Interior-Boundary Conditions for Schrödinger Equations

Roderich Tumulka

EBERHARD KARLS
 UNIVERSITAT TUBINGEN

Seminar at Rutgers University, 15 October 2020

Upcoming book

Matthias Lienert • Sören Petrat .
Roderich Tumulka

Multi-time Wave Functions

- An Introduction
to appear in the
SpringerBriefs series in November 2020
configuration space $\mathcal{Q}=\mathbb{R}^{3 N}, \psi: \mathcal{Q} \times \mathbb{R}_{t} \rightarrow \mathbb{C}$

$$
i \hbar \frac{\partial \psi}{\partial t}=H \psi=-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi+V \psi
$$

$\psi_{t}=U_{t} \psi_{0}=e^{-i H t / \hbar} \psi_{0}$

Born's rule

$\rho_{t}(x)=\left|\psi_{t}(x)\right|^{2}$
$\psi_{t} \in \mathscr{H}=L^{2}(\mathcal{Q}, \mathbb{C})$
$U_{t}: \mathscr{H} \rightarrow \mathscr{H}$ is unitary
$\Leftarrow H$ is self-adjoint
prob. current $\boldsymbol{j}=\frac{\hbar}{m} \operatorname{Im}\left[\psi^{*} \nabla \psi\right]$
$\frac{\partial \rho}{\partial t}+\nabla \cdot \boldsymbol{j}=0$ continuity equation

Boundary conditions for the Schrödinger equation

- $\mathcal{Q}=[0,1]$
- for time evolution, PDE is not enough: also need boundary conditions (BCs) such as

$$
\begin{equation*}
\psi(0, t)=0 \forall t \text { (Dirichlet) }, \quad \frac{\partial \psi}{\partial x}(1, t)=0 \forall t \text { (Neumann) } \tag{1}
\end{equation*}
$$

- built into the domain \mathscr{D} of the Hamiltonian $H: H=-\frac{\hbar^{2}}{2 m} \nabla^{2}$,
$\mathscr{D}=\left\{\psi \in L^{2}([0,1]): \nabla^{2} \psi \in L^{2}([0,1]), \psi\right.$ satisfies (1) $\}$
- (1) are reflecting boundary conditions: make (H, \mathscr{D}) self-adjoint \Rightarrow $U_{t}=e^{-i H t / \hbar}$ unitary \Rightarrow no loss of probability
- Likewise for Robin $\mathrm{BC}(\alpha, \beta \neq(0,0)$ real constants):

$$
\alpha \frac{\partial \psi}{\partial x}+\beta \psi(x)=0
$$

Particle-position representation of a Fock space vector
Configuration space of a variable number of particles:

$$
\begin{aligned}
\mathcal{Q} & =\bigcup_{n=0}^{\infty} \mathbb{R}^{3 n} \\
& =\bigcup_{n=0}^{\infty} \mathcal{Q}^{(n)}
\end{aligned}
$$

(a)

(c)
(b)

(d)

Fock space:

- $\mathscr{F}^{ \pm}=\bigoplus^{\infty} S_{ \pm} \mathscr{H}_{1}^{\otimes n}$
with $S_{+}=$symmetrizer, $S_{-}=$anti-symmetrizer, $\mathscr{H}_{1}=1$-particle Hilbert space $=L^{2}\left(\mathbb{R}^{3}, \mathbb{C}^{k}\right)$
- $\psi \in \mathscr{F} \Rightarrow \psi=\left(\psi^{(0)}, \psi^{(1)}, \psi^{(2)}, \ldots\right)$
- $\psi: \mathcal{Q} \rightarrow S$ with $S=$ value space $=\cup_{n=0}^{\infty}\left(\mathbb{C}^{k}\right)^{\otimes n}$
- ψ is an (anti-)symmetric function

An UV divergence problem

For example, consider a simplified model quantum field theory (QFT):

- x-particles can emit and absorb y-particles.
- There is only 1 x-particle, and it is fixed at the origin. $\mathscr{H}=\mathscr{F}_{y}^{+}$
- configuration space $\mathcal{Q}=\bigcup_{n=0}^{\infty} \mathbb{R}^{3 n}$, coupling constant $g \in \mathbb{R}$

Original Hamiltonian in the particle-position representation:

$$
\begin{aligned}
\left(H_{\text {orig }} \psi\right)^{(n)}\left(\boldsymbol{y}_{1} \ldots \boldsymbol{y}_{n}\right)= & -\frac{\hbar^{2}}{2 m_{y}} \sum_{j=1}^{n} \nabla_{\boldsymbol{y}_{j}}^{2} \psi^{(n)}\left(\boldsymbol{y}_{1} \ldots \boldsymbol{y}_{n}\right)+n E_{0} \psi^{(n)} \\
& +g \sqrt{n+1} \psi^{(n+1)}\left(\boldsymbol{y}_{1} \ldots \boldsymbol{y}_{n}, \mathbf{0}\right) \\
& +\frac{g}{\sqrt{n}} \sum_{j=1}^{n} \delta^{3}\left(\boldsymbol{y}_{j}\right) \psi^{(n-1)}\left(\boldsymbol{y}_{1} \ldots \hat{\boldsymbol{y}}_{j} \ldots \boldsymbol{y}_{n}\right),
\end{aligned}
$$

is UV divergent. (${ }^{\wedge}=$ omit, $E_{0} \geq 0$ energy needed for creating y)

UV cut-off $\varphi \in L^{2}\left(\mathbb{R}^{3}\right)$:

$$
\begin{aligned}
\left(H_{\text {cutoff }} \psi\right)\left(\boldsymbol{y}_{1} \ldots \boldsymbol{y}_{n}\right)= & -\frac{\hbar^{2}}{2 m_{y}} \sum_{j=1}^{n} \nabla_{\boldsymbol{y}_{j}}^{2} \psi\left(\boldsymbol{y}_{1} \ldots \boldsymbol{y}_{n}\right)+n E_{0} \psi^{(n)}+ \\
& +g \sqrt{n+1} \sum_{i=1}^{m} \int_{\mathbb{R}^{3}} d^{3} \boldsymbol{y} \varphi^{*}(\boldsymbol{y}) \psi\left(\boldsymbol{y}_{1} \ldots \boldsymbol{y}_{n}, \boldsymbol{y}\right)+ \\
& +\frac{g}{\sqrt{n}} \sum_{i=1}^{m} \sum_{j=1}^{n} \varphi\left(\boldsymbol{y}_{j}\right) \psi\left(\boldsymbol{y}_{1} \ldots \widehat{\boldsymbol{y}}_{j} \ldots \boldsymbol{y}_{n}\right)
\end{aligned}
$$

"smearing out" the x-particle with "charge distribution" $\varphi(\cdot)$

But then ...

...emission and absorption occurs anywhere in a ball around the x-particle ($=$ in the support of

- There is no empirical evidence that an electron has positive radius.
- Positive radius leads to difficulties with Lorentz invariance.

This UV problem can be solved!
[Teufel and Tumulka arxiv.org/abs/1505.04847, arxiv.org/abs/1506.00497]

Stefan Teufel

Novel idea: Interior-boundary condition

2-particle sector
Here: boundary config $=$ where y-particle meets x-particle;
interior config $=$ one y-particle removed

Interior-boundary condition (IBC)

$$
\psi^{(n+1)}(\text { bdy })=\left(\text { const.) } \psi^{(n)}\right.
$$

links two configurations connected by the creation or annihilation of a particle.
For example, with an x-particle at $\mathbf{0}$,

$$
\psi^{(n+1)}\left(y^{n}, \mathbf{0}\right)=\frac{g m_{y}}{2 \pi \hbar^{2} \sqrt{n+1}} \psi^{(n)}\left(y^{n}\right)
$$

with $y^{n}=\left(\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{n}\right)$.

A derivation of an IBC in 1d

Stefan Keppeler
due to [Keppeler and Sieber arxiv.org/abs/1511.03071]
for simplicity in a truncated Fock space

$$
\mathscr{H}=\bigoplus_{n=0}^{1} S_{+} \mathscr{H}_{1}^{\otimes n}=\mathbb{C} \oplus \mathscr{H}_{1}=\mathbb{C} \oplus L^{2}(\mathbb{R})
$$

If $\left(H_{\text {orig }} \psi\right)^{(1)}(y)=-\frac{1}{2 m} \frac{d^{2}}{d y^{2}} \psi^{(1)}(y)+g \delta(y) \psi^{(0)}$ lies in $L^{2}(\mathbb{R})$, then

$$
\frac{d^{2}}{d y^{2}} \psi^{(1)}(y)=2 m g \delta(y) \psi^{(0)}+f(y) \text { with } f \in L^{2}
$$

$\phi^{\prime}(y)=\delta(y) \Rightarrow$ jump , likewise $\phi^{\prime \prime}(y)=\delta(y) \Rightarrow$ kink so $D=\left\{\left(\psi^{(0)}, \psi^{(1)}\right): \psi^{(1) \prime}(0+)-\psi^{(1) \prime}(0-)=2 m g \psi^{(0)}\right.$ and away from $\left.0, \nabla^{2} \psi^{(1)} \in L^{2}\right\}$
and $H\left(\psi^{(0)}, \psi^{(1)}\right)=\left(g \psi^{(1)}(0),-\frac{1}{2 m} \nabla^{2} \psi^{(1)}\right.$ away from 0$)$

The basic idea of IBCs: a toy example

Consider quantum mechanics on a space \mathcal{Q} with a boundary $\partial \mathcal{Q}$.

- E.g., $\mathcal{Q}=\mathcal{Q}^{(1)} \cup \mathcal{Q}^{(2)}=\mathbb{R} \cup(\mathbb{R} \times[0, \infty))$ $\partial \mathcal{Q}=\partial \mathcal{Q}^{(2)}=\mathbb{R} \times\{0\}$
- Consider probability current vector field j on \mathcal{Q}.
- Suppose j has nonzero flux into $\partial \mathcal{Q}$, $0 \neq \int_{\partial \mathcal{Q}} d x j \cdot n(n=$ normal to $\partial \mathcal{Q})$
- We want the prob that disappears at $q \in \partial \mathcal{Q}$ to reappear at $f(q) \in \mathcal{Q}$.
- E.g., what disappears at $(x, 0) \in \partial \mathcal{Q}^{(2)}$ reappears at $f(x, 0)=x$, so $f: \partial \mathcal{Q}^{(2)} \rightarrow \mathcal{Q}^{(1)}$. In general, $f: \partial \mathcal{Q} \rightarrow \mathcal{Q}$.
- This is achieved through
\rightarrow an extra term in H for $\mathcal{Q}^{(1)}$
\rightarrow an interior-boundary condition $\psi(q)=($ const.) $\psi(f(q))$

IBC in the toy example

$$
\text { - } \psi_{t}: \mathcal{Q} \rightarrow \mathbb{C}, \quad \psi=\left(\psi^{(1)}, \psi^{(2)}\right)
$$

- $g \in \mathbb{R}$ coupling constant
- IBC: $\psi^{(2)}(x, 0)=-\frac{2 m g}{\hbar^{2}} \psi^{(1)}(x)$
- Hamiltonian:

$$
\begin{aligned}
(H \psi)^{(1)}(x) & =-\frac{\hbar^{2}}{2 m} \partial_{x}^{2} \psi^{(1)}(x)+g \partial_{y} \psi^{(2)}(x, 0) \\
(H \psi)^{(2)}(x, y) & =-\frac{\hbar^{2}}{2 m}\left(\partial_{x}^{2}+\partial_{y}^{2}\right) \psi^{(2)}(x, y) \quad \text { for } y>0 .
\end{aligned}
$$

Theorem

H is rigorously defined and self-adjoint on the dense-in- $L^{2}(\mathcal{Q})$ domain
$\mathscr{D}=\left\{\left(\psi^{(1)}, \psi^{(2)}\right): \psi^{(n)} \in H^{2}\left(\mathcal{Q}^{(n)}\right) \forall n,\left.\quad \psi^{(2)}\right|_{\mathbb{R} \times\{0\}}=-\frac{2 m g}{\hbar^{2}} \psi^{(1)}\right\}$.
Probability balance equations:

$$
\begin{aligned}
& \partial_{t}\left|\psi^{(2)}\right|^{2}=-\partial_{x} j_{x}^{(2)}-\partial_{y} j_{y}^{(2)}, \\
& \partial_{t}\left|\psi^{(1)}\right|^{2}=-\partial_{x} j_{x}^{(1)}+\underbrace{\frac{2 g}{\hbar} \operatorname{Im}\left[\psi^{(1)}(x)^{*} \partial_{y} \psi^{(2)}(x, 0)\right]}_{=-j_{y}^{(2)}(x, 0) \text { by the IBC }}
\end{aligned}
$$

IBC for particle creation model

Consider again

- x-particle at $\mathbf{0}$ emits and absorbs y-particles, $\mathscr{H}=\mathscr{F}_{y}^{+}$
- IBC $\lim _{r \geq 0} r \psi\left(y^{n}, r \boldsymbol{\omega}\right)=\frac{g m}{2 \pi \hbar^{2} \sqrt{n+1}} \psi\left(y^{n}\right) \quad$ for all $\boldsymbol{\omega} \in \mathbb{S}^{2}$
- $\left(H_{I B C} \psi\right)\left(y^{n}\right)=-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi+\frac{g \sqrt{n+1}}{4 \pi} \int_{\mathbb{S}^{2}} d^{2} \omega \lim _{r \geq 0} \frac{\partial}{\partial r}\left(r \psi\left(y^{n}, r \omega\right)\right)$

$$
\begin{equation*}
+n E_{0} \psi+\frac{g}{\sqrt{n}} \sum_{j=1}^{n} \delta^{3}\left(\boldsymbol{y}_{j}\right) \psi\left(y^{n} \backslash \boldsymbol{y}_{j}\right) \tag{3}
\end{equation*}
$$

IBC (2) $\Rightarrow \psi$ typically diverges
like $1 / r=1 /\left|\boldsymbol{y}_{j}\right|$ as $\boldsymbol{y}_{j} \rightarrow \mathbf{0}$. In fact, $\psi\left(y^{n}, r \boldsymbol{\omega}\right)=c_{-1}\left(y^{n}\right) r^{-1}+c_{0}\left(y^{n}\right) r^{0}+o\left(r^{0}\right)$ and (2) $\Leftrightarrow c_{-1}\left(y^{n}\right)=\frac{g m}{2 \pi \hbar^{2} \sqrt{n+1}} \psi\left(y^{n}\right)$

$$
(3) \Leftrightarrow(H \psi)\left(y^{n}\right)=-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi+g \sqrt{n+1} c_{0}\left(y^{n}\right)
$$

$$
+n E_{0} \psi+\frac{g}{\sqrt{n}} \sum \delta^{3}\left(\boldsymbol{y}_{j}\right) \psi\left(y^{n} \backslash \boldsymbol{y}_{j}\right)
$$

Rigorous absence of UV divergence in this model

- Note that $\nabla^{2} \frac{1}{|\boldsymbol{y}|}=-4 \pi \delta^{3}(\boldsymbol{y})$ (cf. Poisson eq $\nabla^{2} \phi=-4 \pi \rho$).
- Thus, in $\nabla^{2} \psi$ the $1 / r$ divergent contribution to ψ cancels the δ^{3} !

Theorem [Lampart, Schmidt, Teufel, Tumulka arxiv.org/abs/1703.04476]
On a suitable dense domain $\mathscr{D}_{1 B C}$ of $\psi \mathrm{s}$ in \mathscr{H} satisfying the IBC (2), $H_{I B C}$ is well defined, self-adjoint, and positive. No UV divergence!

Jonas Lampart

Julian Schmidt

Why it works: flux of probability into a point

- probability current $\boldsymbol{j}_{\boldsymbol{y}_{j}}\left(y^{n}\right)=\frac{\hbar}{m} \operatorname{Im} \psi^{*} \nabla_{\boldsymbol{y}_{j}} \psi$
$\cdot \frac{\partial\left|\psi\left(y^{n}\right)\right|^{2}}{\partial t}=-\sum_{j=1}^{n} \nabla_{\boldsymbol{y}_{j}} \cdot \boldsymbol{j}_{\boldsymbol{y}_{j}}+(n+1) \lim _{r \searrow 0} \underbrace{r^{2} \int_{\mathbb{S}^{2}} d^{2} \boldsymbol{\omega} \boldsymbol{\omega} \cdot \boldsymbol{j}_{\boldsymbol{y}_{n+1}}\left(y^{n}, r \boldsymbol{\omega}\right)}_{\text {flux into } \mathbf{0} \text { on }(n+1) \text {-sector }}$
- motion towards $\mathbf{0} \Rightarrow$ $\rho \sim 1 / r^{2}$ as $r \rightarrow 0$

Bohmian picture

- $t \mapsto Q(t) \in \mathcal{Q}$ piecewise continuous, jumps between $\mathcal{Q}^{(n)}$ and $\mathcal{Q}^{(n+1)}$
- within $\mathcal{Q}^{(n)}$, Bohm's law of motion

$$
\frac{d Q}{d t}=\frac{\hbar}{m_{B}} \operatorname{Im} \frac{\nabla \psi^{(n)}}{\psi^{(n)}}(Q(t))
$$

- with IBC:
- when $Q(t) \in \mathcal{Q}^{(n)}$ reaches $\boldsymbol{y}_{j}=\mathbf{0}$, it jumps to $\left(y^{n} \backslash \boldsymbol{y}_{j}\right) \in \mathcal{Q}^{(n-1)}$
- emission of new y-particle at $\mathbf{0}$ at random time with random direction
- with UV cut-off:
- emission and absorption occurs anywhere in a ball around $\mathbf{0}$ ($=$ in the support of

(c)
(b)

(d)

$H_{I B C}$ is not a perturbation of $H_{\text {free }}$

- Note that $H_{I B C}$ cannot be decomposed into a sum of two self-adjoint operators $H_{\text {free }}+H_{\text {interaction }}$.
- That is because the domain $\mathscr{D}_{1 B C}$ is different from the free domain $\mathscr{D}_{\text {free }}$.
- The Laplacian is not self-adjoint on $\mathscr{D}_{1 B C}$ (i.e., does not conserve probability) because it allows a nonzero flux of probability into the boundary

$$
\partial \mathcal{Q}^{(n+1)}=\mathcal{Q}^{(n)} \times\{\mathbf{0}\} \cup(\text { permutations thereof }) .
$$

The additional terms in $H_{I B C}$ compensate that flux (by adding it to $\left.\mathcal{Q}^{(n)}\right)$.

Ground state

Theorem [Lampart et al. 2017]

For $E_{0}>0, H_{I B C}$ possesses a non-degenerate ground state ψ_{0}, which is

$$
\psi_{0}\left(\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{n}\right)=\mathcal{N} \frac{(-g)^{n}}{(4 \pi)^{n} \sqrt{n}} \prod_{j=1}^{n} \frac{e^{-\sqrt{2 m E_{0}}\left|\boldsymbol{y}_{j}\right| / \hbar}}{\left|\boldsymbol{y}_{j}\right|}
$$

with eigenvalue $E=g^{2} m \sqrt{2 m E_{0}} / \pi \hbar^{3}$.
That is, the x -particle is dressed with a cloud of y -particles.

Effective potential between x-particles

To compute effective interaction between x-particles by exchange of y-particles, consider

- 2 x-particles fixed at $\boldsymbol{x}_{1}=(0,0,0)$ and $\boldsymbol{x}_{2}=(R, 0,0), \mathscr{H}=\mathscr{F}_{y}^{+}$
- 2 IBCs, one at \boldsymbol{x}_{1} and one at \boldsymbol{x}_{2}
- 2 creation and annihilation terms in $H_{I B C}$
- The ground state is

$$
\psi_{0}=c_{n} \prod_{j=1}^{n} \sum_{i=1}^{2} \frac{e^{-\sqrt{2 m E_{0}}\left|\boldsymbol{y}_{j}-\boldsymbol{x}_{i}\right| / \hbar}}{\left|\boldsymbol{y}_{j}-\boldsymbol{x}_{i}\right|}
$$

with eigenvalue

$$
E=\frac{2 g^{2} m}{\pi \hbar^{2}}\left(\frac{\sqrt{2 m E_{0}}}{\hbar}-\frac{e^{-\sqrt{2 m E_{0}} R / \hbar}}{R}\right)
$$

- That is, x-particles effectively interact through an attractive Yukawa potential.

Comparison to renormalization procedure

- Consider again the scenario with $1 \times$-particle fixed at the origin, $\mathscr{H}=\mathscr{F}_{y}^{+}$.
- Consider $H_{\text {cutoff }}=H_{\varphi}$ with $\varphi=$, limit $\varphi \rightarrow \delta^{3}$.
- Then there exist constants $E_{\varphi} \rightarrow \infty$ and a self-adjoint operator H_{∞} such that

$$
\begin{aligned}
& \quad H_{\varphi}-E_{\varphi} \rightarrow H_{\infty} \\
& \text { [van Hove 1952, Nelson 1964, see also Derezíński 2003] }
\end{aligned}
$$

Theorem [Lampart et al. 2017]
 $H_{\infty}=H_{I B C}+$ const

Moving sources

- Now: x-particles can move, config. space $\mathcal{Q}=\bigcup_{m, n=0}\left(\mathbb{R}_{x}^{3}\right)^{m} \times\left(\mathbb{R}_{y}^{3}\right)^{n}$
- $\mathscr{H}=\mathscr{F}_{x}^{-} \otimes \mathscr{F}_{y}^{+}, \quad \psi: \mathcal{Q} \rightarrow \mathbb{C}, \quad \psi=\psi\left(x^{m}, y^{n}\right)$
- The original Hamiltonian is UV divergent.
- IBC $\lim _{\left(x_{i}, y_{j}\right) \rightarrow(x, x)}\left|x_{i}-y_{j}\right| \psi\left(x^{m}, y^{n}\right)=\alpha_{n-1} \psi\left(\boldsymbol{x}_{i}=x, \widehat{y}_{j}\right)$
with $\alpha_{n-1}=\frac{g}{2 \pi \hbar^{2} \sqrt{n}} \frac{m_{x} m_{y}}{m_{x}+m_{y}}$.
Here, "boundary" = diagonal; boundary config: where $\boldsymbol{x}_{i}=\boldsymbol{y}_{j}$; interior config: one y-particle removed

2-particle sector

Theorem [Lampart and Schmidt arxiv.org/abs/1803.00872]

In 2d, $H_{I B C}$ is well defined and self-adjoint.

Theorem [Lampart arxiv.org/abs/1804.08295]

In 3d, $H_{I B C}$ is well defined and self-adjoint.

Now Dirac operators instead of $-\nabla^{2}$

- Now suppose that y-particles are relativistic and have spin $\frac{1}{2}$.
- A free y-particle is governed by the Dirac equation

$$
i c \hbar \gamma^{\mu} \partial_{\mu} \psi=m c^{2} \psi
$$

or

$$
i \hbar \frac{\partial \psi}{\partial t}=-i c \hbar \boldsymbol{\alpha} \cdot \nabla \psi+m c^{2} \beta \psi
$$

- $\mathscr{H}=L^{2}\left(\mathbb{R}^{3}, \mathbb{C}^{4}\right)$ for 1 particle

Example of a reflecting boundary condition for the Dirac equation

- $\mathcal{Q}=\mathbb{R}_{>}^{3}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}: x_{3} \geq 0\right\}$ spatial domain with bdry
- $\psi: \mathbb{R}_{t} \times \mathbb{R}_{>}^{3} \rightarrow \mathbb{C}^{4}$
- current $j^{\mu}=\bar{\psi} \gamma^{\mu} \psi$ or $j^{0}=|\psi|^{2}, j^{i}=\psi^{\dagger} \alpha^{i} \psi$
- Dirac equation $i \gamma^{\mu} \partial_{\mu} \psi=m \psi$ or $i \partial_{t} \psi=(-i \boldsymbol{\alpha} \cdot \nabla+\beta m) \psi$
- α, β, γ Dirac matrices; $\alpha^{i}=\gamma^{0} \gamma^{i}, \beta=\gamma^{0}$ self-adjoint
- boundary condition (BC) $\left(\gamma^{3}-i\right) \psi\left(x_{1}, x_{2}, 0\right)=0$ or $\alpha^{3} \psi=i \beta \psi$

Theorem [known]

The Dirac Hamiltonian is self-adjoint on a dense domain in $L^{2}\left(\mathbb{R}_{>}^{3}, \mathbb{C}^{4}\right)$, $\mathscr{D}=\left\{\psi \in H^{1}\left(\mathbb{R}_{>}^{3}, \mathbb{C}^{4}\right):\left.\left(\gamma^{3}-i\right) \psi\right|_{\partial \mathcal{Q}}=0\right\}$.
$(B C)$ ensures there is no current into the boundary:

$$
\begin{aligned}
j^{3}\left(x_{1}, x_{2}, 0\right) & =\psi^{\dagger} \alpha^{3} \psi=\frac{1}{2} \psi^{\dagger}\left(\alpha^{3} \psi\right)+\frac{1}{2}\left(\alpha^{3} \psi\right)^{\dagger} \psi \\
& \stackrel{(B C)}{=} \frac{1}{2} \psi^{\dagger}(i \beta \psi)+\frac{1}{2}(i \beta \psi)^{\dagger} \psi=\frac{i}{2} \psi^{\dagger} \beta \psi-\frac{i}{2} \psi^{\dagger} \beta \psi=0
\end{aligned}
$$

BC specifies half of the components

- (BC) $\left(\gamma^{3}-i\right) \psi=0$ on $\partial \mathcal{Q}$
- γ^{3} is unitarily diagonalizable with eigenvalues $\pm i$, each with multiplicity 2
- So, $\gamma^{3}-i$ is $-2 i$ times a 2 d orthogonal projection.
- So, $\left(\gamma^{3}-i\right) \psi=0$ sets two components of ψ to 0 and leaves two components arbitrary.
- For comparison, the reflecting boundary conditions for the Laplacian,

$$
\begin{aligned}
\psi\left(x_{1}, x_{2}, 0\right) & =0 \text { (Dirichlet) } \\
\partial_{3} \psi\left(x_{1}, x_{2}, 0\right) & =0 \text { (Neumann }) \\
\left(\alpha+\beta \partial_{3}\right) \psi\left(x_{1}, x_{2}, 0\right) & =0(\text { Robin })
\end{aligned}
$$

each set one component of the 2 d pair $\left(\psi, \partial_{3} \psi\right)$ to 0 and leave one component arbitrary.

Example of an interior-boundary condition for the Dirac equation

- configuration space $\mathcal{Q}=\mathcal{Q}^{(0)} \cup \mathcal{Q}^{(1)}=\{\emptyset\} \cup \mathbb{R}_{>}^{3}$
- mini Fock space $\mathscr{H}=\mathscr{H}^{(0)} \oplus \mathscr{H}^{(1)}=\mathbb{C} \oplus L^{2}\left(\mathbb{R}_{>}^{3}, \mathbb{C}^{4}\right)$
- Hamiltonian

$$
\begin{aligned}
(H \psi)^{(0)} & =\int_{\mathbb{R}^{2}} d x_{1} d x_{2} N\left(x_{1}, x_{2}\right)^{\dagger} \psi^{(1)}\left(x_{1}, x_{2}, 0\right) \\
(H \psi)^{(1)}(\boldsymbol{x}) & =-i \boldsymbol{\alpha} \cdot \nabla \psi^{(1)}(\boldsymbol{x})+m \beta \psi^{(1)}(\boldsymbol{x}), \quad x_{3}>0
\end{aligned}
$$

with $N\left(x_{1}, x_{2}\right)=e^{-x_{1}^{2}-x_{2}^{2}}(1,0,1,0)$ in the Weyl representation

- $\left(\gamma^{3}-i\right) \psi^{(1)}\left(x_{1}, x_{2}, 0\right)=\left(\gamma^{3}-i\right) N\left(x_{1}, x_{2}\right) \psi^{(0)}$ (IBC)
- specifies two components of $\psi^{(1)}$ on $\partial \mathcal{Q}$ and leaves two arbitrary
- $\left(\gamma^{3}-i\right) \psi^{(1)}\left(x_{1}, x_{2}, 0\right)=0$ reflecting BC to compare to.

Theorem

[Schmidt, Teufel, Tumulka arxiv.org/abs/1811.02947]
H is rigorously defined and self-adjoint on
$\left\{\left(\psi^{(0)}, \psi^{(1)}\right) \in \mathbb{C} \oplus H^{1}\left(\mathbb{R}_{>}^{3}, \mathbb{C}^{4}\right):(I B C)\right\}$.

Model of creation of Dirac particles in 1d

[Lienert, Nickel
arxiv.org/abs/1808.04192]

- particles move in \mathbb{R}^{1}, split or coalesce according to

$$
x \leftrightarrows x+x
$$

- Dirac eq in 1d: spin space $\mathbb{C}^{2}, \gamma^{0}=\sigma_{1}, \gamma^{1}=\sigma_{1} \sigma_{3}$.
- (truncated) Fock space $\mathscr{H}=\bigoplus_{n=0}^{N} S_{-} L^{2}\left(\mathbb{R}^{1}, \mathbb{C}^{2}\right)^{\otimes n}$

M. Lienert

Lukas Nickel

- For simplicity, let $N=2, m=0$, ignore the $n=0$ sector, so $\mathscr{H}=\mathscr{H}^{(1)} \oplus \mathscr{H}^{(2)}$.
- $(H \psi)^{(1)}(x)=-i \alpha^{1} \partial_{x} \psi^{(1)}(x)+N(x)^{\dagger} \psi^{(2)}(x, x)$ $(H \psi)^{(2)}\left(x_{1}, x_{2}\right)=\left(-i \alpha_{1}^{1} \partial_{1}-i \alpha_{2}^{1} \partial_{2}\right) \psi^{(2)}\left(x_{1}, x_{2}\right)$
with $N(x)$ a certain 4×2-matrix.
- IBC $\psi_{-+}^{(2)}(x, x)-e^{i \theta} \psi_{+-}^{(2)}(x, x)=B \psi^{(1)}(x)$
with B a certain 1×2-matrix.

Model with IBC for Dirac eq in 1d

Theorem [Lienert, Nickel arxiv.org/abs/1808.04192]
$H_{I B C}$ is well defined and self-adjoint.
They even gave a multi-time formulation and proved consistency of the multi-time equations.

Difficulty with Dirac operators in 3d

The Laplacian allows for BCs at a point:

Theorem [known]

There exist several self-adjoint extensions of $\left(H^{\circ}, \mathscr{D}\left(H^{\circ}\right)\right)=\left(-\nabla^{2}, C_{c}^{\infty}\left(\mathbb{R}^{3} \backslash\{\mathbf{0}\}, \mathbb{C}\right)\right)$.

Not so for the Dirac Hamiltonian:

Theorem [Svendsen 1981]

There is only one self-adjoint extension of $\left(H^{\circ}, \mathscr{D}\left(H^{\circ}\right)\right)=\left(-i \boldsymbol{\alpha} \cdot \nabla+m \beta, C_{c}^{\infty}\left(\mathbb{R}^{3} \backslash\{\mathbf{0}\}, \mathbb{C}^{4}\right)\right)$, the free Dirac Hamiltonian.

This has consequences for IBCs:

Fact

The non-relativistic $H_{I B C}$ in $\mathbb{C} \oplus L^{2}\left(\mathbb{R}^{3}\right)$ with source at $\mathbf{0}$ is a self-adjoint extension of the operator $H^{\circ}\left(\psi^{(0)}=0, \psi^{(1)}\right)=\left(0,-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi^{(1)}\right)$ defined on $\mathscr{D}\left(H^{\circ}\right)=\{0\} \oplus C_{c}^{\infty}\left(\mathbb{R}^{3} \backslash\{\mathbf{0}\}, \mathbb{C}\right)$.
whereas

Theorem

 [Henheik, Tumulka arxiv.org/abs/2006.16755]All self-adjoint extensions in $\mathbb{C} \oplus L^{2}\left(\mathbb{R}^{3}, \mathbb{C}^{4}\right)$ of the operator
$H^{\circ}\left(\psi^{(0)}=0, \psi^{(1)}\right)=\left(0,(-i \boldsymbol{\alpha} \cdot \nabla+m \beta) \psi^{(1)}\right)$
defined on $\mathscr{D}\left(H^{\circ}\right)=\{0\} \oplus C_{c}^{\infty}\left(\mathbb{R}^{3} \backslash\{\mathbf{0}\}, \mathbb{C}^{4}\right)$ involve no particle creation and are the free Dirac operator on the upper sector.

Joscha Henheik

In short, there is no IBC Hamiltonian for Dirac particles and a point source in 3d, unless...

...we add a Coulomb potential

Theorem [Henheik, Tumulka arxiv.org/abs/2006.16755]

Let $H^{\circ}=-i \boldsymbol{\alpha} \cdot \nabla+m \beta+q /|\boldsymbol{x}|$ with $\sqrt{3} / 2<|q|<1$ be defined on $\mathscr{D}^{\circ}=\{0\} \oplus C_{c}^{\infty}\left(\mathbb{R}^{3} \backslash\{\mathbf{0}\}, \mathbb{C}^{4}\right)$. Set $B:=\sqrt{1-q^{2}} \in\left(0, \frac{1}{2}\right)$, let $0 \neq g \in \mathbb{R}$. There is a self-adjoint extension (H, \mathscr{D}) of $\left(H^{\circ}, \mathscr{D}^{\circ}\right)$ with
(1) The sectors $\mathbb{C} \oplus L^{2}\left(\mathbb{R}^{3}, \mathbb{C}^{4}\right)$ do not decouple (i.e., creation occurs).
(2) For every $\psi \in \mathscr{D}$, the upper sector is of the form $\psi^{(1)}(\boldsymbol{x})=$

$$
c_{-1} f_{-1}\left(\frac{x}{|x|}\right)|\boldsymbol{x}|^{-1-B}+\left(\sum_{k=0}^{3} c_{k} f_{k}\left(\frac{x}{|x|}\right)\right)|\boldsymbol{x}|^{-1+B}+o\left(|\boldsymbol{x}|^{-1 / 2}\right)
$$

as $\boldsymbol{x} \rightarrow \mathbf{0}$ with $c_{-1} \ldots c_{3} \in \mathbb{C}$ and particular fcts $f_{-1} \ldots f_{3}: \mathbb{S}^{2} \rightarrow \mathbb{C}^{4}$.
(3) Every $\psi \in \mathscr{D}$ obeys IBC $c_{-1}=g \psi^{(0)} \quad(g \in \mathbb{R})$
(9) For $\psi \in \mathscr{D}, \quad(H \psi)^{(0)}=g c_{0}$

$$
(H \psi)^{(1)}(\boldsymbol{x})=\left(-i \boldsymbol{\alpha} \cdot \nabla+m \beta+\frac{q}{|\boldsymbol{x}|}\right) \psi^{(1)} \quad(\boldsymbol{x} \neq \mathbf{0}) .
$$

In short, IBCs at $\mathbf{0}$ for the 3d Dirac operator are possible with sufficiently strong Coulomb potential.

- Tumulka arxiv.org/abs/1808.06262: General form of IBCs
- Dürr, Goldstein, Teufel, Tumulka, and Zanghì arxiv.org/abs/1809.10235: Bohmian trajectories for IBCs
- Schmidt and Tumulka arxiv.org/abs/1810.02173: Time reversal of IBCs
- Schmidt arxiv.org/abs/1810.03313: IBCs for $\sqrt{m^{2}-\nabla^{2}}$
- Schmidt, Teufel, and Tumulka arxiv.org/abs/1811.02947: General form of IBCs for the Dirac eq and codim-1 boundaries
- Henheik, Tumulka work in progress: Bohmian trajectories for $H_{I B C}$ for 3d Dirac eq with Coulomb potential

Features of the novel approach

Problem:

- Hamiltonian involving particle creation and annihilation is usually UV divergent, and thus ill defined
New approach:
- IBC $=$ interior-boundary condition
- allows a new way of defining a Hamiltonian $H_{I B C}$
- provides rigorous definition of a self-adjoint $H_{I B C}$, at least for some scenarios (and we hope in many)
- no need for discretizing space, smearing out particles over positive radius, or other UV cut-off
- no need for renormalization, or taking limit of removing the UV cut-off
- makes use of particle-position representation

Thank you for your attention

