Interior-Boundary Conditions for Schrödinger Equations

Roderich Tumulka

Seminar at Rutgers University, 15 October 2020

э

Upcoming book

to appear in the SpringerBriefs series in November 2020

문어 문

Schrödinger equation of non-relativistic QM

configuration space $\mathcal{Q} = \mathbb{R}^{3N}$, $\psi : \mathcal{Q} \times \mathbb{R}_t \to \mathbb{C}$

$$i\hbarrac{\partial\psi}{\partial t} = H\psi = -rac{\hbar^2}{2m}
abla^2\psi + V\psi$$

$$\psi_t = U_t \psi_0 = e^{-iHt/\hbar} \psi_0$$

Born's rule

 $\rho_t(x) = |\psi_t(x)|^2$

$$\begin{split} \psi_t &\in \mathscr{H} = L^2(\mathcal{Q}, \mathbb{C}) \\ U_t : \mathscr{H} \to \mathscr{H} \text{ is unitary} \\ &\Leftarrow H \text{ is self-adjoint} \\ \text{prob. current } \boldsymbol{j} = \frac{\hbar}{m} \text{Im}[\psi^* \nabla \psi] \\ \frac{\partial \rho}{\partial t} + \nabla \cdot \boldsymbol{j} = 0 \text{ continuity equation} \end{split}$$

Boundary conditions for the Schrödinger equation

- Q = [0, 1]
- for time evolution, PDE is not enough: also need boundary conditions (BCs) such as

$$\psi(0,t) = 0 \ \forall t \ (\text{Dirichlet}), \quad \frac{\partial \psi}{\partial x}(1,t) = 0 \ \forall t \ (\text{Neumann})$$
(1)

• built into the domain \mathscr{D} of the Hamiltonian H: $H = -\frac{\hbar^2}{2m} \nabla^2$,

 $\mathscr{D} = \left\{ \psi \in L^2([0,1]) : \nabla^2 \psi \in L^2([0,1]), \psi \text{ satisfies (1)} \right\}$

- (1) are reflecting boundary conditions: make (H, \mathscr{D}) self-adjoint $\Rightarrow U_t = e^{-iHt/\hbar}$ unitary \Rightarrow no loss of probability
- Likewise for Robin BC ($\alpha, \beta \neq (0, 0)$ real constants):

$$\alpha \frac{\partial \psi}{\partial x} + \beta \, \psi(x) = 0$$

Particle-position representation of a Fock space vector

Configuration space of a variable number of particles:

An UV divergence problem

For example, consider a simplified model quantum field theory (QFT):

- x-particles can emit and absorb y-particles.
- There is only 1 x-particle, and it is fixed at the origin. $\mathscr{H} = \mathscr{F}_{v}^{+}$

• configuration space
$$\mathcal{Q} = igcup_{n=0}^\infty \mathbb{R}^{3n}$$
, coupling constant $g \in \mathbb{R}$

Original Hamiltonian in the particle-position representation:

$$\begin{aligned} (\mathcal{H}_{\mathrm{orig}}\psi)^{(n)}(\boldsymbol{y}_{1}\ldots\boldsymbol{y}_{n}) &= -\frac{\hbar^{2}}{2m_{y}}\sum_{j=1}^{n}\nabla_{\boldsymbol{y}_{j}}^{2}\psi^{(n)}(\boldsymbol{y}_{1}\ldots\boldsymbol{y}_{n}) + nE_{0}\psi^{(n)} \\ &+ g\sqrt{n+1}\,\psi^{(n+1)}(\boldsymbol{y}_{1}\ldots\boldsymbol{y}_{n},\boldsymbol{0}) \\ &+ \frac{g}{\sqrt{n}}\sum_{j=1}^{n}\delta^{3}(\boldsymbol{y}_{j})\,\psi^{(n-1)}(\boldsymbol{y}_{1}\ldots\hat{\boldsymbol{y}_{j}}\ldots\boldsymbol{y}_{n})\,, \end{aligned}$$

is UV divergent. ($\widehat{}=$ omit, $E_0\geq 0$ energy needed for creating y)

Well-defined, "regularized" version of H

UV cut-off $\varphi \in L^2(\mathbb{R}^3)$:

$$(H_{\text{cutoff}}\psi)(\mathbf{y}_{1}\ldots\mathbf{y}_{n}) = -\frac{\hbar^{2}}{2m_{y}}\sum_{j=1}^{n}\nabla_{\mathbf{y}_{j}}^{2}\psi(\mathbf{y}_{1}\ldots\mathbf{y}_{n}) + nE_{0}\psi^{(n)} + g\sqrt{n+1}\sum_{i=1}^{m}\int_{\mathbb{R}^{3}}d^{3}\mathbf{y}\,\varphi^{*}(\mathbf{y})\,\psi(\mathbf{y}_{1}\ldots\mathbf{y}_{n},\mathbf{y}) + \frac{g}{\sqrt{n}}\sum_{i=1}^{m}\sum_{j=1}^{n}\varphi(\mathbf{y}_{j})\,\psi(\mathbf{y}_{1}\ldots\widehat{\mathbf{y}_{j}}\ldots\mathbf{y}_{n})$$

"smearing out" the x-particle with "charge distribution" $\varphi(\cdot)$

But then

 \dots emission and absorption occurs anywhere in a ball around the x-particle (= in the support of

- There is no empirical evidence that an electron has positive radius.
- Positive radius leads to difficulties with Lorentz invariance.

This UV problem can be solved!

[Teufel and Tumulka arxiv.org/abs/1505.04847, arxiv.org/abs/1506.00497]

Novel idea: Interior-boundary condition

э

Interior-boundary condition (IBC)

 $\psi^{(n+1)}(\mathsf{bdy}) = (\mathsf{const.})\,\psi^{(n)}$

links two configurations connected by the creation or annihilation of a particle.

For example, with an x-particle at $\mathbf{0}$,

$$\psi^{(n+1)}(y^n, \mathbf{0}) = \frac{g m_y}{2\pi\hbar^2\sqrt{n+1}} \psi^{(n)}(y^n).$$

with $y^n = (y_1, ..., y_n)$.

A derivation of an IBC in 1d

Stefan Keppeler

due to [Keppeler and Sieber arxiv.org/abs/1511.03071] for simplicity in a truncated Fock space $\mathscr{H} = \bigoplus_{n=0}^{1} S_{+}\mathscr{H}_{1}^{\otimes n} = \mathbb{C} \oplus \mathscr{H}_{1} = \mathbb{C} \oplus L^{2}(\mathbb{R}).$

If $(H_{\text{orig}}\psi)^{(1)}(y) = -\frac{1}{2m}\frac{d^2}{dy^2}\psi^{(1)}(y) + g\,\delta(y)\,\psi^{(0)}$ lies in $L^2(\mathbb{R})$, then

 $\frac{d^2}{dy^2}\psi^{(1)}(y) = 2mg\,\delta(y)\,\psi^{(0)} + f(y) \text{ with } f \in L^2$ $\phi'(y) = \delta(y) \Rightarrow \text{ jump } , \text{ likewise } \phi''(y) = \delta(y) \Rightarrow \text{ kink}$ so $D = \left\{ (\psi^{(0)}, \psi^{(1)}) : \psi^{(1)'}(0+) - \psi^{(1)'}(0-) = 2mg\psi^{(0)} \text{ and} \right.$ away from 0, $\nabla^2\psi^{(1)} \in L^2 \right\}$ and $H(\psi^{(0)}, \psi^{(1)}) = (g\psi^{(1)}(0), -\frac{1}{2m}\nabla^2\psi^{(1)} \text{ away from } 0)$

э

The basic idea of IBCs: a toy example

Consider quantum mechanics on a space \mathcal{Q} with a boundary $\partial \mathcal{Q}$.

- E.g., $Q = Q^{(1)} \cup Q^{(2)} = \mathbb{R} \cup (\mathbb{R} \times [0, \infty))$ $\partial Q = \partial Q^{(2)} = \mathbb{R} \times \{0\}$
- Consider probability current vector field *j* on *Q*.
- Suppose *j* has nonzero flux into ∂Q , $0 \neq \int_{\partial Q} dx j \cdot n \ (n = \text{normal to } \partial Q)$
- We want the prob that disappears at q ∈ ∂Q to reappear at f(q) ∈ Q.
- E.g., what disappears at $(x, 0) \in \partial Q^{(2)}$ reappears at f(x, 0) = x, so $f : \partial Q^{(2)} \to Q^{(1)}$. In general, $f : \partial Q \to Q$.
- This is achieved through
 - \rightarrow an extra term in H for $\mathcal{Q}^{(1)}$
 - \rightarrow an interior-boundary condition $\psi(q) = (\text{const.}) \psi(f(q))$

IBC in the toy example

- $\psi_t : \mathcal{Q} \to \mathbb{C}, \quad \psi = (\psi^{(1)}, \psi^{(2)})$
- $g \in \mathbb{R}$ coupling constant
- IBC: $\psi^{(2)}(x,0) = -\frac{2mg}{\hbar^2} \psi^{(1)}(x)$
- Hamiltonian:

$$\begin{aligned} (H\psi)^{(1)}(x) &= -\frac{\hbar^2}{2m} \partial_x^2 \psi^{(1)}(x) + g \, \partial_y \psi^{(2)}(x,0) \\ (H\psi)^{(2)}(x,y) &= -\frac{\hbar^2}{2m} \Big(\partial_x^2 + \partial_y^2 \Big) \psi^{(2)}(x,y) \quad \text{for } y > 0 \,. \end{aligned}$$

Theorem

[Teufel, Tumulka 2015]

 $\begin{aligned} H \text{ is rigorously defined and self-adjoint on the dense-in-} L^2(\mathcal{Q}) \text{ domain} \\ \mathscr{D} &= \Big\{ (\psi^{(1)}, \psi^{(2)}) : \psi^{(n)} \in H^2(\mathcal{Q}^{(n)}) \; \forall n, \; \psi^{(2)} \Big|_{\mathbb{R} \times \{0\}} = -\frac{2mg}{\hbar^2} \psi^{(1)} \Big\}. \end{aligned}$

Probability balance equations:

$$\partial_{t} |\psi^{(2)}|^{2} = -\partial_{x} j_{x}^{(2)} - \partial_{y} j_{y}^{(2)},$$

$$\partial_{t} |\psi^{(1)}|^{2} = -\partial_{x} j_{x}^{(1)} + \underbrace{\frac{2g}{\hbar} \operatorname{Im} \left[\psi^{(1)}(x)^{*} \partial_{y} \psi^{(2)}(x, 0) \right]}_{= -j_{y}^{(2)}(x, 0)} \text{ by the IBC}$$

IBC for particle creation model

Consider again

- x-particle at $\boldsymbol{0}$ emits and absorbs y-particles, $\mathscr{H}=\mathscr{F}_y^+$
- IBC $\lim_{r \searrow 0} r\psi(y^n, r\omega) = \frac{gm}{2\pi\hbar^2\sqrt{n+1}}\psi(y^n)$ for all $\omega \in \mathbb{S}^2$ (2)

•
$$(H_{IBC}\psi)(y^n) = -\frac{\hbar^2}{2m}\nabla^2\psi + \frac{g\sqrt{n+1}}{4\pi}\int_{\mathbb{S}^2} d^2\omega \lim_{r\searrow 0} \frac{\partial}{\partial r} \left(r\psi(y^n, r\omega)\right)$$

 $+ nE_0\psi + \frac{g}{\sqrt{n}}\sum_{i=1}^n \delta^3(\mathbf{y}_j)\psi(y^n\setminus\mathbf{y}_j)$ (3)

IBC (2) $\Rightarrow \psi$ typically diverges like $1/r = 1/|\mathbf{y}_j|$ as $\mathbf{y}_j \rightarrow \mathbf{0}$. In fact, $\psi(y^n, r\omega) = c_{-1}(y^n) r^{-1} + c_0(y^n) r^0 + o(r^0)$ and (2) $\Leftrightarrow c_{-1}(y^n) = \frac{gm}{2\pi\hbar^2\sqrt{n+1}}\psi(y^n)$ (3) $\Leftrightarrow (H\psi)(y^n) = -\frac{\hbar^2}{2m}\nabla^2\psi + g\sqrt{n+1}c_0(y^n)$ $+nE_0\psi + \frac{g}{\sqrt{n}}\sum \delta^3(\mathbf{y}_j)\psi(y^n \setminus \mathbf{y}_j)$

Rigorous absence of UV divergence in this model

- Note that $\nabla^2 \frac{1}{|\mathbf{y}|} = -4\pi\delta^3(\mathbf{y})$ (cf. Poisson eq $\nabla^2\phi = -4\pi\rho$).
- Thus, in $\nabla^2 \psi$ the 1/r divergent contribution to ψ cancels the δ^3 !

Theorem [Lampart, Schmidt, Teufel, Tumulka arxiv.org/abs/1703.04476]

On a suitable dense domain \mathcal{D}_{IBC} of ψ s in \mathcal{H} satisfying the IBC (2), H_{IBC} is well defined, self-adjoint, and positive. No UV divergence!

A B > A B >

Why it works: flux of probability into a point

• probability current
$$\boldsymbol{j}_{\boldsymbol{y}_{j}}(\boldsymbol{y}^{n}) = \frac{\hbar}{m} \operatorname{Im} \psi^{*} \nabla_{\boldsymbol{y}_{j}} \psi$$

• $\frac{\partial |\psi(\boldsymbol{y}^{n})|^{2}}{\partial t} = -\sum_{j=1}^{n} \nabla_{\boldsymbol{y}_{j}} \cdot \boldsymbol{j}_{\boldsymbol{y}_{j}} + (n+1) \lim_{r \searrow 0} \underbrace{r^{2} \int_{\mathbb{S}^{2}} d^{2} \omega \, \omega \cdot \boldsymbol{j}_{\boldsymbol{y}_{n+1}}(\boldsymbol{y}^{n}, r\omega)}_{\boldsymbol{y}_{n+1}}$

flux into **0** on (n + 1)-sector

э

Bohmian picture

- $t\mapsto Q(t)\in \mathcal{Q}$ piecewise continuous, jumps between $\mathcal{Q}^{(n)}$ and $\mathcal{Q}^{(n+1)}$
- within $\mathcal{Q}^{(n)}$, Bohm's law of motion

$$rac{dQ}{dt} = rac{\hbar}{m_B} \mathrm{Im} rac{
abla \psi^{(n)}}{\psi^{(n)}} ig(Q(t)ig)$$

- with IBC:
- when $Q(t) \in \mathcal{Q}^{(n)}$ reaches $\mathbf{y}_j = \mathbf{0}$, it jumps to $(y^n \setminus \mathbf{y}_j) \in \mathcal{Q}^{(n-1)}$
- emission of new y-particle at **0** at random time with random direction
- with UV cut-off:
- emission and absorption occurs anywhere in a ball around ${f 0}$ (= in

the support of $\varphi^{J^{-1}}$

H_{IBC} is not a perturbation of H_{free}

- Note that H_{IBC} cannot be decomposed into a sum of two self-adjoint operators $H_{\text{free}} + H_{\text{interaction}}$.
- That is because the domain \mathscr{D}_{IBC} is different from the free domain $\mathscr{D}_{\rm free}.$
- The Laplacian is not self-adjoint on \mathscr{D}_{IBC} (i.e., does not conserve probability) because it allows a nonzero flux of probability into the boundary

 $\partial \mathcal{Q}^{(n+1)} = \mathcal{Q}^{(n)} \times \{\mathbf{0}\} \cup (\text{permutations thereof}).$

The additional terms in H_{IBC} compensate that flux (by adding it to $Q^{(n)}$).

Theorem [Lampart et al. 2017]

For $E_0 > 0$, H_{IBC} possesses a non-degenerate ground state ψ_0 , which is

$$\psi_0(\boldsymbol{y}_1,\ldots,\boldsymbol{y}_n) = \mathcal{N}\frac{(-g)^n}{(4\pi)^n\sqrt{n}}\prod_{j=1}^n \frac{e^{-\sqrt{2mE_0}|\boldsymbol{y}_j|/\hbar}}{|\boldsymbol{y}_j|}$$

with eigenvalue $E = g^2 m \sqrt{2mE_0}/\pi\hbar^3$.

That is, the x-particle is dressed with a cloud of y-particles.

< 3 > < 3 >

Effective potential between x-particles

To compute effective interaction between x-particles by exchange of y-particles, consider

- 2 x-particles fixed at $\mathbf{x}_1 = (0,0,0)$ and $\mathbf{x}_2 = (R,0,0)$, $\mathscr{H} = \mathscr{F}_y^+$
- 2 IBCs, one at \boldsymbol{x}_1 and one at \boldsymbol{x}_2
- 2 creation and annihilation terms in H_{IBC}
- The ground state is

$$\psi_0 = c_n \prod_{j=1}^n \sum_{i=1}^2 \frac{e^{-\sqrt{2mE_0}|\mathbf{y}_j - \mathbf{x}_i|/\hbar}}{|\mathbf{y}_j - \mathbf{x}_i|}$$

with eigenvalue

$$E = \frac{2g^2m}{\pi\hbar^2} \left(\frac{\sqrt{2mE_0}}{\hbar} - \frac{e^{-\sqrt{2mE_0}R/\hbar}}{R} \right)$$

• That is, x-particles effectively interact through an attractive Yukawa potential.

化压力 化压力

Comparison to renormalization procedure

- Consider again the scenario with 1 x-particle fixed at the origin, $\mathscr{H} = \mathscr{F}_y^+$.
- Consider $H_{\text{cutoff}} = H_{\varphi}$ with $\varphi = 4$, limit $\varphi \to \delta^3$.
- Then there exist constants $E_{\varphi} \to \infty$ and a self-adjoint operator H_{∞} such that

$$H_{arphi}-E_{arphi}
ightarrow H_{\infty}$$
 .

[van Hove 1952, Nelson 1964, see also Dereziński 2003]

Theorem [Lampart et al. 2017]

 $H_{\infty} = H_{IBC} + const$

Moving sources

• Now: x-particles can move, config. space $\mathcal{Q} = \bigcup (\mathbb{R}^3_x)^m \times (\mathbb{R}^3_y)^n$

•
$$\mathscr{H} = \mathscr{F}_x^- \otimes \mathscr{F}_y^+, \quad \psi : \mathcal{Q} \to \mathbb{C}, \quad \psi = \psi(x^m, y^n)$$

• The original Hamiltonian is UV divergent.

• IBC
$$\lim_{(\mathbf{x}_i, \mathbf{y}_j) \to (\mathbf{x}, \mathbf{x})} |\mathbf{x}_i - \mathbf{y}_j| \psi(\mathbf{x}^m, \mathbf{y}^n) = \alpha_{n-1} \psi(\mathbf{x}_i = \mathbf{x}, \widehat{\mathbf{y}}_j)$$
(4)

with $\alpha_{n-1} = \frac{g}{2\pi\hbar^2\sqrt{n}} \frac{m_x m_y}{m_x + m_y}$. Here, "boundary" = diagonal; boundary config: where $\mathbf{x}_i = \mathbf{y}_j$; interior config: one y-particle removed

m.n=0

Theorem [Lampart and Schmidt arxiv.org/abs/1803.00872]

In 2d, H_{IBC} is well defined and self-adjoint.

Theorem [Lampart arxiv.org/abs/1804.08295]

In 3d, H_{IBC} is well defined and self-adjoint.

- Now suppose that y-particles are relativistic and have spin $\frac{1}{2}$.
- A free y-particle is governed by the Dirac equation

$$ic\hbar\gamma^\mu\partial_\mu\psi=mc^2\psi$$

or

$$i\hbar \frac{\partial \psi}{\partial t} = -ic\hbar \alpha \cdot \nabla \psi + mc^2 \beta \psi$$

• $\mathscr{H} = L^2(\mathbb{R}^3, \mathbb{C}^4)$ for 1 particle

э

Example of a reflecting boundary condition for the Dirac equation

- $\mathcal{Q} = \mathbb{R}^3_{>} = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_3 \ge 0\}$ spatial domain with bdry
- $\psi: \mathbb{R}_t \times \mathbb{R}^3_> \to \mathbb{C}^4$
- current $j^{\mu} = \overline{\psi} \gamma^{\mu} \psi$ or $j^{0} = |\psi|^{2}$, $j^{i} = \psi^{\dagger} \alpha^{i} \psi$
- Dirac equation $i\gamma^{\mu}\partial_{\mu}\psi = m\psi$ or $i\partial_{t}\psi = (-i\alpha \cdot \nabla + \beta m)\psi$
- α, β, γ Dirac matrices; $\alpha^i = \gamma^0 \gamma^i$, $\beta = \gamma^0$ self-adjoint
- boundary condition (BC) $(\gamma^3 i)\psi(x_1, x_2, 0) = 0$ or $\alpha^3\psi = i\beta\psi$

Theorem [known]

The Dirac Hamiltonian is self-adjoint on a dense domain in $L^2(\mathbb{R}^3_>, \mathbb{C}^4)$, $\mathscr{D} = \{\psi \in H^1(\mathbb{R}^3_>, \mathbb{C}^4) : (\gamma^3 - i)\psi|_{\partial \mathcal{Q}} = 0\}.$

(BC) ensures there is no current into the boundary:

$$j^{3}(x_{1}, x_{2}, 0) = \psi^{\dagger} \alpha^{3} \psi = \frac{1}{2} \psi^{\dagger} (\alpha^{3} \psi) + \frac{1}{2} (\alpha^{3} \psi)^{\dagger} \psi$$

$$\stackrel{(BC)}{=} \frac{1}{2} \psi^{\dagger} (i\beta\psi) + \frac{1}{2} (i\beta\psi)^{\dagger} \psi = \frac{i}{2} \psi^{\dagger} \beta \psi - \frac{i}{2} \psi^{\dagger} \beta \psi = 0$$

BC specifies half of the components

- (BC) $(\gamma^3 i)\psi = 0$ on ∂Q
- γ^3 is unitarily diagonalizable with eigenvalues $\pm i$, each with multiplicity 2
- So, $\gamma^3 i$ is -2i times a 2d orthogonal projection.
- So, $(\gamma^3 i)\psi = 0$ sets two components of ψ to 0 and leaves two components arbitrary.

• For comparison, the reflecting boundary conditions for the Laplacian,

 $\psi(x_1, x_2, 0) = 0 \text{ (Dirichlet)}$

 $\partial_3 \psi(x_1, x_2, 0) = 0$ (Neumann)

 $(\alpha + \beta \partial_3)\psi(x_1, x_2, 0) = 0$ (Robin)

each set one component of the 2d pair $(\psi, \partial_3 \psi)$ to 0 and leave one component arbitrary.

同 ト イヨ ト イヨ ト ・ ヨ ・ ・ ク ヘ ()・

Example of an interior-boundary condition for the Dirac equation

- configuration space $\mathcal{Q} = \mathcal{Q}^{(0)} \cup \mathcal{Q}^{(1)} = \{ \emptyset \} \cup \mathbb{R}^3_>$
- mini Fock space $\mathscr{H} = \mathscr{H}^{(0)} \oplus \mathscr{H}^{(1)} = \mathbb{C} \oplus L^2(\mathbb{R}^3_>, \mathbb{C}^4)$
- Hamiltonian

$$(H\psi)^{(0)} = \int_{\mathbb{R}^2} dx_1 \, dx_2 \, N(x_1, x_2)^{\dagger} \, \psi^{(1)}(x_1, x_2, 0)$$
$$(H\psi)^{(1)}(\mathbf{x}) = -i\alpha \cdot \nabla \psi^{(1)}(\mathbf{x}) + m\beta \psi^{(1)}(\mathbf{x}), \quad x_3 > 0$$

with $N(x_1, x_2) = e^{-x_1^2 - x_2^2}(1, 0, 1, 0)$ in the Weyl representation • $(\gamma^3 - i)\psi^{(1)}(x_1, x_2, 0) = (\gamma^3 - i)N(x_1, x_2)\psi^{(0)}$ (IBC)

- ullet specifies two components of $\psi^{(1)}$ on $\partial \mathcal{Q}$ and leaves two arbitrary
- $(\gamma^3 i)\psi^{(1)}(x_1, x_2, 0) = 0$ reflecting BC to compare to.

Theorem

[Schmidt, Teufel, Tumulka arxiv.org/abs/1811.02947]

 $\begin{aligned} H \text{ is rigorously defined and self-adjoint on} \\ \big\{ (\psi^{(0)}, \psi^{(1)}) \in \mathbb{C} \oplus H^1(\mathbb{R}^3_>, \mathbb{C}^4) : (\mathsf{IBC}) \big\}. \end{aligned}$

Model of creation of Dirac particles in 1d

[Lienert, Nickel

arxiv.org/abs/1808.04192]

- particles move in ℝ¹, split or coalesce according to x ⇔ x + x.
- Dirac eq in 1d: spin space \mathbb{C}^2 , $\gamma^0 = \sigma_1$, $\gamma^1 = \sigma_1 \sigma_3$.
- (truncated) Fock space $\mathscr{H} = \bigoplus_{n=0}^{N} S_{-} L^{2}(\mathbb{R}^{1}, \mathbb{C}^{2})^{\otimes n}$

- For simplicity, let N = 2, m = 0, ignore the n = 0 sector, so $\mathscr{H} = \mathscr{H}^{(1)} \oplus \mathscr{H}^{(2)}$.
- $(H\psi)^{(1)}(x) = -i\alpha^1 \partial_x \psi^{(1)}(x) + N(x)^{\dagger} \psi^{(2)}(x,x)$ $(H\psi)^{(2)}(x_1,x_2) = (-i\alpha_1^1 \partial_1 - i\alpha_2^1 \partial_2)\psi^{(2)}(x_1,x_2)$

with N(x) a certain 4 \times 2-matrix.

• IBC $\psi_{-+}^{(2)}(x,x) - e^{i\theta}\psi_{+-}^{(2)}(x,x) = B\psi^{(1)}(x)$

with B a certain 1×2 -matrix.

Theorem [Lienert, Nickel arxiv.org/abs/1808.04192]

 H_{IBC} is well defined and self-adjoint.

They even gave a multi-time formulation and proved consistency of the multi-time equations.

() <) <)
 () <)
 () <)
</p>

The Laplacian allows for BCs at a point:

Theorem [known]

There exist several self-adjoint extensions of $(H^{\circ}, \mathscr{D}(H^{\circ})) = (-\nabla^2, C_c^{\infty}(\mathbb{R}^3 \setminus \{\mathbf{0}\}, \mathbb{C})).$

Not so for the Dirac Hamiltonian:

Theorem [Svendsen 1981]

There is only one self-adjoint extension of $(H^{\circ}, \mathscr{D}(H^{\circ})) = (-i\alpha \cdot \nabla + m\beta, C_{c}^{\infty}(\mathbb{R}^{3} \setminus \{\mathbf{0}\}, \mathbb{C}^{4})),$ the free Dirac Hamiltonian.

Fact

The non-relativistic H_{IBC} in $\mathbb{C} \oplus L^2(\mathbb{R}^3)$ with source at **0** is a self-adjoint extension of the operator $H^{\circ}(\psi^{(0)} = 0, \psi^{(1)}) = (0, -\frac{\hbar^2}{2m}\nabla^2\psi^{(1)})$ defined on $\mathscr{D}(H^{\circ}) = \{0\} \oplus C_c^{\infty}(\mathbb{R}^3 \setminus \{\mathbf{0}\}, \mathbb{C}).$

whereas

Theorem [Henheik, Tumulka arxiv.org/abs/2006.16755] All self-adjoint extensions in $\mathbb{C} \oplus L^2(\mathbb{R}^3, \mathbb{C}^4)$ of the operator $H^{\circ}(\psi^{(0)} = 0, \psi^{(1)}) = (0, (-i\alpha \cdot \nabla + m\beta)\psi^{(1)})$ defined on $\mathscr{D}(H^{\circ}) = \{0\} \oplus C_c^{\infty}(\mathbb{R}^3 \setminus \{\mathbf{0}\}, \mathbb{C}^4)$ involve no particle creation and are the free Dirac operator on the upper sector.

Joscha Henheik

In short, there is no IBC Hamiltonian for Dirac particles and a point source in 3d, unless...

...we add a Coulomb potential

Theorem [Henheik, Tumulka arxiv.org/abs/2006.16755]

Let $H^{\circ} = -i\alpha \cdot \nabla + m\beta + q/|\mathbf{x}|$ with $\sqrt{3}/2 < |q| < 1$ be defined on $\mathscr{D}^{\circ} = \{0\} \oplus C_c^{\infty}(\mathbb{R}^3 \setminus \{\mathbf{0}\}, \mathbb{C}^4)$. Set $B := \sqrt{1-q^2} \in (0, \frac{1}{2})$, let $0 \neq g \in \mathbb{R}$. There is a self-adjoint extension (H, \mathscr{D}) of $(H^{\circ}, \mathscr{D}^{\circ})$ with The sectors $\mathbb{C} \oplus L^2(\mathbb{R}^3, \mathbb{C}^4)$ do not decouple (i.e., creation occurs). For every $\psi \in \mathscr{D}$, the upper sector is of the form $\psi^{(1)}(\mathbf{x}) =$

$$c_{-1} f_{-1}\left(\frac{\mathbf{x}}{|\mathbf{x}|}\right) |\mathbf{x}|^{-1-B} + \left(\sum_{k=0}^{3} c_{k} f_{k}\left(\frac{\mathbf{x}}{|\mathbf{x}|}\right)\right) |\mathbf{x}|^{-1+B} + o\left(|\mathbf{x}|^{-1/2}\right)$$

as $\mathbf{x} \to \mathbf{0}$ with $c_{-1} \dots c_3 \in \mathbb{C}$ and particular fcts $f_{-1} \dots f_3 : \mathbb{S}^2 \to \mathbb{C}^4$. Solvery $\psi \in \mathscr{D}$ obeys IBC $c_{-1} = g \psi^{(0)}$ $(g \in \mathbb{R})$ Solver $\psi \in \mathscr{D}$, $(H\psi)^{(0)} = g c_0$ $(H\psi)^{(1)}(\mathbf{x}) = (-i\alpha \cdot \nabla + m\beta + \frac{q}{|\mathbf{x}|})\psi^{(1)}$ $(\mathbf{x} \neq \mathbf{0})$.

In short, IBCs at $\mathbf{0}$ for the 3d Dirac operator are possible with sufficiently strong Coulomb potential.

- Tumulka arxiv.org/abs/1808.06262: General form of IBCs
- Dürr, Goldstein, Teufel, Tumulka, and Zanghì arxiv.org/abs/1809.10235: Bohmian trajectories for IBCs
- Schmidt and Tumulka arxiv.org/abs/1810.02173: Time reversal of IBCs
- Schmidt arxiv.org/abs/1810.03313: IBCs for $\sqrt{m^2 \nabla^2}$
- Schmidt, Teufel, and Tumulka arxiv.org/abs/1811.02947: General form of IBCs for the Dirac eq and codim-1 boundaries
- Henheik, Tumulka work in progress: Bohmian trajectories for *H*_{IBC} for 3d Dirac eq with Coulomb potential

Problem:

• Hamiltonian involving particle creation and annihilation is usually UV divergent, and thus ill defined

New approach:

- IBC = interior-boundary condition
- allows a new way of defining a Hamiltonian H_{IBC}
- provides rigorous definition of a self-adjoint H_{IBC}, at least for some scenarios (and we hope in many)
- no need for discretizing space, smearing out particles over positive radius, or other UV cut-off
- no need for renormalization, or taking limit of removing the UV cut-off
- makes use of particle-position representation

Thank you for your attention

▲□ → ▲ 三 → ▲ 三 →