Probability of Particle Creation and Interior-Boundary Conditions for Fock Space

Roderich Tumulka

Stastical Mechanics Meeting, 19 December 2017

Joint work with Stefan Teufel, Julian Schmidt, and Jonas Lampart

Congratulations to Guenter Ahlers, Cristina Marchetti, and Shelly Goldstein!

< 同 > < 三 > < 三 > -

- Hamiltonians *H* on Fock space with particle creation and annihilation usually are UV divergent.
- To obtain a well-defined H you can introduce a UV cut-off by
 - discretizing space or
 - smearing out the creation/annihilation terms
- The novel approach of interior-boundary conditions (IBCs) can provide a well-defined *H* without need for a UV cut-off.
- I will present
 - rigorous results for the non-relativistic case
 - Bohmian trajectories

Particle-position representation of a Fock space vector

Configuration space of a variable number of particles:

Example: a non-relativistic QFT

- There are two species of particles, x-particles and y-particles.
- x-particles can emit and absorb y-particles.
- configuration space $\mathcal{Q} = \bigcup_{m,n=0}^{\infty} (\mathbb{R}^3_x)^m imes (\mathbb{R}^3_y)^n$
- Hilbert space $\mathscr{H} = \mathscr{F}_x^- \otimes \mathscr{F}_y^+$
- $\psi : \mathcal{Q} \to \mathbb{C}, \ \psi = \psi(x^m, y^n)$, where x^m is any x-configuration with m particles
- As always, $i\partial_t \psi = H\psi$ Schrödinger eq

Naive original Hamiltonian (UV divergent)

$$H_{\mathrm{orig}} = H_x^{\mathrm{free}} + H_y^{\mathrm{free}} + g \int_{\mathbb{R}^3} d^3 x \; a_x^{\dagger}(x) \left(a_y(x) + a_y^{\dagger}(x) \right) a_x(x)$$

 $g = \mathsf{coupling constant} \in \mathbb{R}$

$H_{\rm orig}$ in the particle-position representation

Naive original Hamiltonian (UV divergent)

$$\begin{aligned} (\mathcal{H}_{\mathrm{orig}}\psi)(x^m,y^n) &= -\frac{\hbar^2}{2m_x}\sum_{i=1}^m \nabla^2_{\mathbf{x}_i}\psi(x^m,y^n) - \frac{\hbar^2}{2m_y}\sum_{j=1}^n \nabla^2_{\mathbf{y}_j}\psi(x^m,y^n) + \\ &+ nE_0\psi(x^m,y^n) + \\ &+ g\sqrt{n+1}\sum_{i=1}^m\psi(x^m,(y^n,\mathbf{x}_i)) + \\ &+ \frac{g}{\sqrt{n}}\sum_{i=1}^m\sum_{j=1}^n \delta^3(\mathbf{x}_i-\mathbf{y}_j)\psi(x^m,y^n\setminus\mathbf{y}_j) \,, \end{aligned}$$

with E_0 = rest energy, $y^n \setminus y_j$ = leave out y_j .

 H_{orig} is ill-defined because the wave fct of the newly created y-particle, $\delta^3(\mathbf{x} - \mathbf{y})$, does not lie in $L^2(\mathbb{R}^3)$ (or, has infinite energy).

・同・ ・ヨ・ ・ヨ・ ・ヨ

UV cut-off $\varphi \in L^2(\mathbb{R}^3)$:

$$(\mathcal{H}_{\text{cutoff}}\psi)(\mathbf{x}^{m},\mathbf{y}^{n}) = -\frac{\hbar^{2}}{2m_{\mathbf{x}}}\sum_{i=1}^{m}\nabla_{\mathbf{x}_{i}}^{2}\psi(\mathbf{x}^{m},\mathbf{y}^{n}) - \frac{\hbar^{2}}{2m_{\mathbf{y}}}\sum_{j=1}^{n}\nabla_{\mathbf{y}_{j}}^{2}\psi(\mathbf{x}^{m},\mathbf{y}^{n}) + \\ + nE_{0}\psi(\mathbf{x}^{m},\mathbf{y}^{n}) + \\ + g\sqrt{n+1}\sum_{i=1}^{m}\int_{\mathbb{R}^{3}}d^{3}\mathbf{y}\,\varphi^{*}(\mathbf{x}_{i}-\mathbf{y})\,\psi(\mathbf{x}^{m},(\mathbf{y}^{n},\mathbf{y})) + \\ + \frac{g}{\sqrt{n}}\sum_{i=1}^{m}\sum_{j=1}^{n}\varphi(\mathbf{x}_{i}-\mathbf{y}_{j})\,\psi(\mathbf{x}^{m},\mathbf{y}^{n}\setminus\mathbf{y}_{j})$$

"smearing out" the x-particle with "charge distribution" $\varphi(\cdot - \mathbf{x})$

э

Novel idea: Interior-boundary condition

Interior-boundary condition (IBC) basic form

For q on the boundary of Q,

 $\psi(\boldsymbol{q}) = \alpha \, \psi(\boldsymbol{q}') \,,$

where q' is an interior point of Q and $\alpha = \alpha(q) \in \mathbb{R}$ independent of ψ .

Here, "boundary" = diagonal; boundary config: where $\mathbf{x}_i = \mathbf{y}_j$; interior config q': one y-particle removed Ex: $q = (\mathbf{x}, \mathbf{x}), q' = \mathbf{x}$

▲□ → ▲ □ → ▲ □ → □

Toy example of a configuration space with boundary

- Consider configuration space $Q = Q^{(1)} \cup Q^{(2)}$ with $Q^{(1)} = \mathbb{R}$ and $Q^{(2)} = \{(x, y) \in \mathbb{R}^2 : y > 0\}.$
- Correspondingly, $\mathscr{H} = \mathscr{H}^{(1)} \oplus \mathscr{H}^{(2)}$ with $\mathscr{H}^{(n)} = L^2(\mathcal{Q}^{(n)}).$

・ 同 ト ・ ヨ ト ・ ヨ ト

э

- boundary $\partial \mathcal{Q} = \left\{ (x, y) \in \mathbb{R}^2 : y = 0 \right\}$
- IBC: For every $x \in \mathbb{R}$, $\psi^{(2)}(x,0) = \frac{2mg}{\hbar^2} \psi^{(1)}(x)$ (1)
- Hamiltonian:

$$(H\psi)^{(1)}(x) = -\frac{\hbar^2}{2} \partial_x^2 \psi^{(1)}(x) - g \,\partial_y \psi^{(2)}(x,0)$$

$$(H\psi)^{(2)}(x,y) = -\frac{\hbar^2}{2} \Big(\partial_x^2 + \partial_y^2\Big) \psi^{(2)}(x,y) \quad \text{for } y > 0.$$

Theorem (TT 2015 arXiv:1506.00497)

On a domain $\mathscr{D} \subseteq \mathscr{H}$ of functions satisfying the IBC (1), H is rigorously defined and self-adjoint.

Probability balance

$$\begin{aligned} \text{IBC:} \quad \psi^{(2)}(x,0) &= \frac{2mg}{\hbar^2} \psi^{(1)}(x) \qquad (1) \\ (H\psi)^{(1)}(x) &= -\frac{\hbar^2}{2} \partial_x^2 \psi^{(1)}(x) - g \, \partial_y \psi^{(2)}(x,0) \\ (H\psi)^{(2)}(x,y) &= -\frac{\hbar^2}{2} \left(\partial_x^2 + \partial_y^2 \right) \psi^{(2)}(x,y) \end{aligned}$$

通 と く ヨ と く ヨ と

э

• Loss of probability in $\mathcal{Q}^{(2)}$ at (x,0): $-j_y^{(2)}(x,0)$

 \bullet is compensated by gain in $\mathcal{Q}^{(1)}$:

$$\frac{\partial |\psi^{(1)}|^2}{\partial t}(x) = -\partial_x j^{(1)} - \frac{2}{\hbar} \operatorname{Im} \left[\psi^{(1)}(x)^* g \, \partial_y \psi^{(2)}(x,0) \right]$$
$$\stackrel{(1)}{=} -\partial_x j^{(1)} - j_y^{(2)}(x,0) \, .$$

Bohmian trajectories

• Bohm's equation of motion:

$$egin{aligned} rac{dQ}{dt} &= rac{j^\psi(Q)}{
ho^\psi(Q)} \ &= rac{\hbar}{m} \mathrm{Im} rac{\psi^*
abla \psi}{\psi^* \psi} \end{aligned}$$

- in every sector $\mathcal{Q}^{(1)}, \mathcal{Q}^{(2)}$.
- When the trajectory hits the boundary at (x, 0), it jumps to x.
- When $Q(t) = x \in Q^{(1)}$, it jumps to $(x, 0) \in Q^{(2)}$ with rate

$$\sigma_t(x \to (x, 0)) = \frac{j_y^{(2)}(x, 0)^+}{\rho^{(1)}(x)}$$

$$= \frac{\hbar}{m} \frac{\mathrm{Im}^{+} \big[\psi^{(2)}(x,0)^{*} \partial_{y} \psi^{(2)}(x,0) \big]}{|\psi^{(1)}(x)|^{2}}$$

- Markov process
- time reversal invariant
- $Q_t \sim |\psi_t|^2$ at all t

Simplified QFT model ("Lee model")

- There is only 1 x-particle, and it is fixed at the origin. $\mathscr{H} = \mathscr{F}_{v}^{+}$
- configuration space $Q = \bigcup_{n=0}^{\infty} \mathbb{R}^{3n}$
- boundary configurations: any particle at the origin (r = 0 in spherical coordinates)
- IBC $\lim_{r \searrow 0} r\psi(y^n, r\omega) = \frac{g m_y}{2\pi\hbar^2 \sqrt{n+1}} \psi(y^n)$ for all $\omega \in \mathbb{S}^2$ (2)

•
$$H_{IBC}\psi = H_{y}^{\text{free}}\psi + \frac{g\sqrt{n+1}}{4\pi}\int_{\mathbb{S}^{2}}d^{2}\omega \lim_{r\searrow 0}\frac{\partial}{\partial r}\Big[r\psi(y^{n},r\omega)\Big]$$

 $+ \frac{g}{\sqrt{n}}\sum_{j=1}^{n}\delta^{3}(\mathbf{y}_{j})\psi(y^{n}\setminus\mathbf{y}_{j})$ (3)

Theorem (LSTT 2017 arXiv:1703.04476)

On a suitable dense domain \mathscr{D}_{IBC} of ψ s in \mathscr{F}_{y}^{+} satisfying the IBC (2), H_{IBC} is well defined, self-adjoint, and positive.

Comparison H_{orig}, H_{IBC}

$$\begin{split} H_{\rm orig} \psi &= H_{\rm free} \psi + g \sqrt{n+1} \, \psi \big(y^n, \mathbf{0} \big) + \\ &+ \frac{g}{\sqrt{n}} \sum_{j=1}^n \delta^3(\mathbf{y}_j) \, \psi \big(y^n \setminus \mathbf{y}_j \big) \,, \end{split}$$

$$\begin{aligned} H_{IBC}\psi &= H_{\text{free}}\psi + \\ &+ \frac{g\sqrt{n+1}}{4\pi} \int_{\mathbb{S}^2} d^2 \omega \underbrace{\lim_{r \searrow 0} \frac{\partial}{\partial r} \left[r\psi(y^n, r\omega) \right]}_{b} \\ &+ \frac{g}{\sqrt{n}} \sum_{j=1}^n \delta^3(\boldsymbol{y}_j) \,\psi(y^n \setminus \boldsymbol{y}_j) \end{aligned}$$

$$\begin{split} \psi^{(1)}(r\omega) &= a r^{-1} + b + o(1); & \text{IBC: } a = \alpha_n \psi^{(0)} \\ \ln \mathbb{R}^d \text{ instead of } \mathbb{R}^3 \text{, replace } r^{-1} \to r^{-(d-1)/2} \text{ for } d \geq 3, \\ \log r \text{ for } d = 2, \ r^0 \text{ for } d = 1. \end{split}$$

Why it works: flux of probability into a point

• probability current
$$\mathbf{j}_{\mathbf{y}_{j}}(\mathbf{y}^{n}) = \frac{\hbar}{m_{\mathbf{y}}} \operatorname{Im} \psi^{*} \nabla_{\mathbf{y}_{j}} \psi$$

• $\frac{\partial |\psi(\mathbf{y}^{n})|^{2}}{\partial t} = -\sum_{j=1}^{n} \nabla_{\mathbf{y}_{j}} \cdot \mathbf{j}_{\mathbf{y}_{j}} + (n+1) \underbrace{\lim_{r \searrow 0} r^{2} \int_{\mathbb{S}^{2}} d^{2} \omega \, \omega \cdot \mathbf{j}_{\mathbf{y}_{n+1}}(\mathbf{y}^{n}, r\omega)}_{\text{flux into 0 on } (n+1) \cdot \text{sector}}$
• motion towards $\mathbf{0} \Rightarrow \rho \sim 1/r^{2} \text{ as } r \to 0$

▲□→ ▲ □→ ▲ □→

Bohmian picture

- $t\mapsto Q(t)\in \mathcal{Q}$ piecewise continuous, jumps between $\mathcal{Q}^{(n)}$ and $\mathcal{Q}^{(n+1)}$
- within $\mathcal{Q}^{(n)}$, Bohm's law of motion

$$rac{dQ}{dt} = rac{\hbar}{m} \mathrm{Im} rac{
abla \psi^{(n)}}{\psi^{(n)}} ig(Q(t)ig)$$

- with IBC:
- when $Q(t) \in \mathcal{Q}^{(n)}$ reaches $\mathbf{y}_j = \mathbf{0}$, it jumps to $(y^n \setminus \mathbf{y}_j) \in \mathcal{Q}^{(n-1)}$
- emission of new y-particle at **0** at random time with random direction
- with UV cut-off:
- emission and absorption occurs anywhere in a ball around ${\bf 0}~(=$ in

the support of φ^{f}

Trajectories starting at r = 0

- It turns out that for functions in the domain of H_{IBC} , $\psi^{(1)}(r\omega) = ar^{-1} + b + o(1)$ with a and b independent of ω .
- As a consequence, the last velocity of the *y*-particle before absorption at **0** is purely radial.
- Hence, the *y*-trajectory reaches **0** in a definite direction and has an endpoint in spherical coordinates (r, ω) at $(0, \omega_{\text{final}})$.
- Different trajectories in $\mathcal{Q}^{(1)}$ reaching **0** at the same time have different ω_{final} .
- Time reverse: for every t and $\omega_{initial}$ there is a unique trajectory beginning at **0** at time t in the direction $\omega_{initial}$ whenever $\lim_{r \to 0} j_r^{(1)}(r\omega_{initial}, t) > 0.$
- Thus, whenever Q_t jumps from $Q^{(0)}$ to $\mathbf{0} \in Q^{(1)}$, there starts a trajectory at $\mathbf{0}$ for each direction.
- The process chosses the direction randomly.
- This is key for showing that the IBC process Q_t is well defined.

Comparison to renormalization procedure

- Consider $H_{\text{cutoff}} = H_{\varphi}$ with $\varphi = \int d\phi$, limit $\varphi \to \delta^3$.
- Then there exist constants $E_{\varphi} \to \infty$ and a self-adjoint operator H_{∞} such that

$$H_{\varphi} - E_{\varphi} o H_{\infty}$$
.

[van Hove 1952, Nelson 1964, see also Dereziński 2003]

イロン 不同 とくほう イヨン

3

Theorem (LSTT 2017 arXiv:1703.04476)

 $H_{\infty} = H_{IBC} + const.$

Previously, it was unknown what the domain of H_∞ looks like and how H_∞ acts on it.

Shown non-rigorously:

The Bohmian process Q_t^{φ} for H_{φ} converges in distribution, as $\varphi \to \delta^3$, to the IBC process Q_t^{IBC} .

Moving x-particles

$$\begin{array}{l} \text{Hilbert space } \mathcal{H} = \mathscr{F}_x^- \otimes \mathscr{F}_y^+ \\ \mathcal{H}_{\text{orig}} = \mathcal{H}_x^{\text{free}} + \mathcal{H}_y^{\text{free}} + g \int_{\mathbb{R}^3} d^3 x \ a_x^{\dagger}(x) \left(a_y(x) + a_y^{\dagger}(x) \right) a_x(x) \end{array}$$

There is a natural formulation of the IBC and H_{IBC} in this setting.

Theorem (Lampart and Schmidt 2017 forthcoming)

Let the space dimension be $d \in (1, 2, 3)$. On a suitable dense domain \mathcal{D}_{IBC} of ψ s in \mathcal{H} satisfying the IBC, H_{IBC} is well defined, self-adjoint, and positive.

With moving x-particles in 3d, the growth of ψ near the boundary is no longer $ar^{-1} + b + o(1)$ but instead

$$\psi^{(1)}(r\omega) = a r^{-1} + b \log r + c + o(1)$$

where $b = \tilde{\alpha} a$ with certain constant $\tilde{\alpha} \in \mathbb{R}$ independent of ψ .

 H_{IBC} and the IBC process Q_t respect the symmetries of H_{orig} including (if appropriate)

- Galilean boosts, rotations, space and time translations, time reversal
- gauge invariance

Thank you for your attention

・ 回 > ・ ヨ > ・ ヨ >

Ξ.