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Overview

Macroscopic thermal equilibrium (MATE)

A quantum system in state ψ ∈H is in MATE when all macro
observables assume rather sharp values in ψ that agree with their
thermodynamic equilibrium values.
(As we will discuss, most ψ in a given micro-canonical energy shell are in
MATE.)

For generic macroscopic systems most ψ have a stronger property:

Microscopic thermal equilibrium (MITE)

A quantum system in state ψ ∈H is in MITE when all micro observables
(i.e., those referring only to a small subsystem S) have a probability
distribution in ψ that coincides with their thermal probability distribution.
(This property is a sign of a high degree of entanglement in ψ between S
and its complement.)

“Ordinary” systems (satisfying eigenstate thermalization hypothesis =
ETH) approach MATE and MITE.
Systems with many-body Anderson localization (MBL) do not necessarily.

Roderich Tumulka Macroscopic and Microscopic Thermal Equilibrium



ρ versus X

One often says that

“a system with Hamiltonian H is in a thermal state if ρ = Z−1e−βH for
some β ∈ R” (classically or quantum)

But one often wants to consider an individual closed, macroscopic
system in thermal equilibrium. Is this particular thermos bottle of
coffee in thermal equilibrium?

A classical system always has a phase point X , not a probability
distribution ρ over phase space Γ.

So a system should be in thermal equilibrium whenever X belongs to
a certain set Γeq. This set does not necessarily have a precise
definition, just as it is not precisely defined which 0-1 sequences of
length N “look random.”

Just like a randomly chosen 0-1 sequence looks random with high
probability, a phase point chosen with distribution ρ = Z−1e−βH lies
in Γeq with high probability.

Roderich Tumulka Macroscopic and Microscopic Thermal Equilibrium



Thermal equilibrium in classical mechanics

State: point X = (q1, . . . ,qN ,p1, . . . ,pN)
in phase space

energy shell
Γmc = {X : E −∆E ≤ H(X ) ≤ E}
depending on a choice of macro-variables,
partition Γmc into macro-states Γν
corresponding to different (small ranges
of) values of the macro-variables,

Γmc =
⋃
ν

Γν

one cell Γeq has the overwhelming majority
of volume,

vol Γeq

vol Γmc
≈ 1.

Def: A system is in equilibrium ⇔
its phase point lies in the set Γeq.

ν

eq

Γ

Γ

or rather:

eqΓ
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ρ versus ψ

Like a classical pure state X ∈ Γ, a quantum pure state ψ ∈H can
be in thermal equilibrium.

Example: Put a hot brick on top of a cold one. What happens?
Thermal behavior: Energy gets transported from the hot to the cold
one.

This occurs also, of course, for a pure state ψ during unitary
evolution (say, if the system of two bricks is closed). Interaction with
an environment is not needed.
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Notation and terminology

H =
∑
α Eα|φα〉〈φα|

micro-canonical energy shell Hmc spanned by eigenvectors φα of H
with E −∆E ≤ Eα ≤ E

The width ∆E represents the macroscopic resolution of energy.

Typically, dmc := dim Hmc ≈ 101010 .

Pmc = projection to Hmc

ρmc = d−1mc Pmc micro-canonical density matrix

S(Hmc) =
{
ψ ∈Hmc : ‖ψ‖ = 1

}
= unit sphere

umc = uniform probability measure on S(Hmc) (normalized area)
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Macro states in quantum mechanics

macro states correspond to subspaces Hν , mutually orthogonal,

Hmc =
⊕
ν

Hν

thermal equilibrium subspace Heq ⊂Hmc with

dim Heq

dim Hmc
= 1− ε

In practice, usually ε ≤ exp(−10−15N) for N degrees of freedom, so

ε < 10−10
5

for N > 1020.

Def: A system is in MATE ⇔ ψ is close to Heq ⇔

〈ψ|Peq|ψ〉 ≥ 1− δ

say with δ = 10−200, so 0 < ε� δ.
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Macro observables

John von Neumann 1929

M1, . . . ,MK macro observables (e.g., net spin in a macro 3-region)

The Mj commute approximately.

Change the Mj a little so as to make them commute exactly.

Coarse grain the Mj to macro resolution.

The joint eigenspaces of the Mj provide an orthogonal
decomposition H = ⊕νHν into macro spaces Hν .
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Are almost commuting operators near commuting ones?

Theorem (Huaxin Lin 1995): Yes for 2 operators

If ‖[A,B]‖ � 1 then there are Ã and B̃ near A,B with [Ã, B̃] = 0.

Theorem (M.D.Choi 1988): No in general

There are self-adjoint d × d matrices A1,A2,A3 with ‖[Ai ,Aj ]‖ ≤ 3/d , so

that for any commuting Ã1, Ã2, Ã3,

‖A1 − Ã1‖+ ‖A2 − Ã2‖+ ‖A3 − Ã3‖ ≥
√

1− 8/d .

Theorem (Yoshiko Ogata 2013): Yes for averages

Let H = (Cd)N , let Ljk be Lj : Cn → Cn acting on the k-th factor
space, and let

AjN =
1

N

N∑
k=1

Ljk .

Then there are commuting operators MjN with lim
N→∞

‖MjN − AjN‖ = 0.
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Fact: Most ψ lie in MATE.

umc(MATE ) > 1− ε/δ ≈ 1.

Proof: Eψ〈ψ|Peq|ψ〉 = tr(Peqρmc) = dim Heq/ dim Hmc = 1− ε, but
the average of f (ψ) = 〈ψ|Peq|ψ〉 could not be that high if no more than
1− ε/δ of all ψ’s had f (ψ) > 1− δ. �

Most ψ ∈ S(Hmc) lie not only in MATE but have a stronger property
based on canonical typicality: Microscopic thermal equilibrium = MITE
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Canonical typicality

Let S be a small subsystem and ρψS = trSc |ψ〉〈ψ| the reduced
density operator.

For most ψ ∈ S(Hmc) is ρψS “canonical,”

ρψS ≈ ρ
can
S

with ρcanS = trSc ρcan. If the interaction between S and Sc is weak,
then ρcanS = (1/ZS) e−βHS .

Def: ψ ∈ MITE ⇔
∥∥ρψS − ρcanS

∥∥ < ε for every spatial subsystem S
with diameter ≤ `0 ,
where `0 is such that ρmc

S ≈ ρcanS for subsystems with diameter ≤ `0.

In classical mechanics there is no analog of MITE for pure states

because every subsystem is then also in a pure state and not close to a
thermal ρ.
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Theorem about canonical typicality (Popescu-Short-Winter 2005)

Let ε > 0, HS ,HSc of finite dimension dS , dSc , and Hmc ⊂HS ⊗HSc

an arbitrary subspace of dimension dmc. If dS <
1
2ε
√
dmc, then

umc

{
ψ ∈ S(Hmc) :

∥∥ρψS − ρmc
S

∥∥ < ε
}
≥ 1− 4 exp

(
− dmcε

2

72π3

)
,

where ‖A‖ = tr
√
A∗A (trace norm).

This means for a system of N spins that, for any subsystem S of up to
N/2 spins, ρψS ≈ ρmc

S . For small S (e.g., 10−3 of full diameter),
ρmc
S ≈ ρcanS (equivalence of ensembles) ⇒ canonical typicality.

Rule of thumb: For subsystems of < 1
2 the volume, typically ρψS ≈ ρmc

S .

One can show that that is not so for subsystems of > 1
2 the volume.

Entanglement-driven

Canonical typicality reflects the high degree of entanglement between S
and Sc .
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Most ψ are in MITE

Subsubsystem property

If ρψS ≈ ρmc
S for some subsystem S , then the same is true for every

smaller S ′ ⊂ S . (Take the partial trace on both sides.)

2

4

1

Λ

s s

s s
3

In a cube of side length 1, there
are 8 smaller cubes si of side length
0.79 < 21/3 and thus volume < 1

2
so that every set of diameter < 0.29
is contained in one si .

Corollary

Most ψ ∈ S(Hmc) lie in MITE.
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General framework of MATE and MITE

Def: Let A be a set of observables. A system (in ψ or ρ) is in A -TE iff
for every A ∈ A , the probability distribution over the spectrum of A is
approximately equal to the thermal distribution defined by ρmc.

AMATE = {M1, . . . ,MK} = macro observables

AMITE =
⋃

S AS over all regions S of diameter ≤ `0 and
AS = all observables in S .

MATE = TE relative to all macro observables
MITE = TE relative to all “local” observables

Since every macro observable has a dominant eigenvalue (whose
eigenspace has > 99% of dimensions), the thermal distribution is
essentially concentrated on that one value; thus, AMATE-TE = {Peq}-TE.
Different for local observables: non-trivial distribution.
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MITE implies MATE for macro systems

because macro observables Mj are sums of local observables referring to
spatial cells of size L. Since realistically L ≤ `0 for macro systems,
ψ ∈ MITE displays thermal behavior for local observ.s and thus for Mj .

Example of ψ ∈ MATE, ψ /∈ MITE

N � 1 spins- 12 , H = (C2)⊗N , H = 0, Hmc = H . Choose

ψ = ⊗iψi at random.

MATE: Mj = total spin in j-th macro cell, thermal value = 0 ⇒ YES

MITE: ρψS = |ψi 〉〈ψi | 6= 1
2 I = ρmc

S ⇒ NO
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Dynamical approach to thermal equilibrium

ETH = eigenstate thermalization hypothesis (Srednicki 1994)

The energy eigenstates φα are in thermal equilibrium.
MATE-ETH: all φα ∈ MATEδ2

That’s a condition on H.

Theorem: approach to MATE

If dim Hmc <∞, H is non-degenerate, and MATE-ETH holds,
then every ψ0 ∈ S(Hmc) sooner or later reaches MATEδ and spends
there most of the time in the long run, i.e.,

lim inf
T→∞

1

T

∣∣∣∣{0 < t < T : ψt ∈ MATEδ
}∣∣∣∣ > 1− δ .
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Proof: approach to MATE

time average f (t) = lim
T→∞

1

T

∫ T

0

f (t) dt

〈ψt |Peq|ψt〉 = ?

ψ0 =
dmc∑
α=1

cα|φα〉 , ψt =
dmc∑
α=1

e−iEαtcα|φα〉

〈ψt |Peq|ψt〉 =
∑
α,β

e i(Eα−Eβ)t︸ ︷︷ ︸
δαβ

c∗αcβ〈φα|Peq|φβ〉

=
∑
α

|cα|2 〈φα|Peq|φα〉︸ ︷︷ ︸
>1−δ2

> 1− δ2

If error(t) > δ for more than the fraction δ of time then error(t) > δ2.

Thus, 〈ψt |Peq|ψt〉 > 1− δ for (1− δ)-most of the time. �
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When is ETH satisfied?

Examples that violate ETH

non-interacting H

MBL = many-body localization

Yet, every macro system satisfies almost MATE-ETH: most φα ∈ MATE

Proof: d−1mc

∑dmc

α=1〈φα|Peq|φα〉 = d−1mc tr(Peq) = 1− ε, and since
0 ≤ 〈φα|Peq|φα〉 ≤ 1, most of these terms must be close to 1. �

Theorem (GLMTZ 2010): random H satisfies ETH

If dmc is sufficiently large and deq/dmc sufficiently close to 1, then most
ONBs of Hmc have all basis vectors in MATEδ2 .

Numerical evidence (Kim-Ikeda-Huse 2014)

points to the existence of systems with realistic interactions for which all
energy eigenstates are in MITE and thus also in MATE.
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Approach to MITE

Assumptions:
1 dmc <∞
2 H is non-degenerate
3 MITEδ2-ETH
4 non-degenerate energy gaps, i.e.,

Eα − Eβ 6= Eα′ − Eβ′ unless

{
either α = α′ and β = β′

or α = β and α′ = β′ ,

Theorem (Reimann 2008, Linden-Popescu-Short-Winter 2009)

Assuming 1–4, most ψ0 ∈ S(Hmc) spend most of the time in MITEδ.

Theorem (Rigol-Dunjko-Olshanii 2008)

Assume 1–4 and the following off-diagonal extension of ETH:∣∣∣〈φα|A|φβ〉∣∣∣ < δ2 ∀α 6= β, ∀A ∈ AMITE .

Then all ψ0 ∈ S(Hmc) spend (1− δ)-most of the time in MITEδ.
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MBL = many-body localization

generalization of Anderson localization

no general definition

Some eigenstates φα of H are in some sense “localized.”

Most φα have a short range of entanglement.

In fact, typically (|φα〉〈φα|)S for small spatial region S has
substantially lower von Neumann entropy than ρcanS .

As a consequence, most φα fail to be in MITE.

This remains true under local perturbations.

As a consequence, many ψ may fail to thermalize.

We know that every H must have most φα in MATE.

In some MBL systems, ∀α either φα ∈Heq or φα ⊥Hα

(approximately).

In that case, MATE-ETH is violated as strongly as possible, and
contributions ⊥Hmc never thermalize in either MATE or MITE.
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Thank you for your attention
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