
Interior-Boundary Conditions and
Their Physical Meaning

Roderich Tumulka

Mathematical physics colloquium
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Schrödinger equation of non-relativistic QM

configuration space Q = R3N , ψ : Q× Rt → C

iℏ
∂ψ

∂t
= Hψ = − ℏ2

2m∇2ψ + Vψ

ψt = Utψ0 = e−iHt/ℏψ0

Born’s rule

ρt(x) = |ψt(x)|2

ψt ∈ H = L2(Q,C)
Ut : H → H is unitary
⇐ H is self-adjoint
prob. current j = ℏ

m Im[ψ∗∇ψ]
∂ρ

∂t
+∇· j = 0 continuity equation
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Boundary conditions for the Schrödinger equation

Q = [0, 1]

for time evolution, PDE is not enough: also
need boundary conditions (BCs) such as

ψ(0, t)= 0 ∀t (Dirichlet),

∂ψ

∂x
(1, t)= 0 ∀t (Neumann) (1)

Carl Neumann

built into the domain D of the Hamiltonian: H = − ℏ2

2m∇2,

D =
{
ψ ∈ L2([0, 1]) : ∇2ψ ∈ L2([0, 1]), ψ satisfies (1)

}
(1) are reflecting boundary conditions: they make (H,D)
self-adjoint ⇒ Ut = e−iHt/ℏ unitary ⇒ no loss of probability

Likewise for Robin BC (α, β ̸= (0, 0) real constants):

α
∂ψ

∂x
+ β ψ(x) = 0
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Particle-position representation of a Fock space vector
Configuration space of a variable number of particles:

Q =
∞⋃
n=0

R3n

=
∞⋃
n=0

Q(n)

(b)

(c) (d)

(a)

here d = 1,
n = 0, 1, 2, 3

Fock space:

F± =
∞⊕
n=0

S±H ⊗n
1

with S+ = symmetrizer, S− = anti-symmetrizer, H1 = 1-particle
Hilbert space = L2(R3,Ck)

ψ ∈ F ⇒ ψ =
(
ψ(0), ψ(1), ψ(2), . . .

)
ψ : Q → S with S = value space = ∪∞

n=0(Ck)⊗n

ψ is an (anti-)symmetric function
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UV divergence problem

For example, consider a simplified model quantum field theory (QFT):

x-particles can emit and absorb y-particles, x ⇆ x + y .

There is only 1 x-particle, and it is fixed at the origin. H = F+
y

configuration space Q =
∞⋃
n=0

R3n, coupling constant g ∈ R

Original Hamiltonian in the particle-position representation:

(Horigψ)
(n)(y 1 . . . yn) = − ℏ2

2my

n∑
j=1

∇2
y j
ψ(n)(y 1 . . . yn) + nE0ψ

(n)

+ g
√
n + 1 ψ(n+1)(y 1 . . . yn, 0)

+
g√
n

n∑
j=1

δ3(y j)ψ
(n−1)(y 1 . . . ŷ j . . . yn) ,

is UV divergent. ( ̂= omit, E0 ≥ 0 energy needed for creating y)
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Well-defined, “regularized” version of H

UV cut-off φ ∈ L2(R3):

(Hcutoffψ)(y 1 . . . yn) = − ℏ2

2my

n∑
j=1

∇2
y j
ψ(y 1 . . . yn) + nE0ψ

(n) +

+ g
√
n + 1

m∑
i=1

∫
R3

d3y φ∗(y)ψ
(
y 1 . . . yn, y

)
+

+
g√
n

m∑
i=1

n∑
j=1

φ(y j)ψ
(
y 1 . . . ŷ j . . . yn

)

“smearing out” the x-particle
with “charge distribution” φ(·)
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But then . . .

. . . emission and absorption occurs
anywhere in a ball around the
x-particle (= in the support of

φ = ) x

t

There is no empirical evidence that an electron has positive radius.

Positive radius leads to difficulties with Lorentz invariance.

This UV problem can be solved!

[Teufel and Tumulka 1505.04847, 1506.00497]
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Novel idea: Interior-boundary condition

Here: boundary config = where y-particle
meets x-particle;
interior config = one y-particle removed

1−particle sector

x

x

y

2−particle sector

Interior-boundary condition (IBC)

ψ(n+1)(bdy) = (const.) ψ(n)

links two configurations connected by the creation or annihilation of a
particle.
For example, with an x-particle at 0,

ψ(n+1)(yn, 0) =
g my

2πℏ2
√
n + 1

ψ(n)(yn) .

with yn = (y 1, . . . , yn).
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A derivation of an IBC in 1d

due to [Keppeler and Sieber 1511.03071]

for simplicity in a truncated Fock space

H =
1⊕

n=0

S+H ⊗n
1 = C⊕ H1 = C⊕ L2(R).

If (Horigψ)
(1)(y) = − 1

2m∂
2
yψ

(1)(y) + g δ(y)ψ(0) lies in L2(R), then

∂2yψ
(1)(y) = 2mg δ(y)ψ(0) + f (y) with f ∈ L2

∂yϕ(y) = δ(y) ⇒ jump , likewise ∂2yϕ(y) = δ(y) ⇒ kink

so D =
{
(ψ(0), ψ(1)) : ∂yψ

(1)(0+)− ∂yψ
(1)(0−) = 2mgψ(0) and

away from 0, ∇2ψ(1) ∈ L2
}

and H(ψ(0), ψ(1)) = (gψ(1)(0),− 1
2m∇2ψ(1) away from 0)
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The basic idea of IBCs: a toy example

Consider quantum mechanics on a space Q with a boundary ∂Q.

E.g.,
Q = Q(1)∪Q(2) = R∪

(
R× [0,∞)

)
∂Q = ∂Q(2) = R× {0}
Consider probability current vector
field j on Q.

Suppose j has nonzero flux into ∂Q,
0 ̸=

∫
∂Q dx j · n (n = normal to ∂Q)

We want the prob that disappears
at q ∈ ∂Q to reappear at f (q) ∈ Q.

E.g., what disappears at (x , 0) ∈ ∂Q(2) reappears at f (x , 0) = x , so
f : ∂Q(2) → Q(1). In general, f : ∂Q → Q.

This is achieved through
→ an extra term in H for Q(1)

→ an interior-boundary condition ψ(q) = (const.)ψ(f (q))
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IBC in the toy example
ψt : Q → C, ψ = (ψ(1), ψ(2))

g ∈ R coupling constant

IBC: ψ(2)(x , 0) = − 2mg
ℏ2 ψ(1)(x)

Hamiltonian:

(Hψ)(1)(x) = − ℏ2

2m∂
2
xψ

(1)(x) + g ∂yψ
(2)(x , 0)

(Hψ)(2)(x , y) = − ℏ2

2m

(
∂2x + ∂2y

)
ψ(2)(x , y) for y > 0 .

Theorem [Teufel and Tumulka 1506.00497]

H is rigorously defined and self-adjoint on the dense-in-L2(Q) domain

D =
{
(ψ(1), ψ(2)) : ψ(n) ∈ H2(Q(n)) ∀n, ψ(2)

∣∣∣
R×{0}

= − 2mg
ℏ2 ψ

(1)
}
.

Probability balance equations:

∂t |ψ(2)|2 = −∂x j (2)x − ∂y j
(2)
y ,

∂t |ψ(1)|2 = −∂x j (1)x + 2g
ℏ Im

[
ψ(1)(x)∗ ∂yψ

(2)(x , 0)
]

︸ ︷︷ ︸
= −j

(2)
y (x,0) by the IBC

Roderich Tumulka Interior-Boundary Conditions



IBC for particle creation model

Consider again

x-particle at 0 emits and absorbs y-particles, H = F+
y

IBC lim
r→0+

rψ(yn, rω) = gm
2πℏ2

√
n+1

ψ(yn) for all ω ∈ S2 (2)

(HIBCψ)(y
n) = − ℏ2

2m∇2ψ + g
√
n+1
4π

∫
S2
d2ω lim

r→0+
∂r

(
rψ(yn, rω)

)
+ nE0ψ + g√

n

n∑
j=1

δ3(y j)ψ(y
n \ y j) (3)

IBC (2) ⇒ ψ typically diverges
like 1/r = 1/|y j | as y j → 0. In fact,

ψ(yn, rω) = c−1(y
n) r−1+c0(y

n) r0+o(r0)

and (2) ⇔ c−1(y
n) = gm

2πℏ2
√
n+1

ψ(yn)

(3)⇔ (Hψ)(yn) = − ℏ2

2m∇2ψ + g
√
n + 1 c0(y

n)

+nE0ψ + g√
n

∑
δ3(y j)ψ(y

n \ y j)
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Rigorous absence of UV divergence in this model

Note that ∇2 1
|y | = −4πδ3(y) (cf. Poisson eq ∇2ϕ = −4πρ).

Thus, in ∇2ψ the 1/r divergent contribution to ψ cancels the δ3!

Theorem [Lampart, Schmidt, Teufel,

Tumulka 1703.04476]

On a suitable dense domain DIBC

of ψs in H satisfying the IBC
(2), HIBC is well defined,
self-adjoint, and positive.
No UV divergence!

Jonas Lampart Julian Schmidt
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Why it works: flux of probability into a point

probability current j y j
(yn) =

ℏ
m
Imψ∗∇y j

ψ

∂
∣∣ψ(yn)

∣∣2
∂t

= −
n∑

j=1

∇y j
· j y j

+(n+1) lim
r→0+

r2
∫
S2
d2ωω · j yn+1

(yn, rω)︸ ︷︷ ︸
flux into 0 on (n + 1)-sector

motion towards 0 ⇒
ρ ∼ 1/r2 as r → 0
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Bohmian picture

t 7→ Q(t) ∈ Q piecewise
continuous, jumps between Q(n)

and Q(n+1)

within Q(n), Bohm’s law of motion

dQ

dt
=

ℏ
mB

Im
∇ψ(n)

ψ(n)

(
Q(t)

)
with IBC:

when Q(t) ∈ Q(n) reaches y j = 0,

it jumps to (yn \ y j) ∈ Q(n−1)

emission of new y-particle at 0 at
random time with random direction

with UV cut-off:

emission and absorption occurs
anywhere in a ball around 0 (= in

the support of φ )

Q(t )

Q(t +)2

Q(t )

1Q(t +)

2

1

(c) (d)

(a) (b)

t

x

x

t
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Now Dirac operators instead of −∇2

Now suppose that y-particles are relativistic and have spin 1
2 .

A free y-particle is described by the Dirac equation

icℏγµ∂µψ = mc2ψ

or

iℏ
∂ψ

∂t
= −icℏα · ∇ψ +mc2βψ

H1 = L2(R3,C4) for 1 particle

Henceforth, ℏ = 1 = c .
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Example of a reflecting boundary condition for the Dirac
equation

Q = R3
> =

{
(x1, x2, x3) ∈ R3 : x3 ≥ 0

}
spatial domain with bdry

ψ : Rt × R3
> → C4

current jµ = ψγµψ or j0 = |ψ|2, j i = ψ†αiψ

Dirac equation iγµ∂µψ = mψ or i∂tψ = (−iα · ∇+ βm)ψ

α, β, γ Dirac matrices; αi = γ0γ i , β = γ0 self-adjoint

boundary condition (BC) (γ3 − i)ψ(x1, x2, 0) = 0 or α3ψ = iβψ

Theorem [known]

The Dirac Hamiltonian is self-adjoint on a dense domain in L2(R3
>,C4),

D =
{
ψ ∈ H1(R3

>,C4) : (γ3 − i)ψ
∣∣
∂Q = 0

}
.

(BC) ensures there is no current into the boundary:

j3(x1, x2, 0) = ψ†α3ψ = 1
2ψ

†(α3ψ) + 1
2 (α

3ψ)†ψ

(BC)
= 1

2ψ
†(iβψ) + 1

2 (iβψ)
†ψ = i

2ψ
†βψ − i

2ψ
†βψ = 0
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BC specifies half of the components

(BC) (γ3 − i)ψ = 0 on ∂Q
γ3 is unitarily diagonalizable with eigenvalues ±i , each with
multiplicity 2

So, γ3 − i is −2i times a 2d orthogonal projection.

So, (γ3 − i)ψ = 0 sets two components of ψ to 0 and leaves two
components arbitrary.

For comparison, the reflecting boundary conditions for the Laplacian,

ψ(x1, x2, 0) = 0 (Dirichlet)

∂3ψ(x1, x2, 0) = 0 (Neumann)

(α+ β∂3)ψ(x1, x2, 0) = 0 (Robin)

each set one component of the 2d pair (ψ, ∂3ψ) to 0 and leave one
component arbitrary.
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Example of an interior-boundary condition for the Dirac
equation

configuration space Q = Q(0) ∪Q(1) = {∅} ∪ R3
>

mini Fock space H = H (0) ⊕ H (1) = C⊕ L2(R3
>,C4)

Hamiltonian

(Hψ)(0) =

∫
R2

dx1 dx2 N(x1, x2)
† ψ(1)(x1, x2, 0)

(Hψ)(1)(x) = −iα · ∇ψ(1)(x) +mβψ(1)(x), x3 > 0

with N(x1, x2) = e−x2
1−x2

2 (1, 0, 1, 0) in the Weyl representation

(γ3 − i)ψ(1)(x1, x2, 0) = (γ3 − i)N(x1, x2)ψ
(0) (IBC)

specifies two components of ψ(1) on ∂Q and leaves two arbitrary

(γ3 − i)ψ(1)(x1, x2, 0) = 0 reflecting BC to compare to.

Theorem [Schmidt, Teufel, Tumulka 1811.02947]

H is rigorously defined and self-adjoint on{
(ψ(0), ψ(1)) ∈ C⊕ H1(R3

>,C4) : (IBC)
}
.
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Model of creation of Dirac particles in 1d

[Lienert and Nickel 1808.04192]

particles move in R1, split or
coalesce according to
x ⇆ x + x .

Dirac eq in 1d: spin space
C2, γ0 = σ1, γ

1 = σ1σ3.

(truncated) Fock space
H =

⊕nmax

n=0 S− L2(R1,C2)⊗n
M. Lienert Lukas Nickel

For simplicity, let nmax = 2, m = 0, ignore the n = 0 sector, so
H = H (1) ⊕ H (2).

(Hψ)(1)(x) = −iα1∂xψ
(1)(x) + N(x)† ψ(2)(x , x)

(Hψ)(2)(x1, x2) = (−iα1
1∂1 − iα1

2∂2)ψ
(2)(x1, x2)

with N(x) a certain 4× 2-matrix.

IBC ψ
(2)
−+(x , x)− e iθψ

(2)
+−(x , x) = B ψ(1)(x)

with B a certain 1× 2-matrix.
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Model with IBC for Dirac eq in 1d

Theorem [Lienert and Nickel 1808.04192]

HIBC is well defined and self-adjoint.

They even gave a multi-time formulation and proved consistency of the
multi-time equations.
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Difficulty with Dirac operators in 3d

The Laplacian allows for BCs at a point:

Theorem [known]

There exist several self-adjoint extensions of
(H◦,D(H◦)) = (−∇2,C∞

c (R3 \ {0},C)).

Not so for the Dirac Hamiltonian:

Theorem [Svendsen 1981]

There is only one self-adjoint extension of
(H◦,D(H◦)) = (−iα · ∇+mβ,C∞

c (R3 \ {0},C4)),
the free Dirac Hamiltonian.
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This has consequences for IBCs:

Fact

The non-relativistic HIBC in C⊕ L2(R3) with source at 0 is a self-adjoint

extension of the operator H◦(ψ(0) = 0, ψ(1)) = (0,− ℏ2

2m∇2ψ(1)) defined
on D(H◦) = {0} ⊕ C∞

c (R3 \ {0},C).

whereas

Theorem [Henheik and Tumulka 2006.16755]

All self-adjoint extensions in C⊕ L2(R3,C4) of the
relativistic operator
H◦(ψ(0) = 0, ψ(1)) = (0, (−iα · ∇+mβ)ψ(1))
defined on D◦ = {0} ⊕ C∞

c (R3 \ {0},C4) involve
no particle creation and are the free Dirac operator
on the upper sector.

Joscha Henheik

In short, there is no IBC Hamiltonian for Dirac particles and a point
source in 3d, unless...
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...we add a Coulomb potential...

Theorem [Henheik and Tumulka 2006.16755]

Let H◦ = −iα · ∇+mβ + q/|y | with
√
3/2 < |q| < 1 be defined on

D◦ = {0} ⊕ C∞
c (R3 \ {0},C4). Set B :=

√
1− q2; note that

0 < B < 1
2 . There is a self-adjoint extension (H,D) of (H◦,D◦) with

1 The sectors C⊕ L2(R3,C4) do not decouple (i.e., creation occurs).

2 For every ψ ∈ D , the upper sector is of the form

ψ(1)(y) = c−B f−
( y
|y |

)
|y |−B + cB f+

( y
|y |

)
|y |B + o(|y |1/2) (5)

as y → 0 with c−B , cB ∈ C and fixed functions f± : S2 → C4.

3 Every ψ ∈ D obeys IBC c−B = g ψ(0)

4 For ψ ∈ D , (Hψ)(0) = g̃ cB
(Hψ)(1)(y) = (−iα · ∇+mβ + q

|y | )ψ
(1)(y) (y ̸= 0)

with constants g , g̃ = 4B(1 + q)g∗.
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...or have a space-time singularity

[Tumulka 0708.0070]

According to general relativity, the curved space-time
created by a point with mass M > 0 and charge
Q > M is the Reissner-Nordström geometry

ds2 = λ(r) dt2 − 1

λ(r)
dr2 − r2 dϑ2 − r2 sin2 ϑ dφ2

with λ(r) = 1 − 2M
r + Q2

r2 . Its metric is static in
coordinates (t, r , ϑ, φ) and has singularity at r = 0.

q,m

Q,M

Figure 1: Qualitative depiction of the setup in this paper: A relativistic quantum me-
chanical spin-1/2 particle of charge q and mass m moves in a curved space representing
the gravitational field of a “source particle” with charge Q and mass M (and fixed lo-
cation, which then is a curvature singularity). The quantum particle can be absorbed
and emitted by the source particle. The trajectory shown is a Bohmian trajectory of
the quantum particle shortly before absorption or after emission by the source particle.

1.1 Description of Our Main Results

In this section, we briefly describe the main results of the present paper and provide
some comments on them. Full details are given in Section 3.

1.1.1 IBC Hamiltonian with Particle Creation

As our first main result, Theorem 1, we devise a certain Hamiltonian H with parti-
cle creation and annihilation, and prove that it is self-adjoint. As mentioned above,
emission/absorption of a particle occurs at a single point in space (or world line in
space-time), the naked singularity in sRN space-time (2). Thus, on the one hand, the
present work rigorously extends the IBC approach to curved space-time (with fixed
background metric), and on the other hand, our treatment deals with (and gives phys-
ical meaning to) the well-known fact [10] that the 1-particle Dirac Hamiltonian H1 on
the sRN space-time is not essentially self-adjoint, and thus does not uniquely define a
unitary time evolution. Our Hamiltonian H is based on H1 but is defined on a version
of Fock space, as appropriate for particle creation. For simplicity, we consider only the
0-particle and 1-particle sectors of Fock space (but our approach could be extended to

4

Dirac spin spaces form a vector bundle S with fibers Sx ∼= C4.

The metric defines a covariant derivative on S .

H1 = L2 sections of S over Σ = {t = const.}.
Let H1 be the free Dirac operator (depends on the curved metric).
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IBC works with a space-time singularity

Theorem [Henheik, Poudyal, Tumulka 2409.00677]

Let H◦ = 0⊕H1 on D◦ = {0} ⊕ C∞
c (Σ \ {0},S). There

is a self-adjoint extension (H,D) of (H◦,D◦) with

1 The sectors C⊕ L2(Σ,S) do not decouple (i.e.,
creation occurs).

2 For every ψ ∈ D , the upper sector is of the form

ψ(1)(r , ϑ, φ) = c(ϑ, φ) r−1/2 +O(r1/2) as r → 0.

3 Every ψ ∈ D obeys IBC

1
2 (I − β) c(ϑ, φ) = f−(ϑ, φ)ψ

(0)

with fixed functions f± : S2 → C4.

4 For ψ ∈ D , (Hψ)(0) = ⟨f+, c⟩L2(S2,C4)

(Hψ)(1) = H1ψ
(1) for r > 0

Bipul
Poudyal
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Summary: features of the novel approach

Problem:

Hamiltonian involving particle creation and annihilation is usually
UV divergent, and thus ill defined

New approach:

IBC = interior-boundary condition

allows a new way of defining a Hamiltonian HIBC

provides rigorous definition of a self-adjoint HIBC ,
at least for some scenarios (and we hope in many)

no need for discretizing space, smearing out particles over positive
radius, or other UV cut-off

no need for renormalization, or taking limit of removing the UV
cut-off

makes use of particle-position representation
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Thank you for your attention
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