CHAPTER 1

Elements of Algebra

Definition 1.1 (Group).

A group G is a set together with a map $*: G \times G \to G$ such that

- (i) * is associative: $(a * b) \cdot c = s * (b * c) \quad \forall a, b, c \in G$,
- (ii) there exists an *identity element* $e \in G$ such that $a * e = e * a = a \quad \forall a \in G$,
- (iii) for every $a \in G$ there exists an *inverse element* $a^{-1} \in G$ such that $a * a^{-1} = a^{-1} * a = 1$.

If G is a finite set, we say that (G, *) is a *finite group*. If a * b = b * a for all $a, b \in G$, we say that (G, *) is an *abelian group*. Whenever a subset $H \subset G$ forms a group with respect to * it is called a *subgroup* of G.

- **Example 1.2.** 1. $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ are all abelian groups with respect to the usual addition, where e = 1 and $a^{-1} = -a$.
 - 2. $\mathbb{Z}_n \doteq \{0, 1, \dots, n-1\}$ is a finite abelian group with respect to addition modulo n for every $n \in \mathbb{Z}$. The identity element is 0 and the inverse of a is n-a.
 - 3. Then the collection of all permutations of the elements of finite set forms a group under composition. Such groups are called *Symmetric groups* and if the set has n elements, the group is denoted by S_n .
 - 4. The set $GL(n, \mathbb{R})$ of all real, invertible $n \times n$ matrices forms a group under matrix multiplication and the set of orthogonal matrices $O(n, \mathbb{R})$ is an example of a subgroup.

Proposition 1.3. Let (G, *) be a group. Then

- 1. the identity element is unique.
- 2. the inverse of any element is unique.

Exercise 1.1. Proof Proposition 1.3.

Definition 1.4. A map $f: (G, *_G) \to (H, *_H)$ is called a *group homomorphism* if

$$f(a *_G b) = f(a) *_H f(b) \quad \forall a, b \in G.$$

Moreover, if f is bijective, we call it a group isomorphism. We say that two groups are *isomorphic* (denoted by \cong) whenever there exists a group isomorphism between them.

Definition 1.5 (Conjugacy classes, cosets and normal subgroup). Let (G, *) be a group.

1. The *conjugacy class* of $a \in G$ is defined to be

$$G_a \doteq \{g * a * g^{-1} \mid g \in G\}.$$

2. Given a subgroup $H \subset G$ and an element $g \in G$, we define the *left/right* cosets by

$$gH \doteq \{gh \mid h \in H\}$$
 and $Hg \doteq \{hg \mid h \in H\}$.

3. A subgroup $H \subset G$ is said to be *normal* if

$$gH=Hg\quad \forall g\in G\,.$$

Definition 1.6 (Quotient group).

Let N be a normal subgroup of (G, *). Then the space of cosets

$$G/H \doteq \{gH \mid g \in G\}$$

forms a group under the operation

$$(g_1H) \cdot (g_2H) = (g_1 * g_2)H.$$

Example 1.7. 1. $2\mathbb{Z} \doteq \{0, 2, 4, \ldots\}$ is a normal subgroup of \mathbb{Z} and $\mathbb{Z}/2\mathbb{Z} \cong \mathbb{Z}_2$.

2. $\mathbb{R}/\mathbb{Z} \cong U(1) \doteq \{z \in \mathbb{C} : |z| = 1\}.$

Definition 1.8 (Group action).

Let (G, *) be a group and X be a set. A group action of G on X is a map

$$G \times X \to X, \quad (g, x) \mapsto g \triangleright x$$

such that

- 1. Elements of Algebra
 - (i) $e \triangleright x = x \quad \forall x \in X$
 - (ii) $(a * b) \triangleright x = a \triangleright (b \triangleright x) \quad a, b \in G.$

A group action is said to be *free* if

$$g \triangleright x = x \implies g = e$$
.

A group action is said to be *transitive* if

$$\forall x, y \in X \exists g \in G \quad : \quad x = g \triangleright y \,.$$

- **Example 1.9.** 1. Any group acts *freely* and *transitively* on itself by left (or right) multiplication.
 - 2. Symmetric groups act on the set of vertices of polyhedra.
 - 3. \mathbb{Z} acts on \mathbb{R} by translation by an integer, i.e.

$$n \triangleright x = x + n$$
.

Such action is not transitive nor free.

4. $GL(n, \mathbb{R})$ and its subgroups act on the vector space \mathbb{R}^n (by matrix multiplication).

Theorem 1.10 (Cayley's theorem).

Every group is isomorphic to a subgroup of a symmetric group.

Definition 1.11 (Ring).

A ring R is a set together with an addition $+ : R \times R \to R$ and a multiplication $\times : R \times R \to R$ such that

- (i) (R, +) is an abelian group,
- (ii) \times is associative,
- (iii) distributivity holds:

$a \times (b+c) = a \times b + a \times c$	$\forall a,b,c \in R$
$(a+b) \times c = a \times c + b \times c$	$\forall a,b,c \in R.$

We say $(R, +, \times)$ is a *commutative ring* whenever the multiplication is also commutative. If there is an element $1 \in R$ such that $a \times 1 = 1 \times a = a$ for all $a \in R$, we say that $(R, +, \times)$ is a *unital ring*.

Example 1.12. 1. $(\mathbb{Z}, +, \cdot)$ is a unital commutative ring.

- 1. Elements of Algebra
 - 2. The set $\mathbb{R}[x]$ of polynomials with coefficients in any commutative ring R is itself a ring.

Definition 1.13 (Field).

A field is a unital commutative ring with $0 \neq 1$ such that all nonzero elements have a multiplicative inverse.

Example 1.14. 1. \mathbb{Q} , \mathbb{R} and \mathbb{C} are fields under the usual operations.

2. \mathbb{Z}_p is a finite *(Galois)* field if and only if p is prime.

Definition 1.15 (Vector space).

A vector space (or linear space) over a field \mathbb{K} (\mathbb{R} or \mathbb{C}) is a set V along with an *addition*

$$+: V \times V \to V$$

and a scalar multiplication

$$\cdot : \mathbb{K} \times V \to V$$

satisfying

(i) additive commutativity: u + v = v + u $\forall u, v \in V$.

(ii) additive and multiplicative associativity:

$$\begin{aligned} &(u+v)+w = u + (v+w) & \forall \, u, v, w \in V \\ &(\lambda \mu) \cdot v = \lambda \cdot (\mu \cdot v) & \forall \, v \in V \text{ and } \forall \, \lambda, \mu \in \mathbb{K} \end{aligned}$$

- (iii) additive identity: $\exists 0 \in V : v + 0 = v \quad \forall v \in V$
- (iv) multiplicative identity: $\exists 1 \in V : 1 \cdot v = v \quad \forall v \in V$
- (v) additive inverse: $\forall v \in V \exists (-v) \in V : v + (-v) = 0$
- (vi) distributivity:

$$\begin{split} \lambda \cdot (u+v) &= \lambda \cdot u + \lambda \cdot v & \forall u, v \in V \text{ and } \lambda \in \mathbb{K} \\ (\lambda+\mu) \cdot v &= \lambda \cdot v + \mu \cdot v & \forall v \in V \text{ and } \forall \lambda, \mu \in \mathbb{K} \end{split}$$

If a set $W \subset V$ forms a vector space under the same operation, it is called a *linear subspace*.

Remark 1.16. the six properties above are equivalent to the fact that V is an abelian group under the addition and that scalar multiplication $\lambda : V \to V$ is a ring homomorphism for any $\lambda \in \mathbb{K}$.

Definition 1.17.

A set of vectors $\beta = \{v_1, v_2, \ldots\}$ on a vector space V is said to be *linearly independent* if there exists a set of scalars $\{\lambda_1, \lambda_2, \ldots\}$, not all zero, such that

$$\lambda_1 v_1 + \lambda_2 v_2 + \ldots = 0.$$

Moreover, if any vector $v \in V$ can be written as a *linear combination* of elements of β , i.e.

 $v = \lambda_1 v_1 + \lambda_2 v_2 + \dots$ for some scalars $\lambda_1, \dots, \lambda_n$,

we call β a *basis* of V. The number of elements of β is called the *dimension* of V.

- **Example 1.18.** 1. \mathbb{R}^3 is a three dimensional vector space and the Cartesian coordinate vectors $e_1 = (1, 0, 0), e_2 = (0, 1, 0)$ and $e_3 = (0, 0, 1)$ form a basis.
 - 2. \mathbb{C} is a one dimensional vector space over \mathbb{C} and a two dimensional vector space over \mathbb{R} .
 - 3. The space $\mathbb{M}_{n,m}(\mathbb{K})$ of all $n \times m$ matrices is a vector space over \mathbb{K} with componentwise operations.
 - 4. The space $L^2([0, 1])$ of square integrable real functions on the unit interval is an infinite dimensional vector space and

$$\{e^{2\pi nx} : n \in \mathbb{N}\}$$

forms a basis (Fourier expansion).

Definition 1.19 (Linear maps).

A map $L: V \to W$ between vector spaces (over the same field) is said to be *linear* whenever

$$L(\lambda \cdot v_1 + v_2) = \lambda \cdot L(v_1) + L(v_2).$$

A bijective linear map is called a *linear isomorphism*. The space of all linear maps between V and W is denoted by $\mathcal{L}(V, W)$ and it has a vector space structure under pointwise operations. We define the *kernel* and the *image* of the linear map by

$$\ker L \doteq \{ v \in V : f(v) = 0 \}$$

and

$$\operatorname{Im} f \doteq \{ w \in W : \exists v \in V, w = L(v) \}$$

respectively.

Theorem 1.20 (The Rank nullity theorem). Let $L: V \to W$ be a linear map and suppose that V is finite dimensional. Then,

$$\dim(V) = \dim(\ker f) + \dim(\operatorname{Im} f).$$

Theorem 1.21. Every finite dimensional vector space over is isomorphic to \mathbb{R}^n for some $n \in \mathbb{N}$.

Definition 1.22 (Eigenvalues and eigenvectors). Let $L \in \mathcal{L}(V, V)$ be a linear map. We say that a scalar λ is an *eigenvalue* of L with *eigenvector* $v \in V$ whenever

$$L(v) = \lambda v$$

holds. The linear subspace $\ker(L - \lambda i d_V)$ is called the *eigenspace* of λ .

Definition 1.23 (Inner product). An *inner product* on a vector space V over K is a map $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{K}$ satisfying

- 1. $\langle v, w \rangle = \overline{\langle w, v \rangle}, \quad \forall v, w \in V.$
- $2. \ \langle \lambda v + w, u \rangle = \lambda \langle v, u \rangle + \langle w, u \rangle, \quad \forall v, w, u \in V.$
- 3. $\langle v, v \rangle > 0$, $\forall v \in V \setminus \{0\}$.

A vector space together with an inner product is called an *inner product space*.

Definition 1.24.

Let $(V, \langle \cdot, \cdot \rangle$ be an inner product space. A linear map $L \in \mathcal{L}(V, V)$ is called *Hermitian (Symmetric)* if

$$\langle L(v), w \rangle = \langle v, L(w) \rangle, \quad \forall v, w \in V,$$

it is called *positive definite* if

$$\langle L(v), v \rangle > 0, \qquad \forall v \in V.$$

Theorem 1.25 (Finite dimensional Spectral theorem). Let V be a finite dimensional complex (real) inner product space and consider a linear map $L \in \mathcal{L}(V, V)$. If L is Hermitian (symmetric), then there exists a basis of V consisting of eigenvectors of L.

Remark 1.26. In the finite dimensional case, all the above concepts have their matrix counterpart: once we fix a basis on each vector space, vectors and linear maps are uniquely represented by their component matrices.

Exercises

- 1. (Proposition 1.3) Let (G, *) be a group. Show the following statements:
 - (a) the identity element and the inverse of any element are unique.
 - (b) $(a^{-1})^{-1} = a$ for all $a \in G$.
 - (b) $(a * b)^{-1} = b^{-1} * a^{-1}$ for all $a, b \in G$.

2. (Cayley's Theorem) Prove that any group is a subgroup of a symmetric group.

- **3.** Find an example of
 - (i) A nonabelian group with no more elements than 6.
 - (ii) A group action that is free but not transitive.

4. Let $L \in \mathcal{L}(V, W)$ be a linear map between vector spaces. Show the following:

- (a) ker L and Im L are linear subspaces of V and W respectively.
- (b) L is injective if and only if ker $L = \{0\}$.
- (c) If $\dim(V) = \dim(W)$, then L is injective if and only if it is surjective.

5. Let V, W be finite dimensional real vector spaces. Prove the following isomorphisms:

- (i) $\mathbb{C} \cong \mathbb{R}^2$ (\mathbb{C} as a real vector space).
- (ii) $\mathcal{L}(\mathbb{R},\mathbb{R}^n)\cong\mathbb{R}^n$.
- (iii) $V \cong \mathbb{R}^n$ for some $n \in \mathbb{N}$.
- (iv) $\mathcal{L}(V, W) \cong \mathbb{R}^{\dim(V) \times \dim(W)}$.

6. Consider three maps $f, g, h : \mathbb{R}^2 \to \mathbb{R}^2$ acting as shown in the image below. Select whether the following statements are true or false.

- (i) f and h are linear but g is not.
- (ii) f and g are linear but h is not.
- (iii) f has a positive real eigenvalue.
- (iv) g has a unique real eigenvalue.
- (v) Any vector of \mathbb{R}^2 is an eigenvector of h.

