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Schrödinger equation of non-relativistic QM

configuration space Q = R3N , ψ : Q× Rt → C

i~
∂ψ

∂t
= Hψ = − ~2

2m∇
2ψ + Vψ

ψt = Utψ0 = e−iHt/~ψ0

Born’s rule

ρt(x) = |ψt(x)|2

ψt ∈H = L2(Q,C)
Ut : H →H is unitary
⇐ H is self-adjoint
prob. current j = ~

m Im[ψ∗∇ψ]
∂ρ

∂t
+∇· j = 0 continuity equation
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Boundary conditions for the Schrödinger equation

Q = [0, 1]

for time evolution, PDE is not enough: also need boundary
conditions (BCs) such as

ψ(0, t) = 0 ∀t (Dirichlet),
∂ψ

∂x
(1, t) = 0 ∀t (Neumann) (1)

built into the domain D of the Hamiltonian H: H = − ~2

2m∇
2,

D =
{
ψ ∈ L2([0, 1]) : ∇2ψ ∈ L2([0, 1]), ψ satisfies (1)

}
(1) are reflecting boundary conditions: make (H,D) self-adjoint ⇒
Ut = e−iHt/~ unitary ⇒ no loss of probability

Likewise for Robin BC (α, β 6= (0, 0) real constants):

α
∂ψ

∂x
+ β ψ(x) = 0
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Particle–position representation of a Fock space vector

Configuration space of a variable number of particles:

Q =
∞⋃
n=0

R3n

=
∞⋃
n=0

Q(n)

(b)

(c) (d)

(a)

here d = 1,
n = 0, 1, 2, 3

Fock space:

F± =
∞⊕
n=0

S±H ⊗n
1

with S+ = symmetrizer, S− = anti-symmetrizer, H1 = 1-particle
Hilbert space = L2(R3,Ck)
ψ ∈ F ⇒ ψ =

(
ψ(0), ψ(1), ψ(2), . . .

)
ψ : Q → S with S = value space = ∪∞n=0(Ck)⊗n

ψ is an (anti-)symmetric function
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An UV divergence problem

For example, consider a simplified model quantum field theory (QFT):

x-particles can emit and absorb y-particles.

There is only 1 x-particle, and it is fixed at the origin. H = F +
y

configuration space Q =
∞⋃
n=0

R3n, coupling constant g ∈ R

Original Hamiltonian in the particle-position representation:

(Horigψ)(n)(y 1 . . . yn) = − ~2

2my

n∑
j=1

∇2
y j
ψ(n)(y 1 . . . yn) + nE0ψ

(n)

+ g
√
n + 1 ψ(n+1)(y 1 . . . yn, 0)

+
g√
n

n∑
j=1

δ3(y j)ψ
(n−1)(y 1 . . . ŷ j . . . yn) ,

is UV divergent. ( ̂= omit, E0 ≥ 0 energy needed for creating y)
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Well-defined, “regularized” version of H

UV cut-off ϕ ∈ L2(R3):

(Hcutoffψ)(y 1 . . . yn) = − ~2

2my

n∑
j=1

∇2
y j
ψ(y 1 . . . yn) + nE0ψ

(n) +

+ g
√
n + 1

m∑
i=1

∫
R3

d3y ϕ∗(y)ψ
(
y 1 . . . yn, y

)
+

+
g√
n

m∑
i=1

n∑
j=1

ϕ(y j)ψ
(
y 1 . . . ŷ j . . . yn

)

“smearing out” the x-particle
with “charge distribution” ϕ(·)
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But then . . .

. . . emission and absorption occurs
anywhere in a ball around the
x-particle (= in the support of

ϕ = ) x

t

There is no empirical evidence that an
electron has positive radius.

Positive radius leads to difficulties with
Lorentz invariance.

This UV problem can be solved!

[Teufel and Tumulka arxiv.org/abs/1505.04847,

arxiv.org/abs/1506.00497]
Stefan Teufel
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Novel idea: Interior-boundary condition

Here: boundary config = where y-particle
meets x-particle;
interior config = one y-particle removed

1−particle sector

x

x

y

2−particle sector

Interior–boundary condition (IBC)

ψ(n+1)(bdy) = (const.) ψ(n)

links two configurations connected by the creation or annihilation of a
particle.
For example, with an x-particle at 0,

ψ(n+1)(yn, 0) =
g my

2π~2
√
n + 1

ψ(n)(yn) .

with yn = (y 1, . . . , yn).
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A derivation of an IBC in 1d

Stefan Keppeler

due to [Keppeler and Sieber arxiv.org/abs/1511.03071]

for simplicity in a truncated Fock space

H =
1⊕

n=0

S+H ⊗n
1 = C⊕H1 = C⊕ L2(R).

If (Horigψ)(1)(y) = − 1
2m

d2

dy2ψ
(1)(y) + g δ(y)ψ(0) lies in L2(R), then

d2

dy2
ψ(1)(y) = 2mg δ(y)ψ(0) + f (y) with f ∈ L2

φ′(y) = δ(y)⇒ jump , likewise φ′′(y) = δ(y)⇒ kink

so D =
{

(ψ(0), ψ(1)) : ψ(1)′(0+)− ψ(1)′(0−) = 2mgψ(0) and

away from 0, ∇2ψ(1) ∈ L2
}

and H(ψ(0), ψ(1)) = (gψ(1)(0),− 1
2m∇

2ψ(1) away from 0)
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The basic idea of IBCs: a toy example

Consider quantum mechanics on a space Q with a boundary ∂Q.

E.g.,
Q = Q(1)∪Q(2) = R∪

(
R× [0,∞)

)
∂Q = ∂Q(2) = R× {0}
Consider probability current vector
field j on Q.

Suppose j has nonzero flux into ∂Q,
0 6=

∫
∂Q dx j · n (n = normal to ∂Q)

We want the prob that disappears
at q ∈ ∂Q to reappear at f (q) ∈ Q.

E.g., what disappears at (x , 0) ∈ ∂Q(2) reappears at f (x , 0) = x , so
f : ∂Q(2) → Q(1). In general, f : ∂Q → Q.

This is achieved through
→ an extra term in H for Q(1)

→ an interior-boundary condition ψ(q) = (const.)ψ(f (q))
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IBC in the toy example

ψt : Q → C, ψ = (ψ(1), ψ(2))

g ∈ R coupling constant

IBC: ψ(2)(x , 0) = − 2mg
~2 ψ(1)(x)

Hamiltonian:

(Hψ)(1)(x) = − ~2

2m∂
2
xψ

(1)(x) + g ∂yψ
(2)(x , 0)

(Hψ)(2)(x , y) = − ~2

2m

(
∂2
x + ∂2

y

)
ψ(2)(x , y) for y > 0 .

Theorem [Teufel, Tumulka 2015]

H is rigorously defined and self-adjoint on the dense-in-L2(Q) domain

D =
{

(ψ(1), ψ(2)) : ψ(n) ∈ H2(Q(n)) ∀n, ψ(2)
∣∣∣
R×{0}

= − 2mg
~2 ψ

(1)
}

.

Probability balance equations:

∂t |ψ(2)|2 = −∂x j (2)
x − ∂y j (2)

y ,

∂t |ψ(1)|2 = −∂x j (1)
x + 2g

~ Im
[
ψ(1)(x)∗ ∂yψ

(2)(x , 0)
]

︸ ︷︷ ︸
=−j (2)

y (x,0) by the IBC
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IBC for particle creation model

Consider again

x-particle at 0 emits and absorbs y-particles, H = F +
y

IBC lim
r↘0

rψ(yn, rω) = gm
2π~2

√
n+1

ψ(yn) for all ω ∈ S2 (2)

(HIBCψ)(yn) = − ~2

2m∇
2ψ + g

√
n+1

4π

∫
S2

d2ω lim
r↘0

∂

∂r

(
rψ(yn, rω)

)
+ nE0ψ + g√

n

n∑
j=1

δ3(y j)ψ(yn \ y j) (3)

IBC (2) ⇒ ψ typically diverges
like 1/r = 1/|y j | as y j → 0. In fact,

ψ(yn, rω) = c−1(yn) r−1 +c0(yn) r0 +o(r0)

and (2) ⇔ c−1(yn) = gm
2π~2

√
n+1

ψ(yn)

(3)⇔ (Hψ)(yn) = − ~2

2m∇
2ψ + g

√
n + 1 c0(yn)

+nE0ψ + g√
n

∑
δ3(y j)ψ(yn \ y j)
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Rigorous absence of UV divergence in this model

Note that ∇2 1
|y | = −4πδ3(y) (cf. Poisson eq ∇2φ = −4πρ).

Thus, in ∇2ψ the 1/r divergent contribution to ψ cancels the δ3!

Theorem [Lampart, Schmidt, Teufel,

Tumulka arxiv.org/abs/1703.04476]

On a suitable dense domain DIBC

of ψs in H satisfying the IBC
(2), HIBC is well defined,
self-adjoint, and positive.
No UV divergence!

Jonas Lampart Julian Schmidt
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Why it works: flux of probability into a point

probability current j y j
(yn) =

~
m
Imψ∗∇y j

ψ

∂
∣∣ψ(yn)

∣∣2
∂t

= −
n∑

j=1

∇y j
· j y j

+ (n + 1) lim
r↘0

r2

∫
S2

d2ωω · j yn+1
(yn, rω)︸ ︷︷ ︸

flux into 0 on (n + 1)-sector

motion towards 0 ⇒
ρ ∼ 1/r2 as r → 0
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Bohmian picture

t 7→ Q(t) ∈ Q piecewise
continuous, jumps between Q(n)

and Q(n+1)

within Q(n), Bohm’s law of motion

dQ

dt
=

~
mB

Im
∇ψ(n)

ψ(n)

(
Q(t)

)
with IBC:

when Q(t) ∈ Q(n) reaches y j = 0,

it jumps to (yn \ y j) ∈ Q(n−1)

emission of new y-particle at 0 at
random time with random direction

with UV cut-off:

emission and absorption occurs
anywhere in a ball around 0 (= in

the support of ϕ )

Q(t )

Q(t +)2

Q(t )

1Q(t +)

2

1

(c) (d)

(a) (b)

t

x

x

t
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HIBC is not a perturbation of Hfree

Note that HIBC cannot be decomposed into a sum of two
self-adjoint operators Hfree + Hinteraction.

That is because the domain DIBC is different from the free domain
Dfree.

The Laplacian is not self-adjoint on DIBC (i.e., does not conserve
probability) because it allows a nonzero flux of probability into the
boundary

∂Q(n+1) = Q(n) × {0} ∪ (permutations thereof) .

The additional terms in HIBC compensate that flux (by adding it to
Q(n)).
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Ground state

Theorem [Lampart et al. 2017]

For E0 > 0, HIBC possesses a non-degenerate ground state ψ0, which is

ψ0(y 1, . . . , yn) = N (−g)n

(4π)n
√
n

n∏
j=1

e−
√

2mE0|y j |/~

|y j |

with eigenvalue E = g2m
√

2mE0/π~3.

That is, the x-particle is dressed with a cloud of y-particles.
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Effective potential between x-particles

To compute effective interaction between x-particles by exchange of
y-particles, consider

2 x-particles fixed at x1 = (0, 0, 0) and x2 = (R, 0, 0), H = F +
y

2 IBCs, one at x1 and one at x2

2 creation and annihilation terms in HIBC

The ground state is

ψ0 = cn

n∏
j=1

2∑
i=1

e−
√

2mE0|y j−x i |/~

|y j − x i |

with eigenvalue

E =
2g2m

π~2

(√
2mE0

~
− e−

√
2mE0R/~

R

)

That is, x-particles effectively interact through an attractive Yukawa
potential.
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Comparison to renormalization procedure

Consider again the scenario with 1 x-particle fixed at the origin,
H = F +

y .

Consider Hcutoff = Hϕ with ϕ = , limit ϕ→ δ3.

Then there exist constants Eϕ →∞ and a self-adjoint operator H∞
such that

Hϕ − Eϕ → H∞ .

[van Hove 1952, Nelson 1964, see also Dereziński 2003]

Theorem [Lampart et al. 2017]

H∞ = HIBC + const
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Moving sources

Now: x-particles can move, config. space Q =
∞⋃

m,n=0

(R3
x)m × (R3

y )n

H = F−x ⊗F +
y , ψ : Q → C, ψ = ψ(xm, yn)

The original Hamiltonian is UV divergent.

IBC lim
(x i ,y j )→(x,x)

|x i − y j |ψ
(
xm, yn) = αn−1 ψ(x i = x , ŷ j) (4)

with αn−1 =
g

2π~2
√
n

mxmy

mx + my
.

Here, “boundary” = diagonal;
boundary config: where x i = y j ;
interior config: one y-particle removed

1−particle sector

x

x

y

2−particle sector

Theorem [Lampart and Schmidt arxiv.org/abs/1803.00872]

In 2d, HIBC is well defined and self-adjoint.

Theorem [Lampart arxiv.org/abs/1804.08295]

In 3d, HIBC is well defined and self-adjoint.
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Now Dirac operators instead of −∇2

Now suppose that y-particles are relativistic and have spin 1
2 .

A free y-particle is governed by the Dirac equation

ic~γµ∂µψ = mc2ψ

or

i~
∂ψ

∂t
= −ic~α · ∇ψ + mc2βψ

H = L2(R3,C4) for 1 particle
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Example of a reflecting boundary condition for the Dirac
equation

Q = R3
> =

{
(x1, x2, x3) ∈ R3 : x3 ≥ 0

}
spatial domain with bdry

ψ : Rt × R3
> → C4

current jµ = ψγµψ or j0 = |ψ|2, j i = ψ†αiψ

Dirac equation iγµ∂µψ = mψ or i∂tψ = (−iα · ∇+ βm)ψ

α, β, γ Dirac matrices; αi = γ0γ i , β = γ0 self-adjoint

boundary condition (BC) (γ3 − i)ψ(x1, x2, 0) = 0 or α3ψ = iβψ

Theorem [known]

The Dirac Hamiltonian is self-adjoint on a dense domain in L2(R3
>,C4),

D =
{
ψ ∈ H1(R3

>,C4) : (γ3 − i)ψ
∣∣
∂Q = 0

}
.

(BC) ensures there is no current into the boundary:

j3(x1, x2, 0) = ψ†α3ψ = 1
2ψ
†(α3ψ) + 1

2 (α3ψ)†ψ

(BC)
= 1

2ψ
†(iβψ) + 1

2 (iβψ)†ψ = i
2ψ
†βψ − i

2ψ
†βψ = 0
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BC specifies half of the components

(BC) (γ3 − i)ψ = 0 on ∂Q
γ3 is unitarily diagonalizable with eigenvalues ±i , each with
multiplicity 2

So, γ3 − i is −2i times a 2d orthogonal projection.

So, (γ3 − i)ψ = 0 sets two components of ψ to 0 and leaves two
components arbitrary.

For comparison, the reflecting boundary conditions for the Laplacian,

ψ(x1, x2, 0) = 0 (Dirichlet)

∂3ψ(x1, x2, 0) = 0 (Neumann)

(α + β∂3)ψ(x1, x2, 0) = 0 (Robin)

each set one component of the 2d pair (ψ, ∂3ψ) to 0 and leave one
component arbitrary.
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Example of an interior-boundary condition for the Dirac
equation

configuration space Q = Q(0) ∪Q(1) = {∅} ∪ R3
>

mini Fock space H = H (0) ⊕H (1) = C⊕ L2(R3
>,C4)

Hamiltonian

(Hψ)(0) =

∫
R2

dx1 dx2 N(x1, x2)† ψ(1)(x1, x2, 0)

(Hψ)(1)(x) = −iα · ∇ψ(1)(x) + mβψ(1)(x), x3 > 0

with N(x1, x2) = e−x
2
1−x

2
2 (1, 0, 1, 0) in the Weyl representation

(γ3 − i)ψ(1)(x1, x2, 0) = (γ3 − i)N(x1, x2)ψ(0) (IBC)

specifies two components of ψ(1) on ∂Q and leaves two arbitrary

(γ3 − i)ψ(1)(x1, x2, 0) = 0 reflecting BC to compare to.

Theorem [Schmidt, Teufel, Tumulka arxiv.org/abs/1811.02947]

H is rigorously defined and self-adjoint on{
(ψ(0), ψ(1)) ∈ C⊕ H1(R3

>,C4) : (IBC)
}

.
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Model of creation of Dirac particles in 1d

[Lienert, Nickel

arxiv.org/abs/1808.04192]

particles move in R1, split or
coalesce according to
x � x + x .

Dirac eq in 1d: spin space
C2, γ0 = σ1, γ1 = σ1σ3.

(truncated) Fock space

H =
⊕N

n=0 S− L2(R1,C2)⊗n M. Lienert Lukas Nickel

For simplicity, let N = 2, m = 0, ignore the n = 0 sector, so
H = H (1) ⊕H (2).

(Hψ)(1)(x) = −iα1∂xψ
(1)(x) + N(x)† ψ(2)(x , x)

(Hψ)(2)(x1, x2) = (−iα1
1∂1 − iα1

2∂2)ψ(2)(x1, x2)

with N(x) a certain 4× 2-matrix.

IBC ψ
(2)
−+(x , x)− e iθψ

(2)
+−(x , x) = B ψ(1)(x)

with B a certain 1× 2-matrix.
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Model with IBC for Dirac eq in 1d

Theorem [Lienert, Nickel arxiv.org/abs/1808.04192]

HIBC is well defined and self-adjoint.

They even gave a multi-time formulation and proved consistency of the
multi-time equations.
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Difficulty with Dirac operators in 3d

The Laplacian allows for BCs at a point:

Theorem [known]

There exist several self-adjoint extensions of
(H◦,D(H◦)) = (−∇2,C∞c (R3 \ {0},C)).

Not so for the Dirac Hamiltonian:

Theorem [Svendsen 1981]

There is only one self-adjoint extension of
(H◦,D(H◦)) = (−iα · ∇+ mβ,C∞c (R3 \ {0},C4)),
the free Dirac Hamiltonian.
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This has consequences for IBCs:

Fact

The non-relativistic HIBC in C⊕ L2(R3) with source at 0 is a self-adjoint

extension of the operator H◦(ψ(0) = 0, ψ(1)) = (0,− ~2

2m∇
2ψ(1)) defined

on D(H◦) = {0} ⊕ C∞c (R3 \ {0},C).

whereas

Theorem [Henheik, Tumulka arxiv.org/abs/2006.16755]

All self-adjoint extensions in C⊕ L2(R3,C4) of the
operator
H◦(ψ(0) = 0, ψ(1)) = (0, (−iα · ∇+ mβ)ψ(1))
defined on D(H◦) = {0} ⊕ C∞c (R3 \ {0},C4)
involve no particle creation and are the free Dirac
operator on the upper sector.

Joscha Henheik

In short, there is no IBC Hamiltonian for Dirac particles and a point
source in 3d, unless...
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...we add a Coulomb potential

Theorem [Henheik, Tumulka arxiv.org/abs/2006.16755]

Let H◦ = −iα · ∇+ mβ + q/|x | with
√

3/2 < |q| < 1 be defined on

D◦ = {0} ⊕ C∞c (R3 \ {0},C4). Set B :=
√

1− q2 ∈ (0, 1
2 ),

let 0 6= g ∈ R. There is a self-adjoint extension (H,D) of (H◦,D◦) with

1 The sectors C⊕ L2(R3,C4) do not decouple (i.e., creation occurs).

2 For every ψ ∈ D , the upper sector is of the form ψ(1)(x) =

c−1 f−1

( x
|x|
)
|x |−1−B +

(
3∑

k=0

ck fk
( x
|x|
))
|x |−1+B + o

(
|x |−1/2

)
as x → 0 with c−1 . . . c3 ∈ C and particular fcts f−1 . . . f3 : S2 → C4.

3 Every ψ ∈ D obeys IBC c−1 = g ψ(0) (g ∈ R)

4 For ψ ∈ D , (Hψ)(0) = g c0

(Hψ)(1)(x) =
(
−iα · ∇+ mβ + q

|x|
)
ψ(1) (x 6= 0).

In short, IBCs at 0 for the 3d Dirac operator are possible with sufficiently
strong Coulomb potential.
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Further works

Tumulka arxiv.org/abs/1808.06262: General form of IBCs

Dürr, Goldstein, Teufel, Tumulka, and Zangh̀ı
arxiv.org/abs/1809.10235: Bohmian trajectories for IBCs

Schmidt and Tumulka arxiv.org/abs/1810.02173: Time reversal of
IBCs

Schmidt arxiv.org/abs/1810.03313: IBCs for
√
m2 −∇2

Schmidt, Teufel, and Tumulka arxiv.org/abs/1811.02947: General
form of IBCs for the Dirac eq and codim-1 boundaries

Henheik, Tumulka work in progress: Bohmian trajectories for HIBC

for 3d Dirac eq with Coulomb potential

Roderich Tumulka Interior-Boundary Conditions for Schrödinger Equations



Features of the novel approach

Problem:

Hamiltonian involving particle creation and annihilation is usually
UV divergent, and thus ill defined

New approach:

IBC = interior–boundary condition

allows a new way of defining a Hamiltonian HIBC

provides rigorous definition of a self-adjoint HIBC ,
at least for some scenarios (and we hope in many)

no need for discretizing space, smearing out particles over positive
radius, or other UV cut-off

no need for renormalization, or taking limit of removing the UV
cut-off

makes use of particle–position representation
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Thank you for your attention

Roderich Tumulka Interior-Boundary Conditions for Schrödinger Equations


