CHAPTER 1

Elements of Algebra

Definition 1.1 (Group).
A group G is a set together with a map * : G X G — G such that

(i) = is associative: (axb)-c=sx*(bxc) Va,b,c€ G,

(ii) there exists an identity element e € G such that axe =exa=a Va € G,

(iii) for every a € G there exists an inverse element a~! € G such that axa™! =

alxa=1.

If G is a finite set, we say that (G,x*) is a finite group. If a xb = b a for all
a,b € G, we say that (G, %) is an abelian group. Whenever a subset H C G forms
a group with respect to x it is called a subgroup of G.

Example 1.2. 1. Z,Q,R,C are all abelian groups with respect to the usual
addition, where e = 1 and ™! = —a.

2. Zn, = {0,1,...,n — 1} is a finite abelian group with respect to addition
modulo n for every n € Z. The identity element is 0 and the inverse of a is
n —a.

3. Then the collection of all permutations of the elements of finite set forms
a group under composition. Such groups are called Symmetric groups and
if the set has n elements, the group is denoted by .S5,,.

4. The set GL(n,R) of all real, invertible n x n matrices forms a group un-
der matrix multiplication and the set of orthogonal matrices O(n,R) is an
example of a subgroup.

Proposition 1.3. Let (G,*) be a group. Then

1. the identity element is unique.

2. the inverse of any element is unique.
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3. (et =a foralacG.
4. (axb)"t=b"txa"! foralla,bcG.
Exzxercise 1.1. Proof Proposition 1.3.

Definition 1.4. A map f : (G,*q) — (H,*p) is called a group homomorphism
if
fla*gb) = f(a)*g f(b) VYa,beQG.

Moreover, if f is bijective, we call it a group isomorphism. We say that two
groups are isomorphic (denoted by 2) whenever there exists a group isomorphism
between them.

Definition 1.5 (Conjugacy classes, cosets and normal subgroup).
Let (G, ) be a group.

1. The conjugacy class of a € G is defined to be

Go={gxaxg™'[geG}.

2. Given a subgroup H C G and an element g € G, we define the left /right
cosets by

gH ={gh|he H} and Hg={hg|hec H}.

3. A subgroup H C G is said to be normal if
gH=Hg Vged.

Definition 1.6 (Quotient group).
Let N be a normal subgroup of (G, x). Then the space of cosets

G/H ={gH | g € G}
forms a group under the operation
(91H) - (92H) = (g1 % g2)H .

Example 1.7. 1. 2Z = {0,2,4,...} is a normal subgroup of Z and Z/27Z =
Zs.

2.R/Z=U(1)={z€C : |z|=1}.

Definition 1.8 (Group action).
Let (G, *) be a group and X be a set. A group action of G on X is a map

GxX—>X, (gx)—>g>zx

such that
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(i) epx=2 VereX
(ii) (axb)pxz=av>(brz) a,beqG.
A group action is said to be free if
gbr=r = g=e.
A group action is said to be transitive if
Ve,ye Xdge G : xz=gpy.

Example 1.9. 1. Any group acts freely and transitively on itself by left (or
right) multiplication.

2. Symmetric groups act on the set of vertices of polyhedra.

3. Z acts on R by translation by an integer, i.e.
n>br=x-+n.
Such action is not transitive nor free.

4. GL(n,R) and its subgroups act on the vector space R" (by matrix multi-
plication).

Theorem 1.10 (Cayley’s theorem).
Every group is isomorphic to a subgroup of a symmetric group.

Definition 1.11 (Ring).
A ring R is a set together with an addition + : R X R — R and a multiplication
X : R X R — R such that

(i) (R,+) is an abelian group,
(ii) x is associative,
(iii) distributivity holds:
ax(b+c)=axb+axc Va,b,ce R
(a+b)xc=axc+bxc Va,b,ce R.

We say (R, +, x) is a commutative ring whenever the multiplication is also com-
mutative. If there is an element 1 € R such that a x 1 =1 x a = a for all a € R,
we say that (R, 4+, x) is a unital ring.

Example 1.12. 1. (Z,+,-) is a unital commutative ring.
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2. The set R[z] of polynomials with coefficients in any commutative ring R is
itself a ring.

Definition 1.13 (Field).
A field is a unital commutative ring with 0 # 1 such that all nonzero elements
have a multiplicative inverse.

Example 1.14. 1. Q, R and C are fields under the usual operations.
2. Z, is a finite (Galois) field if and only if p is prime.

Definition 1.15 (Vector space).
A wector space (or linear space) over a field K (R or C) is a set V' along with an
addition

+:VxV =V

and a scalar multiplication

G KxV =V
satisfying
(i) additive commutativity: uw+v=v+u  Vu,veV.

(ii) additive and multiplicative associativity:
(u+v)+w=u+ (v+w) Vu,v,weV
(M) -v=X-(p-v) VoeVandVA ueK
additive identity: 30e€V :v+0=0v Vv €V
multiplicative identity: J1€V : 1.v=v Yv €V

)
)

(v) additive inverse: Vo eV 3I(—v)eV : v+ (-v)=0
)

(vi) distributivity:
A(utv)=Aut+A-v Vu,v € Vand A € K
A+p)-v=Av+p-v VveVandVA peK

If a set W C V forms a vector space under the same operation, it is called a
linear subspace.

Remark 1.16. the six properties above are equivalent to the fact that V is an
abelian group under the addition and that scalar multiplication A- : V — V is a
ring homomorphism for any \ € K.
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Definition 1.17.
A set of vectors B = {vj,ve,...} on a vector space V is said to be linearly
independent if there exists a set of scalars {1, Ag, ...}, not all zero, such that

AU+ Avg+...=0.

Moreover, if any vector v € V' can be written as a linear combination of elements
of 3, i.e.
v = Av1 + Aovg + ... for some scalars Aq,..., Ay,

we call 8 a basis of V. The number of elements of 3 is called the dimension of
V.

Example 1.18. 1. R3 is a three dimensional vector space and the Cartesian
coordinate vectors e; = (1,0,0), e2 = (0,1,0) and e3 = (0,0,1) form a
basis.

2. C is a one dimensional vector space over C and a two dimensional vector
space over R.

3. The space M, ,,(K) of all n x m matrices is a vector space over K with
componentwise operations.

4. The space L?([0,1]) of square integrable real functions on the unit interval
is an infinite dimensional vector space and

{e*™® . n e N}

forms a basis (Fourier expansion).

Definition 1.19 (Linear maps).
A map L : V — W between vector spaces (over the same field) is said to be
linear whenever

L()\ -1+ 1}2) =X L(Ul) + L(vg) .

A bijective linear map is called a linear isomorphism. The space of all linear maps
between V and W is denoted by £(V, W) and it has a vector space structure under
pointwise operations. We define the kernel and the image of the linear map by

ker L={veV : f(v)=0}

and
Imf={weW : JveV, w=L(v)}

respectively.

Theorem 1.20 (The Rank nullity theorem). Let L : V. — W be a linear map
and suppose that V is finite dimensional. Then,

dim(V') = dim(ker f) 4+ dim(Im f) .
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Theorem 1.21. FEvery finite dimensional vector space over is isomorphic to R™
for some n € N.

Definition 1.22 (Eigenvalues and eigenvectors).
Let L € L(V,V) be a linear map. We say that a scalar A is an eigenvalue of L
with eigenvector v € V' whenever

L(v) =M
holds. The linear subspace ker(L — Aidy) is called the eigenspace of A.

Definition 1.23 (Inner product).
An inner product on a vector space V over Kisamap (-,-) : VxV — K satisfying

1. (v,w) =(w,v), Yv,weV.
2. (M4 w,u) = Xov,u) + (w,u), Yv,w,ueV.

3. (v,v) >0, YveV\{0}.

A vector space together with an inner product is called an inner product space.

Definition 1.24.
Let (V,(-,-) be an inner product space. A linear map L € L(V,V) is called
Hermitian (Symmetric) if

(L(v), w) = (v, L(w)),  Vo,w eV,
it is called positive definite if
(L(v),v) >0, YveV.

Theorem 1.25 (Finite dimensional Spectral theorem). Let V' be a finite dimen-
sional complex (real) inner product space and consider a linear map L € L(V,V).
If L is Hermitian (symmetric), then there ezists a basis of V' consisting of eigen-
vectors of L.

Remark 1.26. In the finite dimensional case, all the above concepts have their
matrix counterpart: once we fix a basis on each vector space, vectors and linear
maps are uniquely represented by their component matrices.
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Exercises

1. (Proposition 1.3) Let (G, *) be a group. Show the following statements:

(a) the identity element and the inverse of any element are unique.
(b) (aH ' =aforallacd.
(b) (axb)"t =b"txa ! forallabed.

2. (Cayley’s Theorem) Prove that any group is a subgroup of a symmetric
group.
3. Find an example of

(i) A nonabelian group with no more elements than 6.

(ii) A group action that is free but not transitive.
4. Let L € L(V,W) be a linear map between vector spaces. Show the following:

(a) ker L and Im L are linear subspaces of V' and W respectively.
(b) L is injective if and only if ker L = {0}.

(c) If dim(V') = dim(W), then L is injective if and only if it is surjective.

5. Let V, W be finite dimensional real vector spaces. Prove the following isomor-
phisms:

(i) C=R2? (C as a real vector space).

(ii

)

) L(R,R™) = R".

(iii) V = R™ for some n € N.
)

(IV ( ) Rdim(V) xdim(W) ]

6. Consider three maps f,g,h : R> — R? acting as shown in the image below.
Select whether the following statements are true or false.

(i) f and h are linear but g is not.

(ii) f and g are linear but A is not.

)

)

(iii) f has a positive real eigenvalue.

(iv) ¢ has a unique real eigenvalue.
)

(v) Any vector of R? is an eigenvector of h.
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