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Schrodinger equation of non-relativistic QM

configuration space Q@ =R3VN ) : O xR, — C

O
IFLE

Ve = Uphg = e Mt/ Py
Born's rule
pe(x) = |¢t(X)|2

vy € = 1%(Q,C)

Uy : 5€ — F is unitary

< H is self-adjoint

prob. current j = %Im[d)*vw]
dp
ot

= Hi = — LV + Vi

+ V -j = 0 continuity equation

Roderich Tumulka Interior-Boundary Conditions



Boundary conditions for the Schrodinger equation

Q=10,1] —_
for time evolution, PDE is not enough: also
need boundary conditions (BCs) such as

(0, t)= 0 Vt (Dirichlet),

9y

5(17 t)= 0Vt (Neumann) (1)

Carl Neumann
@ built into the domain & of the Hamiltonian: H = f%V%
2 = {4y € L3([0,1]) : V2 € L3([0,1]), satisfies (1)}

(1) are reflecting boundary conditions: they make (H, 2)
self-adjoint = U, = e~ Mt/ unitary = no loss of probability
o Likewise for Robin BC («, 8 # (0,0) real constants):

o

“ox

+BP(x) =0
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Particle-position representation of a Fock space vector

Configuration space of a variable number of particles:

- @ )
Q= U R:ﬂn

n=0 here d =1,

o0 n = 0, 17 2, 3
= U o
n=0
© ()]
Fock space:
- s
with S+ = symmetrlzer S_ = anti-symmetrizer, 4 = l-particle

Hilbert space = L2(R3,CK)
o peF =9y= (0 0 y@ )
e ¢: Q— S with S = value space = U ((Ck)®n
@ 1) is an (anti-)symmetric function
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UV divergence problem

For example, consider a simplified model quantum field theory (QFT):
@ x-particles can emit and absorb y-particles, x <= x + y.
@ There is only 1 x-particle, and it is fixed at the origin. J# =

o0
@ configuration space Q = U R3", coupling constant g € R
n=0

Original Hamiltonian in the particle-position representation:

(Horig®)™ (¥, yn)———ZV P (yy ... y,) + nEgypt™
+gVn+ P (y, ... y,,0)

Zé3yJ P(=1)( Y1 Y- ¥n)

is UV divergent. (7 = omit, Eg > 0 energy needed for creating y)

Roderich Tumulka Interior-Boundary Conditions



Well-defined, “regularized” version of H

UV cut-off p € L2(R3):

R
(chtoffw)(yl 00 'yn) = 5 Z szqu’b(yl oc '.yn) + nEOw(n) +

+ gvn+IZ/Ra Py " (W) (yr-- - Yny) +
i=1

+ \%ZZw(yj)w(yl---anvn)

i=1 j=1

“smearing out” the x-particle
with “charge distribution” ¢(-)
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But then ...

...emission and absorption occurs '
anywhere in a ball around the
x-particle (= in the support of

p=""""7) B

@ There is no empirical evidence that an electron has positive radius.
@ Positive radius leads to difficulties with Lorentz invariance.

This UV problem can be solved! )

[Teufel and Tumulka 1505.04847, 1506.00497]
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Novel idea: Interior-boundary condition

2—particle sector

Here: boundary config = where y-particle 1-particle sector

meets x-particle; y /\
interior config = one y-particle removed

Interior-boundary condition (IBC)

(1) (bdy) = (const.) (™

links two configurations connected by the creation or annihilation of a
particle.
For example, with an x-particle at 0,

(n+1 n0 g my [‘(ﬂ) ny
",0) = 2mh2y/n+ 1 )

Wlth yn:(ylv'“;yn)'
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A derivation of an in 1d

due to [Keppeler and Sieber 1511.03071]
for simplicity in a truncated Fock space
1

H =@ S H7" =Co M =Ca L*(R).
n=0

If (Howig) D (y) = —5=020D(y) + g 6(y) »(© lies in L2(R), then
O (y) = 2mg 5(y) O + F(y) with f € L2

dyo(y) = 0(y) = jump %: likewise 02¢(y) = 6(y) = kink >K

so 9 = {(1/} , 1) 00, (0+) — 9,41 (0—) = 2mgep(©) and
away from 0, V2 ¢ Lz}

and H(w(o), 1/1(1)) = (gw(l)(O)7 —ﬁv%(l) away from 0)
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@ We want the prob that disappears

at g € 0Q to reappear at (q) € Q.

e E.g., what disappears at (x,0) € 9Q®) reappears at f(x,0) = x, so

f:00® — oW |n general, f: 09 — Q.

@ This is achieved through

— an extra term in H for Q)

(const.) ¥(f(q))

— an interior-boundary condition (q)
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In the toy example

o :Q—C, o= (W )
@ g € R coupling constant

e IBC: z'(z)(x_O) = 72;775 1‘(1)(X)

@ Hamiltonian:
(H)D(x) = — L 2pD(x) + g 8, (x,0)
(H)A(x,y) = - (55 + 85)1/)(2)(&)/) for y > 0.

[Teufel and Tumulka 1506.00497]

H is rigorously defined and self-adjoint on the dense-in-L?(Q) domain

9 = {(¢(1)7¢(2)) o ,(/}(n) = HZ(Q(H)) Vn, ,(/}(2)‘ _ _%d](l)}

Rx{0}

Probability balance equations:

3t|¢(2)|2 — _axj(2) _ ayj(Z)y

X Yy

OV = —0) + 2 T [0 (x)" 9,02 (x,0)]

(2
= —j$(x,0) by the IBC
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IBC for particle creation model

Consider again

@ x-particle at 0 emits and absorbs y-particles, 57 = 9}*

e IBC rli%w‘ r(y", rw) = ﬁ H(y") forall w e S? (2)

(] (H/BCw)(yn) = —%Vzw + g47;,+1 42 d2w rirng ar (”ﬁ(ﬂa rw))

+nEo¢+%253(}’j)w(yn\Yj) (3)
j=1

IBC (2) = ¢ typically diverges

like 1/r=1/|y;| as y; — 0. In fact,

(" rw) = ca(y") rt+oo(y”) r+o(r0)

and (2) & c1(y") = 55 0(y")

(3) & (HY)(y") = — V2 + gv/n + L coly")

+nEgy + % >3y vy \y))
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Rigorous absence of UV divergence in this model

o Note that V21 = —4783(y) (cf. Poisson eq V2¢ = —4mp).

Iyl —

e Thus, in V24 the 1/r divergent contribution to 1 cancels the 63!

Theorem [Lampart, Schmidt, Teufel,

Tumulka 1703.04476]

On a suitable dense domain Z;¢
of ¢s in H satisfying the IBC
(2), Hisc is well defined,
self-adjoint, and positive.

No UV divergence!

Roderich Tumulka
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Why it works: flux of probability into a point

h
° probability current jyj(y") = —Imw*vij

. vy
‘ o Zvy jy

@ motion towards 0 =
p~1/r?asr—0
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+(n+1) lim r?

r—0+

2 H n
/S2d ww ~Jyn+1(y , rw)

flux into 0 on (n + 1)-sector
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Bohmian picture

o t— Q(t) € Q piecewise
continuous, jumps between o)

and QD) - -
e within Q(", Bohm's law of motion f Qi) Q("u
Q — ihnvq/j(n) (Q(t)) J
dt mg w(")
° M © @

o when Q(t) € Q" reaches y; =0,
it jumps to (y"\ y;) € Qn—1)

@ emission of new y-particle at 0 at
random time with random direction

o with UV cut-off:

@ emission and absorption occurs
anywhere in a ball around 0 (= in

the support of <p/\)
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Now Dirac operators instead of —V?

@ Now suppose that y-particles are relativistic and have spin %

@ A free y-particle is described by the Dirac equation
ichy" 0,y = mc3q)

or

ih%ﬁ = —icha - Vi + mc? B

o 4 = L2(R3,C*) for 1 particle
@ Henceforth, h =1 =c.
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Example of a reflecting boundary condition for the Dirac

equation

Q=R3 = {(Xl,Xz,X3) ER3:x3 > 0} spatial domain with bdry
YRy xRS — C*

current j# = Gy or j° = [f2, ji = vaiy

Dirac equation iv*0,1) = m or i0y) = (—ice - V + fm)i)

a, B, Dirac matrices; o =~%/, B =~ self-adjoint
boundary condition (BC) (v® — i)(x1, x2,0) = 0 or o3¢ = iBy

e 6 6 6 o ¢

Theorem [known]

The Dirac Hamiltonian is self-adjoint on a dense domain in L?(R3,C*),
7 ={y € H'(RL,C*) : (v* — I)¥| 5o = 0}

(BC) ensures there is no current into the boundary:
j3(X17X27 0) = ¢Ta3¢ = %¢T(a3¢) + %(@3¢)T¢
D 1yt(igy) + 1Y) v = bo1Y - fuiBy =0
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BC specifies half of the components

e (BC) (v*— i)y =00n0Q

e ~3 is unitarily diagonalizable with eigenvalues +i, each with
multiplicity 2

@ So, v3 — i is —2i times a 2d orthogonal projection.

@ So, (v — i)y = 0 sets two components of ¢ to 0 and leaves two
components arbitrary.

@ For comparison, the reflecting boundary conditions for the Laplacian,
¥(x1, x2,0) = 0 (Dirichlet)
031(x1, x2,0) = 0 (Neumann)
(o + B03)(x1, x2,0) = 0 (Robin)

each set one component of the 2d pair (¢, d39) to 0 and leave one
component arbitrary.
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Example of an interior-boundary condition for the Dirac

equation

o configuration space Q = Q© U QM) = {P} URS
o mini Fock space # = 7#(0) @ s#() = C @ L2(R2,C*)

@ Hamiltonian

(H)© /dx1 dxo N(x1, x2)T 193 (x1, %2, 0)
(HY)D(x) = —iae - VO (x) + mpypD(x), x>0

with N(x1,x) = e*XIZ*XZZ(l, 0,1,0) in the Weyl representation
o (73— YW (x1,x,0) = (7* — i)N(x1,x) @ (IBC)
e specifies two components of ¢)(1) on 9Q and leaves two arbitrary

o (73 — )M (x1, x0,0) = 0 reflecting BC to compare to.

Theorem [Schmidt, Teufel, Tumulka 1811.02947]

His rigorously defined and self-adjoint on
{0, yW) e Co H'(RE,C*) : (1BO)}.
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Model of creation of Dirac particles in 1d
—

@ particles move in R?, split or
coalesce according to
X S x4+ x.

@ Dirac eq in 1d: spin space
C?, % =0y, ¥ = 0103,

@ (truncated) Fock space .
A = @,% S- L(RL,C)®" |\ | ienert Lukas Nickel
@ For simplicity, let nmax =2, m =0, ignore the n = 0 sector, so
H =4 @3
o (H)W(x) = —ia* g (x) + N(x)T v (x, x)
(Hw)(2)(xl,x2) = (—iajd, — I’Oé%az)q/}(2)(X17X2)
with N(x) a certain 4 x 2-matrix.
o IBC (x,x) — e’ @) (x,x) = BypW(x)

with B a certain 1 x 2-matrix.
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Model with IBC for Dirac eq in 1d

Theorem [Lienert and Nickel 1808.04192]

Higc is well defined and self-adjoint.

They even gave a multi-time formulation and proved consistency of the
multi-time equations.
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Difficulty with Dirac operators in 3d

The Laplacian allows for BCs at a point:

Theorem [known]

There exist several self-adjoint extensions of

(H®, 2(H%)) = (- V2, C(R*\ {0}, C)).

Not so for the Dirac Hamiltonian:

Theorem [Svendsen 1981]

There is only one self-adjoint extension of
(H°, 2(H°)) = (—ice - V + mB3, C(R3 \ {0},C*)),
the free Dirac Hamiltonian.
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This has consequences for IBCs:

The non-relativistic Hjgc in C & L?(R3) with source at 0 is a self-adjoint
extension of the operator H°(¢)(®) = 0, (1)) = (0, —%Vzw“)) defined
on 9(H°) = {0} & C2°(R*\ {0}, C).

whereas

Theorem [Henheik and Tumulka 2006.16755]

All self-adjoint extensions in C & L2(R3, C*) of the
relativistic operator

Ho($(® = 0,9M) = (0, (—ia - V + mB)y(V))
defined on 2° = {0} & C*(R3\ {0}, C*) involve
no particle creation and are the free Dirac operator
on the upper sector.

< Joscha Henheik

In short, there is no IBC Hamiltonian for Dirac particles and a point
source in 3d, unless...
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..we add a Coulomb potential...

Theorem [Henheik and Tumulka 2006.16755]

Let H® = —iax - V + mB + q/|y| with v/3/2 < |q| < 1 be defined on
2° = {0} & C°(R3\ {0},C*). Set B := /1 — g note that
0 < B < 3. There is a self-adjoint extension (H, %) of (H°,2°) with

@ The sectors C @ L?(R3,C*) do not decouple (i.e., creation occurs).
@ For every ¢ € 2, the upper sector is of the form

VO(y) = cop (%) IyI7% + e fi (&) IyI® + o(ly[V?)  (5)

as y — 0 with c_g, cg € C and fixed functions fi. : S> — C*.
@ Every ¥ € 2 obeys IBC
Q@ Forypye 2, (HY)O =gcg
(HY)D(y) = (—ie- V + mB+ T M(y) (v #0)
with constants g, g = 4B(1 + q)g*
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...or have a space-time singularity

[Tumulka 0708.0070]

According to general relativity, the curved space-time
created by a point with mass M > 0 and charge ==
Q@ > M is the Reissner-Nordstrom geometry

1
ds® = \(r) dt? — NGl dr? — r? d¥? — r?sin® 9 d? S
with A(r) = 1 - 2M 4 %2 Its metric is static in o

coordinates (t, r, 9, ) and has singularity at r = 0.

Dirac spin spaces form a vector bundle S with fibers S, = C*.
The metric defines a covariant derivative on S.

A = L? sections of S over ¥ = {t = const.}.

Let H; be the free Dirac operator (depends on the curved metric).
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works with a space-time singularity

[Henheik, Poudyal, Tumulka 2409.00677]

Let H° =0@® H; on 2° = {0} & C°(X \ {0}, S). There
is a self-adjoint extension (H, 2) of (H°, 2°) with

@ The sectors C & L?(X, S) do not decouple (i.e.,
creation occurs).

@ For every ¢ € 9, the upper sector is of the form

PO (r,9,0) = c(9,¢) r 2+ O(r*/?) asr— 0.

© Every ¥ € 2 obeys IBC

Bipul
(I = B) c(¥, p) = F_(9, ) p© M

O

)

with fixed functions fy : S — C*.
Q For vy € 9, (H'LZJ)(O) = <f+, C>L2(SQ,(C4)
(Hy)®) = HypM) for r >0
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Summary: features of the novel approach

Problem:

@ Hamiltonian involving particle creation and annihilation is usually
UV divergent, and thus ill defined

New approach:
e IBC = interior-boundary condition
@ allows a new way of defining a Hamiltonian Hg¢

@ provides rigorous definition of a self-adjoint Hjgc¢,
at least for some scenarios (and we hope in many)

@ no need for discretizing space, smearing out particles over positive
radius, or other UV cut-off

@ no need for renormalization, or taking limit of removing the UV
cut-off

@ makes use of particle-position representation
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Thank you for your attention
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