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Problem of detection time and place

Ω ⊂ Rd , ψ0 ∈ L2(Ω,Ck), detecting surface ∂Ω

outcome Z = (T ,X ), or Z = ∞ if no detector ever clicks

Problem: Compute the distribution of Z from ψ0.
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Lack of orthodox answer

Orthodox quantum mechanics (OQM) does not provide a
self-adjoint time operator that could be the observable for T .

Pauli had an argument of the following kind: A time operator T̂
would have to be conjugate to the energy operator Ĥ, [Ĥ, T̂ ] = iℏ,
but that is impossible if the spectrum of Ĥ is bounded from below.
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Aharonov and Bohm’s [1961] proposal

for Ω = (−∞, 0] ⊂ R1, ∂Ω = {0}
Note that for a classical particle with initital position x < 0, initial
momentum p > 0, and mass m > 0, the arrival time at the origin is
T = −mx/p.

Guess self-adjoint observable T̂ = −m
2 X̂ P̂−1 − m

2 P̂
−1X̂ .

Not believable

Why not −mP̂−1/2X̂ P̂−1/2 or m(−X̂ )1/2P̂−1(−X̂ )1/2?
What about higher dimension, arbitrary surfaces ∂Ω, detection place X?
Not derived from more fundamental laws.
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Quantum Zeno effect [Turing c. 1950?, Misra and Sudarshan 1977]

Say, Ω = (−∞, 0] ⊂ R1 and ∂Ω = {0}.
Let the particle move in R1.

Make an instantaneous quantum measurement of the event x > 0
(the projection operator 1x>0) at regular time intervals τ > 0.

Consider the limit τ → 0.

Result: In the limit, the probability of ever finding x > 0 becomes 0.

That seems to make any concept of hard detector impossible.
(“A watched pot never boils.”)

Here, a hard detector means one that detects the particle as soon as
it arrives at ∂Ω; a soft detector takes a while to notice the particle.

Yet, it turns out that even a hard detector is possible.
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Allcock’s [1969] difficulty

Again, Ω = (−∞, 0] and ∂Ω = {0}.
Model of soft detector:

Consider Schrödinger equation in R1 with complex potential

V (x) =

{
−iv if x > 0

0 if x ≤ 0 ,

where v > 0 is a constant.

This means that in the right half line the particle has rate 2v/ℏ of
being absorbed (loss of ∥ψ∥2). Prob(X ∈ dx |T ) = |ψ(T , x)|2dx .
Average lifetime in the detector volume = ℏ/2v .
Difficulty: In the hard limit v → ∞, ψ(t, x) = 0 for x > 0 and all
t > 0, so the particle never gets detected.

Again, a hard detector seems impossible.
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POVMs

POVM = positive-operator-valued measure

is a generalization of the concept of observable.

A self-adjoint operator as observable provides for every possible
outcome z a projection Ez .

A POVM provides for every possible outcome z a positive operator
Ez .

Born rule: Prob(Z = z) = ⟨ψ|Ez |ψ⟩

Def

discrete: Ez ≥ 0,
∑

z∈Z Ez = I .
general (including continuous): E (B) ≥ 0 for sets B ⊆ Z , E (Z ) = I ,
E (B1 ∪ B2 ∪ . . .) = E (B1) + E (B2) + . . . for mutually disjoint Bi .
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Let S(H ) := {ψ ∈ H : ∥ψ∥ = 1} be the unit sphere.

Main theorem about POVMs

For every experiment that can be done on a system with arbitrary
ψ ∈ S(H ), there exists a unique POVM E such that the distribution of
the outcome Z is

Probψ(Z = z) = ⟨ψ|Ez |ψ⟩ ∀z .

It’s a theorem in Bohmian mechanics (BM).

OQM is too vague for a precise analysis of measurements, but this
statement would count as correct also in OQM.

In fact, Ez = ⟨ϕ|U†
t P(Bz)Ut |ϕ⟩

with ϕ the apparatus ready state, t the duration of the experiment, Ut

the time evolution of system and apparatus, P the position POVM, Bz

the set of configurations with the apparatus displaying outcome z , and
⟨·|·⟩ the partial inner product in the apparatus variables.
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The ideal detector hypothesis

While the correct POVM E (·) will depend on all details of the
detectors, including their quantum states at time 0, the hope is that
there is a particular POVM E0 (or maybe Eκ depending on one or
few parameters κ) in the cloud of E ’s that is a good approximation
and can be expressed by some simple rule (“ideal detector
hypothesis”).

The hope is nourished by two facts:

In practice, detection probabilities do not seem to depend much on
the detailed states of the detectors (except that different types of
detectors are sensitive to different particle species and at different
energy ranges).
For detection at a single time t, the distribution of X is |ψ|2,
independently of the details of the detector.

I have a proposal for such a POVM Eκ.
http://arxiv.org/abs/1601.03715
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My proposal: the “absorbing boundary rule”
Solve the 1-particle Schrödinger

equation iℏ
∂ψ

∂t
= − ℏ2

2m∇2ψ + Vψ with

“absorbing boundary condition” (ABC)

n(x) · ∇ψ(x) = iκψ(x)

at every x ∈ ∂Ω, where n(x) =
outward unit normal vector to ∂Ω at x ,
and κ > 0 a constant.

Ω

x

n

ABC implies that the probability current jψ = ℏ
m Im[ψ∗∇ψ] points

outward at ∂Ω:

n · j = ℏ
m Im[ψ∗n · ∇ψ] = ℏ

m Im[ψ∗iκψ] = ℏ
mκ|ψ|2 ≥ 0 .

Probψ0

(
T ∈ dt,X ∈ d2x

)
= n(x) · jψt (x) dt d2x assuming

∥ψ0∥ = 1. ∃ POVM E on ∂Ω.

If the experiments get interrupted at time t before detection, the
collapsed wave function is ψt/∥ψt∥.
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Another proposal: the naive Bohmian rule

The rule

Consider Ω ⊂ Rd , ψ0 with support in Ω, ψ(t) evolving freely in Rd .

Consider Bohmian trajectory Q(t) in Rd with Q(0) ∼ |ψ0|2,
dQ(t)

dt
=

jψ(t)(Q(t))

|ψ(t,Q(t))|2 .

Consider first arrival time τ := inf{t ≥ 0 : Q(t) ∈ ∂Ω}.
Claim: T = τ, X = Q(τ).

Plausible in the scattering (far-field) regime “∂Ω → ∞.”

The question under which conditions on Ω and ψ0 this is valid was
raised in [Daumer, Dürr, Goldstein, Zangh̀ı 1997].

This rule was considered in particular by

Grübl, Kreidl, and Ruggenthaler [2005]
Vona, Hinrichs, and Dürr [2013]
Das and Dürr [2019], who assumed that it is generally approximately
valid for a spin- 1

2
particle.

I will explain why Das and Dürr were wrong about this point.
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Arrival time vs detection time

The presence of detectors can change the particle’s wave function,
and thus the Bohmian trajectories, and thus τ .

Specifically, in both BM and OQM, a detector can collapse the
particle’s wave function (even if it doesn’t click). If detectors on ∂Ω
have collapsed away parts of ψ that crossed ∂Ω, then these parts
cannot propagate back through ∂Ω (as they partially would have
under the free evolution). Thus, even ψ inside Ω is different in the
presence and in the absence of detectors.

So, QWID(t) ̸= QWOD(t) in general
(WID = with detectors, WOD = without detectors);
so, TWID ̸= TWOD = τ in general.

The naive Bohmian rule didn’t take the presence of detectors into
account. There is no reason why the detection time T = TD should
agree with TWOD .

The Bohmian arrival time is not the Bohmian detection time.

Das and Dürr assumed TD = TWOD .
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Consequences of the naive Bohmian rule

BM would apparently make a prediction that OQM can’t make. So
one could do an experiment to test BM against OQM. That would
be pleasant: Instead of endless debates, do the experiment and every
physicist has to agree which theory is right.

However, that is too good to be true: there is a general argument
that BM and OQM are empirically equivalent.

Moreover, the naive Bohmian rule, if valid, could be used for
superluminal signaling.

However, there is a general argument that superluminal signaling is
impossible in BM.
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Setup of Das and Dürr

ψ : Rt × R3
q → C2, iℏ

∂ψ

∂t
= − ℏ2

2m∇2ψ + Vψ

jψ = ℏ
m Im[ψ†∇ψ] + λ ℏ

2m∇× (ψ†σψ)

with λ = 1 (which arises as the non-rel. limit of BM for the Dirac eq)

real-valued potential V given by (wave guide)

V (x , y , z) ≡
{
∞ if z < 0
m
2 ω

2(x2 + y2) if z ≥ 0 .

For n ∈ S(R3), let |n⟩ be the spinor (unique up to phase θ) with
⟨n|σ|n⟩ = n. In spherical coordinates α, β,

|n⟩ = e iθ
(

cos(α/2)
sin(α/2)e−iβ

)
.

Let initial wave function factorize according to ψ0 = |n⟩ ⊗ φ0. Fix
spatial part φ0(q), keep n variable.

Ω = {z ≤ L}, ∂Ω = {z = L} for some constant L > 0.
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Their findings

Das and Dürr computed the distribution of TWOD :
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Figure 2. Arrival time histograms for spin-up
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P0|0
Bohm(t)

�
and up-down

�
P

p
2 |0
Bohm(t)

�
wave functions, L = 100 and w = 103

graphed along with the semiclassical arrival time distribution Psc(t) (dashed line) and the quantum (convective) flux
distribution Pqf(t) (solid line). We see agreement between P0|0

Bohm(t) and Pqf(t). For the up-down case, no arrivals are
recorded for t > 42.9 (= tmax). Note the disagreement of all distributions with Psc(t). Each histogram in this figure has been
generated with 105 Bohmian trajectories. The time scale on the horizontal axis is ⇡ 21.7ms, assuming d = 50mm. Inset:
Magnified view of the self-similar smaller lobes of the up-down histogram, separated by distinct no-arrival windows.
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Figure 3. Mean first arrival time hti vs. spin orientation angle a for L = 10 and b = 0. The symmetry of the curves about
a = p

2 is a consequence of property (14b).

For d = 50mm and L = 5mm (Fig. 2), a modest d t ⇡ 10ms will successfully resolve 8 lobes (main + 7 smaller lobes), while
d t ⇡ 0.1ms will resolve as many as 83 lobes (main + 82 smaller lobes). However, we must also understand that only a few data
points (about

⇣
2

p2

⌘
N
n4 in N experiments) contribute to the nth lobe, especially when n � 1. This number, being independent of

any tunable parameters like L, w , etc., sets an intrinsic limit on the experimenter’s ability to resolve the distant lobes.

6/9

Figure reproduced from their paper. Blue curve: α = 0, n = (0, 0, 1).
Red curve: α = π/2, β = 0, n = (1, 0, 0).

The distribution depends on n.
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Decoupling argument

to the effect that the distribution of TD should not depend on n:
Suppose the Hamiltonian of the particle doesn’t couple to the spin,
I2 ⊗ H0.

Suppose the interaction Hamiltonian between particle and detectors
doesn’t couple to the particle’s spin, I2 ⊗ Hint.

Then the wave function Φt of particle + detectors will factorize
|n⟩⊗ something.

Thus, the |Φ|2 distribution of the apparatus display will be
independent of n, and thus also the distribution of TD .

However, the first supposition will not be exactly valid for the Dirac
Hamiltonian, so I will give another argument.
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Distribution of TWOD is not given by a POVM

If it were given by a POVM Ẽ , form the spin POVM
E (dt) = ⟨φ0|Ẽ (dt)|φ0⟩ acting on C2, so
Prob(T ∈ dt) = ⟨n|E (dt)|n⟩ for T = TWOD .

Thus, ET = ⟨n|M|n⟩ with M =
∫∞
0

t E (dt) a self-adjoint 2× 2
matrix.

Every self-adjoint 2× 2 matrix is of the form M = m0I2 +m ·σ with
m0 ∈ R, m ∈ R3.

Thus, ET = m0 +m · n. In particular, if we fix β = 0 and vary α, so
n = (sinα, 0, cosα), then

ET = m0 +m1 sinα+m3 cosα

= m0 + µ sin(α− α0) ,

a shifted sine curve.
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α-dependence of ETWOD is not sinusoidal

Plot of α-dependence of ETWOD : black or red curve
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graphed along with the semiclassical arrival time distribution Psc(t) (dashed line) and the quantum (convective) flux
distribution Pqf(t) (solid line). We see agreement between P0|0

Bohm(t) and Pqf(t). For the up-down case, no arrivals are
recorded for t > 42.9 (= tmax). Note the disagreement of all distributions with Psc(t). Each histogram in this figure has been
generated with 105 Bohmian trajectories. The time scale on the horizontal axis is ⇡ 21.7ms, assuming d = 50mm. Inset:
Magnified view of the self-similar smaller lobes of the up-down histogram, separated by distinct no-arrival windows.
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For d = 50mm and L = 5mm (Fig. 2), a modest d t ⇡ 10ms will successfully resolve 8 lobes (main + 7 smaller lobes), while
d t ⇡ 0.1ms will resolve as many as 83 lobes (main + 82 smaller lobes). However, we must also understand that only a few data
points (about

⇣
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n4 in N experiments) contribute to the nth lobe, especially when n � 1. This number, being independent of

any tunable parameters like L, w , etc., sets an intrinsic limit on the experimenter’s ability to resolve the distant lobes.

6/9

Figure reproduced from [Das and Dürr 2019].
Not a shifted sine curve.
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So what has been shown?

The naive Bohmian rule is not the prediction of BM for a detection
time experiment.

TWOD is in general not measurable.

Whether TWID is measurable, and whether realistic detectors
measure TWID , are largely open questions. The absorbing boundary
rule (ABR) suggests yes. This is also supported by certain possible
ways of deriving the ABR from BM or OQM outlined by

a 2020 paper by Varun Dubey, Cedric Bernardin, and Abhishek Dhar
my http://arxiv.org/abs/2310.01343

Another example of something not measurable: ψ
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What would orthodox quantum physicists predict?

Not easy to answer, as it is not clear what should be taken as the
definition of OQM.

In practice, OQM often makes use of analogies and quantization.

Orthodox physicists have not agreed yet on how to compute the
distribution of TD .

Bohmians would solve the Schrödinger equation for the wave
function Φ of the big system formed by the particle, all detectors, a
clock, and a recording device, constructed so as to keep a record of
which detector clicked when. At a late time t, make a quantum
measurement of the record. In OQM, this reasoning would run into
the quantum measurement problem.

But in the end, if it can be shown that the |Φt |2 distribution yields a
particular distribution ρ of the record, then orthodox physicists would
agree that ρ is the outcome distribution. This argument would
trump analogies and guesses. So in the end, OQM agrees with BM.
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Different equations of motion

Several eq.s of motion make the |ψ|2 distribution equivariant, e.g.,

see above with different λ ∈ R
Nelson’s stochastic mechanics
Deotto and Ghirardi [1998] gave alternative ODEs (not convincing as
laws of nature but mathematically possible)
“zig-zag process” for Dirac particles with further hidden variable
“handedness” ∈ {+1,−1} [Colin, Wiseman 2011; Struyve 2012;
Maes, Meerts, Struyve 2022]

lead to same distribution of outcome displayed by apparatus

but lead to different trajectories and thus different TWOD .

Thus, in most of these theories, TD ̸= TWOD .

That is another reason why the assumption of Das and Dürr was
questionable from the start.
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Thank you for your attention
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