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Schrodinger equation of non-relativistic QM

configuration space Q@ =R3VN 1) : O xR, — C

ihaif = Hip = 92 4+ Vo

Ve = Uphg = e Mt/ hqpg
Born's rule
pe(x) = |¢t(X)|2

Wy € = 1%(Q,C)

Uy : 5€ — F is unitary

< H is self-adjoint

prob. current j = %Im[w*vw]
dp
ot

+V -j = 0 continuity equation
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Boundary conditions for the Schrodinger equation

o=[01]
for time evolution, PDE is not enough: also need boundary
conditions (BCs) such as

(0, t) = 0 Vt (Dirichlet), %(1, t) = 0Vt (Neumann) (1)

built into the domain 2 of the Hamiltonian H: H = f%VZ,

7 = {4y € L3([0,1]) : V2 € L3([0,1]), satisfies (1)}

(1) are reflecting boundary conditions: make (H, 2) self-adjoint =
Uy = e=™Mt/" ynitary = no loss of probability

Likewise for Robin BC («a, 8 # (0, 0) real constants):

ag—qfﬁ-ﬂw(X):O
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Particle—position representation of a Fock space vector

Configuration space of a variable number of particles:

@ )
o]
=U T
n=0 here d =1,
o0 n= 0, 17 2, 3
- U o
n=0
(©) (d)
Fock space:
o0
° ﬁ:l: — @Sijﬁ@n
n=0
with S, = symmetrizer, S_ = anti-symmetrizer, 7] = 1-particle

Hilbert space = L2(R3,Ck)
o peF == (0 M @ )
e 1 : Q — S with S = value space = U2 ,(Ck)®"
@ 7 is an (anti-)symmetric function
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An UV divergence problem

For example, consider a simplified model quantum field theory (QFT):
@ Xx-particles can emit and absorb y-particles.
@ There is only 1 x-particle, and it is fixed at the origin. J# = 9}*

o0
@ configuration space Q = U R3", coupling constant g € R
n=0

Original Hamiltonian in the particle-position representation:

is UV divergent. (7 = omit, Eg > 0 energy needed for creating y)
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Well-defined, “regularized” version of H

UV cut-off p € L2(R3):

R
(Heutot9) (Y1 -+ ¥n) = —5— Z v?’ﬂ’b(}’l o ) A nEOw(n) +

2m, =
+ gvn+1Z/Ra Py " (V) (yr-- Yny) +
i=1
i=1 j=1

“smearing out” the x-particle
with “charge distribution” (-)
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But then ...

...emission and absorption occurs 1
anywhere in a ball around the
x-particle (= in the support of

There is no empirical evidence that an
electron has positive radius.

Positive radius leads to difficulties with
Lorentz invariance.

This UV problem can be solved! J

[Teufel and Tumulka arxiv.org/abs/1505.04847,
arxiv.org/abs/1506.00497]

Stefan Teufel
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Novel idea: Interior-boundary condition

2—particle sector

Here: boundary config = where y-particle 1-particle sector

meets x-particle; y //x

interior config = one y-particle removed \

X

Interior—boundary condition (IBC)

(1) (bdy) = (const.) (™

links two configurations connected by the creation or annihilation of a
particle.
For example, with an x-particle at 0,

(n+1 0 g my [‘(n) ny -
",0) = 2mnh2\/n+ 1 )

Wlth yn:(ylv'“;yn)'
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A derivation of an IBC in 1d

due to [Keppeler and Sieber arxiv.org/abs/1511.03071]
for simplicity in a truncated Fock space
1

H =@ S, A" =Co M =Cao L*(R).

n=0

Stefan Keppeler

If (Horig?) V() = — 5 0@ (y) + g 6(y) @ lies in L2(R), then
d? .
WWI)(y) =2mgd(y) 1/)(0) + f(y) with f € L2

&'(y) =4(y) = jump 74 , likewise ¢"(y) = 6(y) = kink >K
so D= {(w(o),w(l)) cpW(04) — pW(0-) = 2mgy)© and
away from 0, V(1) e L2}

and H(w(o),ﬂ)(l)) = (gw(l)(O), fﬁv%/ﬂ) away from 0)
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The basic idea of IBCs: a toy example

Consider quantum mechanics on a space Q with a boundary 00.
e Eg,

9=00uUQ® =RU(Rx[0,00))

09 = 09® =R x {0}

Consider probability current vector

field j on Q.

Suppose j has nonzero flux into 0Q,

0# [50dxj-n(n=normal to 9Q)

We want the prob that disappears

at g € 9Q to reappear at f(q) € Q.

TIIII IS
°

o E.g., what disappears at (x,0) € 9Q?) reappears at f(x,0) = x, so
f:00® — QW In general, f: 0Q — Q.
@ This is achieved through
— an extra term in H for Q)
— an interior-boundary condition 1 (q) = (const.) ¥(f(q))
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IBC in the toy example

oY, Q—C, v= (¢(1)7¢(2))
@ g € R coupling constant
e IBC: 1‘(2)()(,0):72”& 1‘(1)()()

h?2

@ Hamiltonian:
(H)D(x) =~ 2pD(x) + g 8,6 (x,0)
(H)A(x,y) = - (55 + 8§)¢(2)(X,y) for y > 0.

Theorem [Teufel, Tumulka 2015]

H is rigorously defined and self-adjoint on the dense-in-L%(Q) domain

2 = {(D,y@) : pl? € H(QM) vn, y@| = -ZmEyO]

Rx{0}

Probability balance equations:

0| @)? = =0, — 0,4,

X y

DI = 0 + 2 Im[60(x)" 0,6(x,0)]

(2
= —j(x,0) by the IBC
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IBC for particle creation model

Consider again

@ x-particle at 0 emits and absorbs y-particles, 57 = %"

y
e IBC 1|m0 rp(y”, rw) = ﬁ';’nl (y") forall w € §? (2)
o (HicY)(y") = hz Vi B dPw lim ﬁ(w}( ‘*’)>
s O O
+”E07/)+%Z(53(}’j)¢(yn\yj') (3)
j=1

IBC (2) = ¢ typically diverges
like 1/r =1/|y;| as y; — 0. In fact,

P(y", rw) = ca(y") rt+co(y”) rP+o(r°)
and (2) & c 1 (y") = 550 0")

2
3) & (HY)(y") = =3V + gvn+Lca(y")
+nEoy + % Y EW) e\ y;))




Rigorous absence of UV divergence in this model

o Note that V2|71| = —4753(y) (cf. Poisson eq V2¢ = —4mp).

@ Thus, in V24 the 1/r divergent contribution to 1 cancels the 63!

Theorem [Lampart, Schmidt, Teufel,

Tumulka arxiv.org/abs/1703.04476]

On a suitable dense domain Z;5¢
of ¢s in S satisfying the IBC
(2), Hisc is well defined,
self-adjoint, and positive.

No UV divergence!

Jonas Lampart | Julian Schmidt |
-
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° probability current j, (y")

L2
th Jy, (n—i—l)!gr/

flux into 0 on (n + 1)-sector

8|¢
ot

@ motion towards 0 =
p~1/r?asr—0
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e e
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Roderich Tumulka

h
= —Im w*Vyj1/J

Why it works: flux of probability into a point

2 .
dww ~_[yn+1(y
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Bohmian picture

o t— Q(t) € Q piecewise
continuous, jumps between o
and Q1)

o within 9" Bohm's law of motion )/ﬂQ"”)
O(ty+)

d h \V4 (n) : o+)
= Q) </

QOft=

dt T omg g

e with IBC: '
e when Q(t) € Q" reaches y; =0,
it jumps to (y"\ y;) € Q=Y
@ emission of new y-particle at 0 at
random time with random direction

e with UV cut-off:

@ emission and absorption occurs
anywhere in a ball around 0 (= in

the support of <p/\)
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Higc is not a perturbation of Hiee

o Note that H;gc cannot be decomposed into a sum of two
self-adjoint operators Hfee + Hinteraction-

@ That is because the domain Zg¢ is different from the free domain
@free-

@ The Laplacian is not self-adjoint on Z5¢ (i.e., does not conserve
probability) because it allows a nonzero flux of probability into the
boundary

Q) = Q" x {0} U (permutations thereof) .

The additional terms in H;gc compensate that flux (by adding it to
Q).
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Ground state

Theorem [Lampart et al. 2017]

For Eg > 0, Hjgc possesses a non-degenerate ground state 19, which is

_g)" n e—V2’"EO|.Vj|/’LZ

BV
Yo(y1s---+¥n) —N(M)n\/ﬁjzl ;|

with eigenvalue E = g?m+/2mEy/mh3.

That is, the x-particle is dressed with a cloud of y-particles.
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Effective potential between x-particles

To compute effective interaction between x-particles by exchange of
y-particles, consider

@ 2 x-particles fixed at x; = (0,0,0) and x = (R,0,0), J# = F}
@ 2 IBCs, one at x; and one at x»

@ 2 creation and annihilation terms in H;gc

°

The ground state is

n —\/2mE ly;—xil/h

2
wozanZ—_xI‘
4

with eigenvalue

E:

2g2m /2mEO ef\/2mEgR/h
wh? h R

@ That is, x-particles effectively interact through an attractive Yukawa
potential.
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Comparison to renormalization procedure

o Consider again the scenario with 1 x-particle fixed at the origin,

— g+
H = F.

o Consider Heytof = Hy, with ¢ = /\ limit ¢ — &3.

@ Then there exist constants E, — oo and a self-adjoint operator H,

such that
H, — E, = Hy .

[van Hove 1952, Nelson 1964, see also Dereziriski 2003]

Theorem [Lampart et al. 2017]

H., = Hgc + const
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Moving sources

@ Now: x-particles can move, config. space Q = U (R3)™ x (Rf,)"
m,n=0

o N =F 0 F, ¢¥:Q-=C, =19p(x",y"

@ The original Hamiltonian is UV divergent.

° IBC (x ylgm.u x) xi =yl O (X" y") = an—19(x; = x, ;) (4)
2—particle sector
. g mxm
with dp_1 = > k4 . 1—particle sector
2wh?y/n my + m,

Here, “boundary” = diagonal; y
boundary config: where x; = y;;
interior config: one y-particle removed

Theorem [Lampart and Schmidt arxiv.org/abs/1803.00872]

In 2d, H;gc is well defined and self-adjoint.

Theorem [Lampart arxiv.org/abs/1804.08295]

In 3d, Hjgc is well defined and self-adjoint.
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Now Dirac operators instead of —V?

@ Now suppose that y-particles are relativistic and have spin %

o A free y-particle is governed by the Dirac equation
ichy" 0, = mcy

or

ih% = —icha - Vi + mc?By

o ' = L?(R3 C*) for 1 particle
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Example of a reflecting boundary condition for the Dirac

equation

o O =R? = {(x1,%,x3) € R®: x3 > 0} spatial domain with bdry
o ¥: R, x RS — C*

o current j# = Pyiup or 0 = [f2, ji = i

e Dirac equation iv*0,1 = m or i0y) = (—iax - V + fm)ip

@ «, 3,7 Dirac matrices; o' =%/, B =~ self-adjoint

e boundary condition (BC) (73 — i)¢(x1, x2,0) = 0 or a3t) = iB

Theorem [known]

The Dirac Hamiltonian is self-adjoint on a dense domain in L?(R3,C*),
9 = {w € HI(R3>7(C4) o ("}/3 — I)’lﬁ’ag = 0}

(BC) ensures there is no current into the boundary:
P, x2,0) = Py = 391 (@) + 3(a®y) iy
D 1t(igy) + L) 1w = bo1v - fvipy =0



BC specifies half of the components

e (BC) (v* — i)Yy =00n 0Q

e 72 is unitarily diagonalizable with eigenvalues 4/, each with
multiplicity 2

@ So, 43 — i is —2i times a 2d orthogonal projection.

@ So, (73 — i)Y = 0 sets two components of 1 to 0 and leaves two
components arbitrary.

@ For comparison, the reflecting boundary conditions for the Laplacian,
¥(x1, x2,0) = 0 (Dirichlet)
039(x1, x2,0) = 0 (Neumann)
(a + BO3)Y(x1, x2,0) = 0 (Robin)

each set one component of the 2d pair (¢, 831) to 0 and leave one
component arbitrary.
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Example of an interior-boundary condition for the Dirac

equation

o configuration space Q@ = Q) U QW) = {p} URS
o mini Fock space # = # (0 & #(V) = C o L2(R3,C*)
@ Hamiltonian
(H¢)(O) = / dX1 dX2 N(Xl,XQ)Jr LZJ(l)(Xl,XQ,O)
R2
(HY)D(x) = —iac- VoD (x) + mByD(x), x3 >0

with N(x1,x) = e 3(1,0,1,0) in the Weyl representation
o (73— YW (x1,%,0) = (v° = IN(x1, x) v© (IBC)
e specifies two components of ¢(1) on HQ and leaves two arbitrary
o (73 — NYW(xy, x2,0) = 0 reflecting BC to compare to.

Theorem [Schmidt, Teufel, Tumulka arxiv.org/abs/1811.02947]

H is rigorously defined and self-adjoint on
{(@©@,yM) e Co HY(RE,C*): (IBC)}.
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Model of creation of Dirac particles in 1d
[Lienert, Nickel _
arxiv.org/abs/1808.04192] F

e particles move in R, split or
coalesce according to
x5S x+ x.

@ Dirac eq in 1d: spin space
C?, 1% = g1, 4! = 0103.

@ (truncated) Fock space S
= @nN—o S_[2(R!,C2)®" | M. Lienert Lukas Nickel

o For simplicity, let N =2, m =0, ignore the n = 0 sector, so
A =0 @ 0O

o (HY)W(x) = —iat 0™ (x) + N(x)T 3 (x, x)
(H$)P (1, x0) = (—iajoh — ia302)) (1, x)
with N(x) a certain 4 x 2-matrix.

o IBC ¢ (x,x) — e (x,x) = Byp®(x)
with B a certain 1 X 2-matrix.



Model with IBC for Dirac eq in 1d

Theorem [Lienert, Nickel arxiv.org/abs/1808.04192]

Higc is well defined and self-adjoint.

They even gave a multi-time formulation and proved consistency of the
multi-time equations.
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Difficulty with Dirac operators in 3d

The Laplacian allows for BCs at a point:

Theorem [known]

There exist several self-adjoint extensions of

(H®, 2(H%)) = (- V2, C(R*\ {0}, C)).

Not so for the Dirac Hamiltonian:

Theorem [Svendsen 1981]

There is only one self-adjoint extension of
(H°, 2(H°)) = (—iae - V + mB3, C(R3 \ {0}, C*)),
the free Dirac Hamiltonian.
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This has consequences for IBCs:

The non-relativistic Hjgc in C @ L?(R3) with source at 0 is a self-adjoint
extension of the operator H°()(®) = 0,4(1)) = (0, —%V%ﬁm) defined
on Z(H°) = {0} & C°(R*\ {0}, C).

whereas

Theorem  [Henheik, Tumulka arxiv.org/abs/2006.16755]

All self-adjoint extensions in C & L2(R3, C*) of the
operator

Ho($(® = 0,9M) = (0, (—ia - V + mB)yV))
defined on 2(H°) = {0} & C°(R3\ {0}, C*)
involve no particle creation and are the free Dirac
operator on the upper sector.

< Joscha Henheik

In short, there is no IBC Hamiltonian for Dirac particles and a point
source in 3d, unless...
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...we add a Coulomb potential

Theorem [Henheik, Tumulka arxiv.org/abs/2006.16755]

Let H® = —iax - V + mB + q/|x| with v/3/2 < |g| < 1 be defined on

2° = {0} & C°(R3\ {0},C*). Set B:=+/1—q2 € (0, 3),
let 0 # g € R. There is a self-adjoint extension (H, 2) of (H°, 2°) with

@ The sectors C @ L2(R3,C*) do not decouple (i.e., creation occurs).
@ For every ¢ € 9, the upper sector is of the form () (x) =

c1fq ( |X‘ 1-B (ch fk >|X 1+B—|—O(|X| 1/2)

as x — 0 with c_1...c3 € C and particular fcts f_1 ... f : S? — C*.
@ Every ¢ € & obeys IBC (g €R)
Q Forye?, (Hy)O =gq
(HY)D(x) = (—ie- V+mB + )™ (x #0).

In short, IBCs at 0 for the 3d Dirac operator are possible with sufficiently
strong Coulomb potential.
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Further works

e Tumulka arxiv.org/abs/1808.06262: General form of IBCs

e Diirr, Goldstein, Teufel, Tumulka, and Zanghi
arxiv.org/abs/1809.10235: Bohmian trajectories for IBCs

@ Schmidt and Tumulka arxiv.org/abs/1810.02173: Time reversal of
IBCs

@ Schmidt arxiv.org/abs/1810.03313: IBCs for vVm? — V2

@ Schmidt, Teufel, and Tumulka arxiv.org/abs/1811.02947: General
form of IBCs for the Dirac eq and codim-1 boundaries

@ Henheik, Tumulka work in progress: Bohmian trajectories for H;g¢
for 3d Dirac eq with Coulomb potential
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Features of the novel approach

Problem:

@ Hamiltonian involving particle creation and annihilation is usually
UV divergent, and thus ill defined

New approach:
@ IBC = interior-boundary condition
@ allows a new way of defining a Hamiltonian H,g¢

@ provides rigorous definition of a self-adjoint Hjgc¢,
at least for some scenarios (and we hope in many)

@ no need for discretizing space, smearing out particles over positive
radius, or other UV cut-off

@ no need for renormalization, or taking limit of removing the UV
cut-off

@ makes use of particle—position representation
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Thank you for your attention
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