions S of diameter $\leq \ell_0$ and $\mathscr{A}_{S} =$ all observables in S.

$$\label{eq:MATE} \begin{split} \mathsf{MATE} &= \mathsf{TE} \text{ relative to all macro observables} \\ \mathsf{MITE} &= \mathsf{TE} \text{ relative to all "local" observables} \end{split}$$

Since every macro observable has a dominant eigenvalue (whose eigenspace has > 99% of dimensions), the thermal distribution is essentially concentrated on that one value; thus, $\mathscr{A}_{MATE}-TE = \{P_{eq}\}-TE$. Different for local observables: non-trivial distribution.

because macro observables M_j are sums of local observables referring to spatial cells of size L. Since realistically $L \leq \ell_0$ for macro systems, $\psi \in \mathsf{MITE}$ displays thermal behavior for local observ.s and thus for M_j .

Example of $\psi \in MATE$, $\psi \notin MITE$

$$N \gg 1$$
 spins- $\frac{1}{2}$, $\mathscr{H} = (\mathbb{C}^2)^{\otimes N}$, $H = 0$, $\mathscr{H}_{\mathrm{mc}} = \mathscr{H}$. Choose

 $\psi = \otimes_i \psi_i$ at random.

MATE: $M_j = \text{total spin in } j\text{-th macro cell, thermal value} = 0 \Rightarrow \text{YES}$ MITE: $\rho_S^{\psi} = |\psi_i\rangle\langle\psi_i| \neq \frac{1}{2}I = \rho_S^{\text{mc}} \Rightarrow \text{NO}$

ETH = eigenstate thermalization hypothesis (Srednicki 1994)

```
The energy eigenstates \phi_{\alpha} are in thermal equilibrium.
MATE-ETH: all \phi_{\alpha} \in MATE_{\delta^2}
```

That's a condition on H.

Theorem: approach to MATE

If dim $\mathscr{H}_{\mathrm{mc}} < \infty$, H is non-degenerate, and MATE-ETH holds, then every $\psi_0 \in \mathbb{S}(\mathscr{H}_{\mathrm{mc}})$ sooner or later reaches MATE_{δ} and spends there most of the time in the long run, i.e.,

$$\liminf_{T \to \infty} \frac{1}{T} \left| \left\{ 0 < t < T : \psi_t \in \mathsf{MATE}_{\delta} \right\} \right| > 1 - \delta \,.$$

Proof: approach to MATE

time average
$$\overline{f(t)} = \lim_{T \to \infty} \frac{1}{T} \int_0^T f(t) dt$$

$$\overline{\langle \psi_t | P_{\rm eq} | \psi_t \rangle} = ?$$

$$\psi_0 = \sum_{lpha=1}^{d_{
m mc}} c_lpha |\phi_lpha
angle, \qquad \psi_t = \sum_{lpha=1}^{d_{
m mc}} e^{-i \mathcal{E}_lpha t} c_lpha |\phi_lpha
angle$$

$$\overline{\langle \psi_t | P_{\rm eq} | \psi_t \rangle} = \sum_{\alpha,\beta} \underbrace{\overline{e^{i(E_\alpha - E_\beta)t}}}_{\delta_{\alpha\beta}} c_\alpha^* c_\beta \langle \phi_\alpha | P_{\rm eq} | \phi_\beta \rangle$$
$$= \sum_{\alpha} |c_\alpha|^2 \underbrace{\langle \phi_\alpha | P_{\rm eq} | \phi_\alpha \rangle}_{>1 - \delta^2}$$
$$> 1 - \delta^2$$

If error(t) > δ for more than the fraction δ of time then $error(t) > \delta^2$. Thus, $\langle \psi_t | P_{eq} | \psi_t \rangle > 1 - \delta$ for $(1 - \delta)$ -most of the time.

э

When is ETH satisfied?

Examples that violate ETH

- non-interacting H
- MBL = many-body localization

Yet, every macro system satisfies almost MATE-ETH: most $\phi_{lpha} \in \mathsf{MATE}$

Proof: $d_{\rm mc}^{-1} \sum_{\alpha=1}^{d_{\rm mc}} \langle \phi_{\alpha} | P_{\rm eq} | \phi_{\alpha} \rangle = d_{\rm mc}^{-1} \operatorname{tr}(P_{\rm eq}) = 1 - \varepsilon$, and since $0 \leq \langle \phi_{\alpha} | P_{\rm eq} | \phi_{\alpha} \rangle \leq 1$, most of these terms must be close to 1.

Theorem (GLMTZ 2010): random H satisfies ETH

If $d_{\rm mc}$ is sufficiently large and $d_{\rm eq}/d_{\rm mc}$ sufficiently close to 1, then most ONBs of $\mathscr{H}_{\rm mc}$ have all basis vectors in MATE_{δ^2}.

Numerical evidence (Kim-Ikeda-Huse 2014)

points to the existence of systems with realistic interactions for which all energy eigenstates are in MITE and thus also in MATE.

Approach to MITE

Assumptions:

- $d_{\rm mc} < \infty$
- It is non-degenerate
- MITE $_{\delta^2}$ -ETH
- non-degenerate energy gaps, i.e.,

$$E_{\alpha} - E_{\beta} \neq E_{\alpha'} - E_{\beta'} \text{ unless } \begin{cases} \text{either } \alpha = \alpha' \text{ and } \beta = \beta' \\ \text{or } \alpha = \beta \text{ and } \alpha' = \beta', \end{cases}$$

Theorem (Reimann 2008, Linden-Popescu-Short-Winter 2009)

Assuming 1–4, most $\psi_0 \in \mathbb{S}(\mathscr{H}_{mc})$ spend most of the time in MITE_{δ} .

Theorem (Rigol-Dunjko-Olshanii 2008)

Assume 1-4 and the following off-diagonal extension of ETH:

$$\left| \langle \phi_{\alpha} | \mathcal{A} | \phi_{\beta} \rangle \right| < \delta^2 \qquad \forall \alpha \neq \beta, \ \forall \mathcal{A} \in \mathscr{A}_{\mathsf{MITE}} \,.$$

Then all $\psi_0 \in \mathbb{S}(\mathscr{H}_{mc})$ spend $(1 - \delta)$ -most of the time in MITE_{δ} .

MBL = many-body localization

- generalization of Anderson localization
- no general definition
- Some eigenstates ϕ_{α} of H are in some sense "localized."
- Most ϕ_{α} have a short range of entanglement.
- In fact, typically $(|\phi_{\alpha}\rangle\langle\phi_{\alpha}|)_{S}$ for small spatial region S has substantially lower von Neumann entropy than ρ_{S}^{can} .
- As a consequence, most ϕ_{α} fail to be in MITE.
- This remains true under local perturbations.
- As a consequence, many ψ may fail to thermalize.
- We know that every H must have most ϕ_{α} in MATE.
- In some MBL systems, $\forall \alpha$ either $\phi_{\alpha} \in \mathscr{H}_{eq}$ or $\phi_{\alpha} \perp \mathscr{H}_{\alpha}$ (approximately).
- In that case, MATE-ETH is violated as strongly as possible, and contributions $\perp \mathscr{H}_{mc}$ never thermalize in either MATE or MITE.

Thank you for your attention

▲□ → ▲ 三 → ▲ 三 →