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Definition of Bohmian mechanics
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Bohmian mechanics

“[Bohmian mechanics] exercises the mind in a very salutary way.” J.S. Bell (1984)

The universe consists of

a 3d Euclidean space R3,

N material points (“particles”) moving in R3 with time t ∈ R,
such that the position Qk(t) ∈ R3 of particle k ∈ {1...N} at time t
changes according to the following equation of motion:

dQk

dt
= ℏ

mk

Im[Ψ†∇qk
Ψ]

Ψ†Ψ

∣∣∣∣∣
q j=Q j (t)∀j

, (1)

where the “wave function of the universe” Ψ : (R3)N × R→ Cℓ
evolves according to the Schrödinger equation

iℏ
∂Ψ

∂t
(q1...qN , t) = −

N∑

k=1

ℏ2

2mk
∇2

qk
Ψ+ V (q1, . . . ,qN)Ψ .
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Bohm’s equation of motion (1)

has the form
dQk

dt
=

current

density
=

j k(Q1 . . .QN)

ρ(Q1 . . .QN)

with prob. current j k and prob. density ρ = |Ψ|2. We write
Q(t) := (Q1(t), . . . ,QN(t)) =: configuration at time t

Equivariance theorem

If Q(t0) ∼ |ψt0 |2 for one t0, then Q(t) ∼ |ψt |2 for all t.

Here, X ∼ µ means “the variable X is random with distribution µ.”

Historical curiosity

Bohm (1952) wrote the eq. of motion (1) as a 2nd-order eq. for
d2Qk/dt

2 (by taking d/dt of (1)) and demanded (1) as a constraint
condition on the velocity—a convoluted way of defining the same
trajectories.
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One more axiom of Bohmian mechanics

Axiom

At the initial time t = 0 of the universe, Q(0) ∼ |ψ0|2.

In particular, assume ψ0 ∈ L2(R3N ,C) with ∥ψ0∥2 = 1.

Weaker version of this axiom suffices:

Q(0) is typical relative to |ψ0|2; that is, it looks as if it were random with
distribution |ψ0|2.

Roderich Tumulka Bohmian mechanics



Example: the double-slit experiment

Drawn by G. Bauer after Philippidis et al.

Shown: A double-slit and 80 possible paths of Bohm’s particle. The wave
passes through both slits, the particle through only one.
Bohmian mechanics takes wave–particle dualism literally: there is a wave,
and there is a particle. The path of the particle depends on the wave.
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No-signaling theorem in BM (a variation of [Ghirardi 1980])

Informally

It is not possible to send messages to spacelike separated regions.

More precisely

Suppose system x (think of particles in Alice’s lab) is entangled with
system y (particles in Bob’s lab), but there is no interaction term in the
Hamiltonian. Suppose system z (Bob’s message) is initially disentangled
from xy ,

Ψt0(x , y , z) = ϕ(x , y)χ(z) ,

H = Hx ⊗ Iy ⊗ Iz + Ix ⊗ Hyz .

Then for any t ≥ t0, the marginal distribution of X (t) is independent of
χ and independent of Hyz , including external fields.

Key to understanding: In a hypothetical universe governed by BM, also a
measurement apparatus/instrument needle/observer consists of Bohmian
particles. Any macroscopic record can be encoded in particle positions
(think of the configuration of ink on paper).
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Collapse of the wave function in Bohmian mechanics

The wave function Ψ of the universe does not collapse (but evolves
according to the Schrödinger equation).
The wave function ψ of a system is the conditional wave function

ψ(x) = N Ψ(x ,Y )

with N = normalizing constant, x = configuration variable of the
system, Y = actual (Bohmian configuration) of the environment.

If x-system and y -system are disentangled, Ψ(x , y) = ϕ(x)χ(y), and
don’t interact, then the conditional wave function ψ (= ϕ) obeys its own
Schrödinger eq., but in general it doesn’t.

In BM, ψ collapses.
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The measurement problem
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Measurement process more generally

Consider an ideal quantum measurement of the observable A =
∑
α αPα

with eigenvalues α and Pα the projection to the corresponding
eigenspace. It begins at t0 and ends at t1. At t0, the wave fct of object
and apparatus is

Ψ(t0) = ψ(t0)⊗ ϕ
with ψ(t0) = wave fct of the object, ϕ = ready state of the apparatus.
By the Schrödinger eq., Ψ evolves to

Ψ(t1) = e−iH(t1−t0)Ψ(t0) .

Roderich Tumulka Bohmian mechanics



Measurement process, continued

We have that Ψ(t0) = ψ(t0)⊗ ϕ and Ψ(t1) = e−iH(t1−t0)Ψ(t0).

Suppose first that the object is in an eigenstate ψα of A. Then

Ψα := Ψ(t1) = e−iH(t1−t0)[ψα ⊗ ϕ]

should be a state in which the apparatus displays the value α (e.g., by
the position of a needle).

Suppose next that ψ(t0) =
∑
α cαψα is an arbitrary superposition. Then

Ψ(t0) =
∑

α

cα [ψα ⊗ ϕ]

and, by linearity of the Schrödinger eq.,

Ψ(t1) =
∑

α

cαΨα ,

i.e., a superposition of wave functions of apparatuses displaying different
outcomes.
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Evolution of Ψ in configuration space of system x + apparatus y :

Ψ

x

y t = 0
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Evolution of Ψ in configuration space of system x + apparatus y :

Ψ

Ψ

x

y t = 1
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Evolution of Ψ in configuration space of system x + apparatus y :

Ψ

Ψ

x

y t = 2
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Evolution of Ψ in configuration space of system x + apparatus y :

Ψ

Ψ

x

y t = 3
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Evolution of Ψ in configuration space of system x + apparatus y :

Ψ

Ψ

x

y t = 4
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Evolution of Ψ in configuration space of system x + apparatus y :

Ψ

Ψ

x

y t = 5
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Evolution of Ψ in configuration space of system x + apparatus y :

Ψ

Ψ

x

y t = 6
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Measurement outcomes in BM

Y provides the actual position of the needle, and thus the actual
outcome Z = f (Y ).

P(Z = α) = ∥Ψα∥2 = |cα|2, in agreement with the rules of QM.

If Ψα = ψα ⊗ ϕα for all α (i.e., if the measurement process doesn’t
change the state of the object), then the cond. wf is ψ = ψα|α=Z

(collapse to eigenfunction), in agreement with the rules of QM.

Moreover, by decoherence (meaning here that the two packets will
not overlap for 10100 years), also in Ψ the lower packet can
henceforth be ignored.
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As a consequence

Observers inhabiting a Bohmian universe (made out of Bohmian particles)
observe random-looking outcomes of their experiments whose statistics
agree with the rules of quantum mechanics for making predictions.
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Why OQM has a measurement problem

The apparatus consists of electrons and quarks, so it should be
possible to treat it like a quantum system with a wave fct ϕ on R3N ,
N > 1023.

If we do, then Ψ(t0) = ψ ⊗ ϕ evolves according to the Schrödinger
eq. to Ψ(t1) =

∑
α cαΨα, where Ψα corresponds to a needle

pointing to α. A superposition of different outcomes.

Ψ(t1) doesn’t say what the actual outcome is.

We might have expected a state Ψ(t1) with a unique needle position.

We might have expected a random state because the outcome
should be random.
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Let’s pin down the problem

3 assumptions

1 In each run of the experiment, there is a unique outcome.

2 The wave function is a complete description of a system’s physical
state in reality. (There are no further variables.)

3 The time evolution of the wave function of an isolated system, not
entangled with the outside, is always given by the Schrödinger eq.

Together, they lead to a contradiction: By 3, Ψ(t1) is generically a
superposition of Ψα corresponding to different outcomes. Thus, Ψ(t1)
doesn’t select an outcome. If there were further variables (such as
Bohm’s Q), they could select an outcome, but by 2 there aren’t. Thus,
there is no unique outcome, in contradiction to 1.

Consequence

We need to drop one of the 3 assumptions.

Bohmian mechanics drops 2, collapse theories 3, many-worlds 1.
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The question that the discussion circles about

What is actually there in reality?
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POVMs
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Positive-operator-valued measure (POVM)

An operator R is positive ⇔ ⟨ψ|R|ψ⟩ ≥ 0 for all ψ.
Equivalently, R = R† and spectrum(R) ⊆ [0,∞).

Definition

A POVM on a discrete set Z is a family (Ez)z∈Z of positive operators
such that

∑
z∈Z Ez = I .

(A POVM in the continuum associates with subsets S ⊆ Z a positive
operator E (S) such that E (Z ) = I and
E (S1 ∪ S2 ∪ . . .) = E (S1) + E (S2) + . . . if Si ∩ Sj = ∅ for i ̸= j .)

Main theorem about POVMs in BM: a generalization of Born’s rule

For any experiment with outcome Z on a system with Hilbert space H ,
there is a POVM E on the set Z of possible outcomes such that for
every ψ ∈H with ∥ψ∥ = 1,

Pψ(Z = z) = ⟨ψ|Ez |ψ⟩ .

Example: For an ideal quantum measurement of the observable
A =

∑
α αPα, Z = spectrum(A) and Ez = Pα.
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Proof of the main theorem about POVMs from BM

Let the experiment be over at time t1, and read off the result from the
apparatus display, Z = f (Q(t1)). Let P(·) be the position POVM on
R3N , i.e.,

P(S)ψ(q) = 1S(q)ψ(q)

for any S ⊆ R3N . Let U = exp(−iH(t1 − t0)/ℏ). Then

P(Z = z) =

∫

f −1(z)

dq |Ψt1(q)|2 = ⟨ψ|Ez |ψ⟩H

with
Ez = ⟨ϕ|U†P(f −1(z))U|ϕ⟩app .

□
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No-hidden-variable theorem
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“Hidden variable” can mean

Any further variable assumed to exist in addition to ψ (such as Q in
BM, which however is not hidden at all!)

The assumption that every observable has an actual value already
before a quantum measurement. (Not the case in BM.)

Let us look at the latter view and suppose that with every self-adjoint
operator A there is associated a physical quantity vA, the actual value of
the observable A, and that a quantum measurement of A simply reveals
the value vA. Can it be this way?
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No-hidden-variable theorem
Suppose 3 ≤ dimH <∞. Let A be the set of all self-adjoint operators
on H , fix ψ ∈H with ∥ψ∥ = 1. The Born distribution for A ∈ A is

Prob(α) = ∥Pαψ∥2 = ⟨ψ|Pαψ⟩
for A =

∑
α αPα. For pairwise-commuting A,B,C with

A =
∑
αβγ αPαβγ , B =

∑
αβγ βPαβγ , C =

∑
αβγ γPαβγ , the joint Born

distribution is
Prob(α, β, γ) = ∥Pαβγψ∥2 . (2)

NHV theorem [Gleason 1957, Kochen and Specker 1967]

Consider a joint distribution of random variables vA for all A ∈ A .
Suppose that a quantum measurement of any A ∈ A yields vA. Suppose
further that whenever A,B ∈ A commute, then a quantum measurement
of A doesn’t change the value of vB (nor that of vA). Then the joint
distribution of vA, vB , vA+B disagrees with the joint Born rule (2).

Upshot

It’s not convincingly possible that there is an actual value vA for every
observable A.
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But BM is deterministic...

...so the outcome Z of an experiment is a function F (X0,Y0, ψ, ϕ) of the
initial data at t0, Ψ(t0) = ψ ⊗ ϕ and Q(t0) = (X0,Y0).

Why isn’t Z a vA?

Because it depends on Y0 and ϕ, not just on A.

Example: Two experiments that are quantum measurements of σz

N

S

One is a Stern-
Gerlach experiment
in the z direction.

S

N

The other uses a
magnet with inver-
ted polarity and calls
the outcome “down”
if the particle is
found in the upper
packet.

On the same X0 and ψ, the two experiments sometimes give different
results. (“contextuality”)
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“The result of an experiment depends on the experiment.”

[Dürr, Goldstein, Zangh̀ı 2004]

...and not just on A. Different experiments belonging to the same
observable may yield different results but the same probability
distribution of results.
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Time of detection

Roderich Tumulka Bohmian mechanics



Problem of detection time and place

0

Ω

ψ

T ∈ [0,∞),X ∈ ∂Ω,Z = (T ,X ) redrawn after [Daumer et al. quant-ph/9512016]

Roderich Tumulka Bohmian mechanics



Problem of detection time

in orthodox quantum mechanics (OQM), there is no time operator

Pauli 1933: it’s impossible to have an operator for detection time

quantum Zeno effect [Turing 1950s]: seems impossible
(“A watched pot never boils,” Misra and Sudarshan 1977)

Allcock’s paradox [1969]

several suggestions:

Aharonov and Bohm 1961: compute classical arrival time from
x(0), p(0), then quantize to obtain an operator
Kijowski [1974]
Maccone: t 7→ |ψ(x , t)|2 for fixed x ∈ ∂Ω
“absorbing boundary rule” [Werner 1987, Tumulka 2016]
Das and Dürr 2018: equate with Bohmian arrival time
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Absorbing boundary rule

Solve the 1-particle Schrödinger

equation iℏ
∂ψ

∂t
= − ℏ2

2m∇2ψ + Vψ with

“absorbing boundary condition” (ABC)

n(x) · ∇ψ(x) = iκψ(x)

at every x ∈ ∂Ω, where n(x) =
outward unit normal vector to ∂Ω at x ,
and κ > 0 a constant.

x

n

Ω

ABC implies that the probability current jψ = ℏ
m Im[ψ∗∇ψ] points

outward at ∂Ω:

n · j = ℏ
m Im[ψ∗n · ∇ψ] = ℏ

m Im[ψ∗iκψ] = ℏ
mκ|ψ|2 ≥ 0 .

Pψ0

(
T ∈ dt,X ∈ d2x

)
= n(x) · jψt (x) dt d2x assuming ∥ψ0∥ = 1.

If the experiments get interrupted at time t before detection, the
collapsed wave function is ψt/∥ψt∥.
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Properties

∥ψt∥2 = Pψ0(T > t) “survival probability,” decreasing in t

The time evolution of ψ, Wt = exp(−iHt/ℏ), is not unitary
(Hamiltonian not self-adjoint) due to loss at ∂Ω

distribution is given by a POVM

Eκ
(
dt × d2x

)
= ℏκ

m W †
t |x⟩⟨x |Wt dt d

2x ,
Eκ(T =∞) = lim

t→∞
W †

t Wt

In Bohmian mechanics, the particle with |ψ0|2-distributed initial
condition X (0) moves according to the equation of motion

dX
dt

=
jψt (X (t))

|ψt(X (t))|2

until it hits ∂Ω at time T and place X = X (T ), and gets absorbed.
Pψ0

(
X (t) ∈ d3x

)
= |ψt(x)|2 d3x .

energy-time uncertainty relation ∆E ∆T ≥ ℏ/2
with E referring to − ℏ2

2m∇2 on L2(R3)
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Heuristic derivation

configuration space:

d
e
te

c
to

r

Ω

x

y
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Current research:

Derive ABR from a microscopic quantum-mechanical model of a
detector, given as a system of N ≳ 1023 particles
[joint work with R. Kaimal]

No signaling theorem: assuming the existence of an apparatus
represented by the ABR, it is not possible to send faster-than-light
signals [joint work with C. Peters and S. Tahvildar-Zadeh],
more precisely [contra claims of W. Cavendish]:

No-signaling theorem for ABR (work in progress)

Consider N non-interacting Dirac particles, a (timelike) surface S ⊂ R4

of ABR-detectors, and a (spacelike) Cauchy surface Σ. Suppose Alice
can see the detection events on S ∩ past(Σ) and Bob can influence the
shape/location of Σ and detector parameters (such as κ(x)) in
future(Σ). Then the distribution of Alice’s observations is independent of
Bob’s choices.
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Time of arrival
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In BM in the absence of detectors, there is a fact about when and where
the particle’s trajectory first intersects ∂Ω: the arrival time TWOD and
arrival place XWOD (WOD = without detectors).

Distribution

P(XWOD ∈ d2x ,TWOD ∈ dt) =

{
j (x , t) · n(x) at the 1st crossing

0 at 2nd or later crossing

Das and Dürr [1802.07141] hypothesized that

P(XD ∈ d2x ,TD ∈ dt) = P(XWOD ∈ d2x ,TWOD ∈ dt) ,

in short PD = PWOD . I disagree.

If the hypothesis were true, that would be nice for Bohmians: It
would allow BM to make a testable prediction that OQM can’t
make. If confirmed experimentally, maybe all physicists would
become Bohmians.
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Example illustrating that trajectories in the presence of detectors will be
different from those in their absence:

Thus, XWID ̸= XWOD (WID = with detector) and in general
TWID ̸= TWOD . What can you expect of XD then?
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PD vs PWID vs PWOD

In the far-field regime (scattering regime) t →∞, |x | → ∞,
PD → PWOD .
[Conjectured by Daumer et al. quant-ph/9512016, supported by current research with R.

Kaimal, C. Beck, and D. Lazarovici.]

Das and Dürr computed PWOD for a setup with a spin- 12 particle in
Ω = R2 × [0, L] and ψ0(x) = φ(x)⊗ |n⟩ with |n⟩ ∈ C2 and found
striking dependence of PWOD on |n⟩.

Theorem [Goldstein, Tumulka, Zangh̀ı 2309.11835, 2405.04607]

In the example of Das and Dürr, PWOD is not given by a POVM (and
thus is ̸= PD), not even approximately. (The spin dependence is crucial.)

Detlef Dürr sadly passed away in 2021.
Das, Maudlin and Cavendish insist that PD = PWOD .
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PD = PWOD ⇒ superluminal signaling

Alice and Bob share 100 EPR pairs in
| ↑↓⟩ − | ↓↑⟩ = | ←→⟩ − | →←⟩.
If Alice wants to send “1,” she measures σz on each of her particles,
so Bob’s particles collapse to either | ↑⟩ or | ↓⟩.
If Alice wants to send “0,” she measures σx , so Bob’s particles
collapse to either | →⟩ or | ←⟩.
In a small, local Ω, Bob measures TD on each of his particles.
For |n⟩ = | ↑⟩ or |n⟩ = | ↓⟩, the statistics is the blue curve;
for |n⟩ = | →⟩ or |n⟩ = | ←⟩, the red curve. [from Das and Dürr 1802.07141]
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Figure 2. Arrival time histograms for spin-up
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wave functions, L = 100 and w = 103

graphed along with the semiclassical arrival time distribution Psc(t) (dashed line) and the quantum (convective) flux
distribution Pqf(t) (solid line). We see agreement between P0|0

Bohm(t) and Pqf(t). For the up-down case, no arrivals are
recorded for t > 42.9 (= tmax). Note the disagreement of all distributions with Psc(t). Each histogram in this figure has been
generated with 105 Bohmian trajectories. The time scale on the horizontal axis is ⇡ 21.7ms, assuming d = 50mm. Inset:
Magnified view of the self-similar smaller lobes of the up-down histogram, separated by distinct no-arrival windows.
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2 is a consequence of property (14b).

For d = 50mm and L = 5mm (Fig. 2), a modest d t ⇡ 10ms will successfully resolve 8 lobes (main + 7 smaller lobes), while
d t ⇡ 0.1ms will resolve as many as 83 lobes (main + 82 smaller lobes). However, we must also understand that only a few data
points (about

⇣
2

p2

⌘
N
n4 in N experiments) contribute to the nth lobe, especially when n� 1. This number, being independent of

any tunable parameters like L, w , etc., sets an intrinsic limit on the experimenter’s ability to resolve the distant lobes.
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If a hypothesis H implies superluminal signaling, you should become
skeptical, as no one has observed superluminal signaling yet.

Moreover, in that case you know for sure that H is false in BM, as a
no-signaling theorem holds in BM.

A moral

The words “measurement” and “observation” suggest that the apparatus
plays a merely passive role. But this is often not the case, and the
apparatus must be included in the consideration.
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Thank you for your attention
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