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Hamiltonians H on Fock space with particle creation and
annihilation usually are UV divergent.

To obtain a well-defined H you can introduce a UV cut-off by

discretizing space or
smearing out the creation/annihilation terms

The novel approach of interior-boundary conditions (IBCs) can
provide a well-defined H without need for a UV cut-off.

I will present

rigorous results for the non-relativistic case
Bohmian trajectories
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Particle–position representation of a Fock space vector

Configuration space of a variable number of particles:

Q =
∞⋃
n=0

R3n

=
∞⋃
n=0

Q(n)

(b)

(c) (d)

(a)

here d = 1,
n = 0, 1, 2, 3

Fock space:

F± =
∞⊕
n=0

S±H ⊗n
1

with S+ = symmetrizer, S− = anti-symmetrizer, H1 = 1-particle
Hilbert space = L2(R3,Ck)
ψ ∈ F ⇒ ψ =

(
ψ(0), ψ(1), ψ(2), . . .

)
ψ : Q → S with S = value space = ∪∞n=0(Ck)⊗n

ψ is an (anti-)symmetric function
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Example: a non-relativistic QFT

There are two species of particles, x-particles and y-particles.

x-particles can emit and absorb y-particles.

configuration space Q =
∞⋃

m,n=0

(R3
x)m × (R3

y )n

Hilbert space H = F−x ⊗F +
y

ψ : Q → C, ψ = ψ(xm, yn), where xm is any x-configuration with m
particles

As always, i∂tψ = Hψ Schrödinger eq

Naive original Hamiltonian (UV divergent)

Horig = H free
x + H free

y + g

∫
R3

d3x a†x(x)
(
ay (x) + a†y (x)

)
ax(x)

g = coupling constant ∈ R
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Horig in the particle-position representation

Naive original Hamiltonian (UV divergent)

(Horigψ)(xm, yn) = − ~2

2mx

m∑
i=1

∇2
x i
ψ(xm, yn)− ~2

2my

n∑
j=1

∇2
y j
ψ(xm, yn) +

+ nE0ψ(xm, yn) +

+ g
√
n + 1

m∑
i=1

ψ
(
xm, (yn, x i )

)
+

+
g√
n

m∑
i=1

n∑
j=1

δ3(x i − y j)ψ
(
xm, yn \ y j

)
,

with E0 = rest energy, yn \ y j = leave out y j .

Horig is ill-defined because the wave fct of the newly created y-particle,
δ3(x − y), does not lie in L2(R3) (or, has infinite energy).
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Well-defined, regularized version of H

UV cut-off ϕ ∈ L2(R3):

(Hcutoffψ)(xm, yn) = − ~2

2mx

m∑
i=1

∇2
x i
ψ(xm, yn)− ~2

2my

n∑
j=1

∇2
y j
ψ(xm, yn) +

+ nE0ψ(xm, yn) +

+ g
√
n + 1

m∑
i=1

∫
R3

d3y ϕ∗(x i − y)ψ
(
xm, (yn, y)

)
+

+
g√
n

m∑
i=1

n∑
j=1

ϕ(x i − y j)ψ
(
xm, yn \ y j

)

“smearing out” the x-particle
with “charge distribution” ϕ(· − x)
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Novel idea: Interior–boundary condition

Interior–boundary condition (IBC) basic form

For q on the boundary of Q,

ψ(q) = αψ(q′) ,

where q′ is an interior point of Q and α = α(q) ∈ R independent of ψ.

Here, “boundary” = diagonal;
boundary config: where x i = y j ;
interior config q′: one y-particle removed

Ex: q = (x , x), q′ = x

1−particle sector

x

x

y

2−particle sector
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Toy example of a configuration space with boundary

Consider configuration space Q = Q(1) ∪Q(2)

with Q(1) = R and
Q(2) =

{
(x , y) ∈ R2 : y > 0

}
.

Correspondingly, H = H (1) ⊕H (2)

with H (n) = L2(Q(n)).

boundary ∂Q =
{

(x , y) ∈ R2 : y = 0
}

IBC: For every x ∈ R, ψ(2)(x , 0) = 2mg
~2 ψ

(1)(x) (1)

Hamiltonian:

(Hψ)(1)(x) = −~2

2 ∂
2
xψ

(1)(x)− g ∂yψ
(2)(x , 0)

(Hψ)(2)(x , y) = −~2

2

(
∂2
x + ∂2

y

)
ψ(2)(x , y) for y > 0 .

Theorem (TT 2015 arXiv:1506.00497)

On a domain D ⊆H of functions satisfying the IBC (1), H is rigorously
defined and self-adjoint.
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Probability balance

IBC: ψ(2)(x , 0) = 2mg
~2 ψ

(1)(x) (1)

(Hψ)(1)(x) = −~2

2 ∂
2
xψ

(1)(x)− g ∂yψ
(2)(x , 0)

(Hψ)(2)(x , y) = −~2

2

(
∂2
x + ∂2

y

)
ψ(2)(x , y)

Loss of probability in Q(2) at (x , 0): −j (2)
y (x , 0)

is compensated by gain in Q(1):

∂|ψ(1)|2

∂t
(x) = −∂x j (1) − 2

~ Im
[
ψ(1)(x)∗ g ∂yψ

(2)(x , 0)
]

(1)
= −∂x j (1) − j (2)

y (x , 0) .

Roderich Tumulka (Tübingen) Interior-Boundary Conditions



Bohmian trajectories

Bohm’s equation of motion:

dQ

dt
=

jψ(Q)

ρψ(Q)

= ~
m Im

ψ∗∇ψ
ψ∗ψ

in every sector Q(1),Q(2).

When the trajectory hits the
boundary at (x , 0), it jumps to x .

When Q(t) = x ∈ Q(1), it jumps to
(x , 0) ∈ Q(2) with rate

σt
(
x → (x , 0)

)
=

j
(2)
y (x , 0)+

ρ(1)(x)

= ~
m

Im+
[
ψ(2)(x , 0)∗ ∂yψ

(2)(x , 0)
]

|ψ(1)(x)|2

Markov process

time reversal invariant

Qt ∼ |ψt |2 at all t
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Simplified QFT model (“Lee model”)

There is only 1 x-particle, and it is fixed at the origin. H = F +
y

configuration space Q =
∞⋃
n=0

R3n

boundary configurations: any particle at the origin (r = 0 in
spherical coordinates)

IBC lim
r↘0

rψ(yn, rω) =
g my

2π~2
√
n + 1

ψ(yn) for all ω ∈ S2 (2)

HIBCψ = H free
y ψ +

g
√
n + 1

4π

∫
S2

d2ω lim
r↘0

∂

∂r

[
rψ(yn, rω)

]
+

g√
n

n∑
j=1

δ3(y j)ψ(yn \ y j) (3)

Theorem (LSTT 2017 arXiv:1703.04476)

On a suitable dense domain DIBC of ψs in F +
y satisfying the IBC (2),

HIBC is well defined, self-adjoint, and positive.
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Comparison Horig,HIBC

Horigψ = Hfreeψ + g
√
n + 1 ψ

(
yn, 0

)
+

+
g√
n

n∑
j=1

δ3(y j)ψ
(
yn \ y j

)
,

HIBCψ = Hfreeψ +

+
g
√
n + 1

4π

∫
S2

d2ω lim
r↘0

∂

∂r

[
rψ
(
yn, rω

)]
︸ ︷︷ ︸

b

+
g√
n

n∑
j=1

δ3(y j)ψ
(
yn \ y j

)
ψ(1)(rω) = a r−1 + b + o(1); IBC: a = αn ψ

(0)

In Rd instead of R3, replace r−1 → r−(d−1)/2 for d ≥ 3,
log r for d = 2, r0 for d = 1.
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Why it works: flux of probability into a point

probability current j y j
(yn) =

~
my

Imψ∗∇y j
ψ

∂
∣∣ψ(yn)

∣∣2
∂t

= −
n∑

j=1

∇y j
· j y j

+ (n + 1) lim
r↘0

r2

∫
S2

d2ωω · j yn+1
(yn, rω)︸ ︷︷ ︸

flux into 0 on (n + 1)-sector

motion towards 0 ⇒
ρ ∼ 1/r2 as r → 0
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Bohmian picture

t 7→ Q(t) ∈ Q piecewise
continuous, jumps between Q(n)

and Q(n+1)

within Q(n), Bohm’s law of motion

dQ

dt
=

~
m
Im
∇ψ(n)

ψ(n)

(
Q(t)

)
with IBC:

when Q(t) ∈ Q(n) reaches y j = 0,

it jumps to (yn \ y j) ∈ Q(n−1)

emission of new y-particle at 0 at
random time with random direction

with UV cut-off:

emission and absorption occurs
anywhere in a ball around 0 (= in

the support of ϕ )

Q(t )

Q(t +)2

Q(t )

1Q(t +)

2

1

(c) (d)

(a) (b)

t

x

x

t
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Trajectories starting at r = 0

It turns out that for functions in the domain of HIBC ,
ψ(1)(rω) = a r−1 + b + o(1) with a and b independent of ω.

As a consequence, the last velocity of the y -particle before
absorption at 0 is purely radial.

Hence, the y -trajectory reaches 0 in a definite direction and has an
endpoint in spherical coordinates (r ,ω) at (0,ωfinal).

Different trajectories in Q(1) reaching 0 at the same time have
different ωfinal.

Time reverse: for every t and ωinitial there is a unique trajectory
beginning at 0 at time t in the direction ωinitial whenever
lim
r→0

j (1)
r (rωinitial , t) > 0.

Thus, whenever Qt jumps from Q(0) to 0 ∈ Q(1), there starts a
trajectory at 0 for each direction.

The process chosses the direction randomly.

This is key for showing that the IBC process Qt is well defined.
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Comparison to renormalization procedure

Consider Hcutoff = Hϕ with ϕ = , limit ϕ→ δ3.

Then there exist constants Eϕ →∞ and a self-adjoint operator H∞
such that

Hϕ − Eϕ → H∞ .

[van Hove 1952, Nelson 1964, see also Dereziński 2003]

Theorem (LSTT 2017 arXiv:1703.04476)

H∞ = HIBC + const.

Previously, it was unknown what the domain of H∞ looks like and how
H∞ acts on it.

Shown non-rigorously:

The Bohmian process Qϕ
t for Hϕ converges in distribution, as ϕ→ δ3, to

the IBC process Q IBC
t .
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Moving x-particles

Hilbert space H = F−x ⊗F +
y

Horig = H free
x + H free

y + g

∫
R3

d3x a†x(x)
(
ay (x) + a†y (x)

)
ax(x)

There is a natural formulation of the IBC and HIBC in this setting.

Theorem (Lampart and Schmidt 2017 forthcoming)

Let the space dimension be d ∈ 1, 2, 3. On a suitable dense domain DIBC

of ψs in H satisfying the IBC, HIBC is well defined, self-adjoint, and
positive.

With moving x-particles in 3d, the growth of ψ near the boundary is no
longer a r−1 + b + o(1) but instead

ψ(1)(rω) = a r−1 + b log r + c + o(1)

where b = α̃ a with certain constant α̃ ∈ R independent of ψ.
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Symmetries

HIBC and the IBC process Qt respect the symmetries of Horig including
(if appropriate)

Galilean boosts, rotations, space and time translations, time reversal

gauge invariance
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Thank you for your attention
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