Elements of Algebra

Definition 1.1 (Group).
A group G is a set together with a map $*: G \times G \rightarrow G$ such that
(i) $*$ is associative: $(a * b) \cdot c=s *(b * c) \quad \forall a, b, c \in G$,
(ii) there exists an identity element $e \in G$ such that $a * e=e * a=a \quad \forall a \in G$,
(iii) for every $a \in G$ there exists an inverse element $a^{-1} \in G$ such that $a * a^{-1}=$ $a^{-1} * a=1$.

If G is a finite set, we say that $(G, *)$ is a finite group. If $a * b=b * a$ for all $a, b \in G$, we say that $(G, *)$ is an abelian group. Whenever a subset $H \subset G$ forms a group with respect to $*$ it is called a subgroup of G.

Example 1.2. 1. $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ are all abelian groups with respect to the usual addition, where $e=1$ and $a^{-1}=-a$.
2. $\mathbb{Z}_{n} \doteq\{0,1, \ldots, n-1\}$ is a finite abelian group with respect to addition modulo n for every $n \in \mathbb{Z}$. The identity element is 0 and the inverse of a is $n-a$.
3. Then the collection of all permutations of the elements of finite set forms a group under composition. Such groups are called Symmetric groups and if the set has n elements, the group is denoted by S_{n}.
4. The set $\mathrm{GL}(n, \mathbb{R})$ of all real, invertible $n \times n$ matrices forms a group under matrix multiplication and the set of orthogonal matrices $O(n, \mathbb{R})$ is an example of a subgroup.

Proposition 1.3. Let $(G, *)$ be a group. Then

1. the identity element is unique.
2. the inverse of any element is unique.
3. $\left(a^{-1}\right)^{-1}=a$ for all $a \in G$.
4. $(a * b)^{-1}=b^{-1} * a^{-1}$ for all $a, b \in G$.

Exercise 1.1. Proof Proposition 1.3.
Definition 1.4. A map $f:\left(G, *_{G}\right) \rightarrow\left(H, *_{H}\right)$ is called a group homomorphism if

$$
f\left(a *_{G} b\right)=f(a) *_{H} f(b) \quad \forall a, b \in G .
$$

Moreover, if f is bijective, we call it a group isomorphism. We say that two groups are isomorphic (denoted by \cong) whenever there exists a group isomorphism between them.

Definition 1.5 (Conjugacy classes, cosets and normal subgroup).
Let $(G, *)$ be a group.

1. The conjugacy class of $a \in G$ is defined to be

$$
G_{a} \doteq\left\{g * a * g^{-1} \mid g \in G\right\}
$$

2. Given a subgroup $H \subset G$ and an element $g \in G$, we define the left/right cosets by

$$
g H \doteq\{g h \mid h \in H\} \quad \text { and } \quad H g \doteq\{h g \mid h \in H\}
$$

3. A subgroup $H \subset G$ is said to be normal if

$$
g H=H g \quad \forall g \in G
$$

Definition 1.6 (Quotient group).
Let N be a normal subgroup of $(G, *)$. Then the space of cosets

$$
G / H \doteq\{g H \mid g \in G\}
$$

forms a group under the operation

$$
\left(g_{1} H\right) \cdot\left(g_{2} H\right)=\left(g_{1} * g_{2}\right) H
$$

Example 1.7. 1. $2 \mathbb{Z} \doteq\{0,2,4, \ldots\}$ is a normal subgroup of \mathbb{Z} and $\mathbb{Z} / 2 \mathbb{Z} \cong$ \mathbb{Z}_{2}.
2. $\mathbb{R} / \mathbb{Z} \cong U(1) \doteq\{z \in \mathbb{C}:|z|=1\}$.

Definition 1.8 (Group action).
Let $(G, *)$ be a group and X be a set. A group action of G on X is a map

$$
G \times X \rightarrow X, \quad(g, x) \mapsto g \triangleright x
$$

such that
(i) $e \triangleright x=x \quad \forall x \in X$
(ii) $(a * b) \triangleright x=a \triangleright(b \triangleright x) \quad a, b \in G$.

A group action is said to be free if

$$
g \triangleright x=x \Longrightarrow g=e .
$$

A group action is said to be transitive if

$$
\forall x, y \in X \exists g \in G \quad: \quad x=g \triangleright y .
$$

Example 1.9. 1. Any group acts freely and transitively on itself by left (or right) multiplication.
2. Symmetric groups act on the set of vertices of polyhedra.
3. \mathbb{Z} acts on \mathbb{R} by translation by an integer, i.e.

$$
n \triangleright x=x+n .
$$

Such action is not transitive nor free.
4. $G L(n, \mathbb{R})$ and its subgroups act on the vector space \mathbb{R}^{n} (by matrix multiplication).

Theorem 1.10 (Cayley's theorem).
Every group is isomorphic to a subgroup of a symmetric group.
Definition 1.11 (Ring).
A ring R is a set together with an addition $+: R \times R \rightarrow R$ and a multiplication $\times: R \times R \rightarrow R$ such that
(i) $(R,+)$ is an abelian group,
(ii) \times is associative,
(iii) distributivity holds:

$$
\begin{array}{ll}
a \times(b+c)=a \times b+a \times c & \\
(a+b) \times c=a \times c+b \times c & \forall a, c \in R \\
(& \forall a, b, c \in R .
\end{array}
$$

We say $(R,+, \times)$ is a commutative ring whenever the multiplication is also commutative. If there is an element $1 \in R$ such that $a \times 1=1 \times a=a$ for all $a \in R$, we say that $(R,+, \times)$ is a unital ring.

Example 1.12. 1. $(\mathbb{Z},+, \cdot)$ is a unital commutative ring.
2. The set $\mathbb{R}[x]$ of polynomials with coefficients in any commutative ring R is itself a ring.

Definition 1.13 (Field).

A field is a unital commutative ring with $0 \neq 1$ such that all nonzero elements have a multiplicative inverse.

Example 1.14. 1. \mathbb{Q}, \mathbb{R} and \mathbb{C} are fields under the usual operations.
2. \mathbb{Z}_{p} is a finite (Galois) field if and only if p is prime.

Definition 1.15 (Vector space).
A vector space (or linear space) over a field $\mathbb{K}(\mathbb{R}$ or $\mathbb{C})$ is a set V along with an addition

$$
+: V \times V \rightarrow V
$$

and a scalar multiplication

$$
\cdot: \mathbb{K} \times V \rightarrow V
$$

satisfying
(i) additive commutativity: $u+v=v+u \quad \forall u, v \in V$.
(ii) additive and multiplicative associativity:

$$
\begin{aligned}
(u+v)+w & =u+(v+w) & & \forall u, v, w \in V \\
(\lambda \mu) \cdot v & =\lambda \cdot(\mu \cdot v) & & \forall v \in V \text { and } \forall \lambda, \mu \in \mathbb{K}
\end{aligned}
$$

(iii) additive identity: $\exists 0 \in V: v+0=v \quad \forall v \in V$
(iv) multiplicative identity: $\exists 1 \in V: 1 \cdot v=v \quad \forall v \in V$
(v) additive inverse: $\quad \forall v \in V \exists(-v) \in V: v+(-v)=0$
(vi) distributivity:

$$
\begin{array}{ll}
\lambda \cdot(u+v)=\lambda \cdot u+\lambda \cdot v & \forall u, v \in V \text { and } \lambda \in \mathbb{K} \\
(\lambda+\mu) \cdot v=\lambda \cdot v+\mu \cdot v & \forall v \in V \text { and } \forall \lambda, \mu \in \mathbb{K}
\end{array}
$$

If a set $W \subset V$ forms a vector space under the same operation, it is called a linear subspace.

Remark 1.16. the six properties above are equivalent to the fact that V is an abelian group under the addition and that scalar multiplication $\lambda \cdot: V \rightarrow V$ is a ring homomorphism for any $\lambda \in \mathbb{K}$.

Definition 1.17.

A set of vectors $\beta=\left\{v_{1}, v_{2}, \ldots\right\}$ on a vector space V is said to be linearly independent if there exists a set of scalars $\left\{\lambda_{1}, \lambda_{2}, \ldots\right\}$, not all zero, such that

$$
\lambda_{1} v_{1}+\lambda_{2} v_{2}+\ldots=0
$$

Moreover, if any vector $v \in V$ can be written as a linear combination of elements of β, i.e.

$$
v=\lambda_{1} v_{1}+\lambda_{2} v_{2}+\ldots \quad \text { for some scalars } \lambda_{1}, \ldots, \lambda_{n}
$$

we call β a basis of V. The number of elements of β is called the dimension of V.

Example 1.18. 1. \mathbb{R}^{3} is a three dimensional vector space and the Cartesian coordinate vectors $e_{1}=(1,0,0), e_{2}=(0,1,0)$ and $e_{3}=(0,0,1)$ form a basis.
2. \mathbb{C} is a one dimensional vector space over \mathbb{C} and a two dimensional vector space over \mathbb{R}.
3. The space $\mathbb{M}_{n, m}(\mathbb{K})$ of all $n \times m$ matrices is a vector space over \mathbb{K} with componentwise operations.
4. The space $L^{2}([0,1])$ of square integrable real functions on the unit interval is an infinite dimensional vector space and

$$
\left\{e^{2 \pi n x}: n \in \mathbb{N}\right\}
$$

forms a basis (Fourier expansion).
Definition 1.19 (Linear maps).
A map $L: V \rightarrow W$ between vector spaces (over the same field) is said to be linear whenever

$$
L\left(\lambda \cdot v_{1}+v_{2}\right)=\lambda \cdot L\left(v_{1}\right)+L\left(v_{2}\right) .
$$

A bijective linear map is called a linear isomorphism. The space of all linear maps between V and W is denoted by $\mathcal{L}(V, W)$ and it has a vector space structure under pointwise operations. We define the kernel and the image of the linear map by

$$
\operatorname{ker} L \doteq\{v \in V: f(v)=0\}
$$

and

$$
\operatorname{Im} f \doteq\{w \in W: \exists v \in V, w=L(v)\}
$$

respectively.
Theorem 1.20 (The Rank nullity theorem). Let $L: V \rightarrow W$ be a linear map and suppose that V is finite dimensional. Then,

$$
\operatorname{dim}(V)=\operatorname{dim}(\operatorname{ker} f)+\operatorname{dim}(\operatorname{Im} f)
$$

Theorem 1.21. Every finite dimensional vector space over is isomorphic to \mathbb{R}^{n} for some $n \in \mathbb{N}$.

Definition 1.22 (Eigenvalues and eigenvectors).
Let $L \in \mathcal{L}(V, V)$ be a linear map. We say that a scalar λ is an eigenvalue of L with eigenvector $v \in V$ whenever

$$
L(v)=\lambda v
$$

holds. The linear subspace $\operatorname{ker}\left(L-\lambda \mathrm{id}_{V}\right)$ is called the eigenspace of λ.
Definition 1.23 (Inner product).
An inner product on a vector space V over \mathbb{K} is a map $\langle\cdot, \cdot\rangle: V \times V \rightarrow \mathbb{K}$ satisfying

1. $\langle v, w\rangle=\overline{\langle w, v\rangle}, \quad \forall v, w \in V$.
2. $\langle\lambda v+w, u\rangle=\lambda\langle v, u\rangle+\langle w, u\rangle, \quad \forall v, w, u \in V$.
3. $\langle v, v\rangle>0, \quad \forall v \in V \backslash\{0\}$.

A vector space together with an inner product is called an inner product space.

Definition 1.24.

Let $(V,\langle\cdot, \cdot\rangle$ be an inner product space. A linear map $L \in \mathcal{L}(V, V)$ is called Hermitian (Symmetric) if

$$
\langle L(v), w\rangle=\langle v, L(w)\rangle, \quad \forall v, w \in V,
$$

it is called positive definite if

$$
\langle L(v), v\rangle>0, \quad \forall v \in V
$$

Theorem 1.25 (Finite dimensional Spectral theorem). Let V be a finite dimensional complex (real) inner product space and consider a linear map $L \in \mathcal{L}(V, V)$. If L is Hermitian (symmetric), then there exists a basis of V consisting of eigenvectors of L.

Remark 1.26. In the finite dimensional case, all the above concepts have their matrix counterpart: once we fix a basis on each vector space, vectors and linear maps are uniquely represented by their component matrices.

Exercises

1. (Proposition 1.3) Let $(G, *)$ be a group. Show the following statements:
(a) the identity element and the inverse of any element are unique.
(b) $\left(a^{-1}\right)^{-1}=a$ for all $a \in G$.
(b) $(a * b)^{-1}=b^{-1} * a^{-1}$ for all $a, b \in G$.
2. (Cayley's Theorem) Prove that any group is a subgroup of a symmetric group.
3. Find an example of
(i) A nonabelian group with no more elements than 6 .
(ii) A group action that is free but not transitive.
4. Let $L \in \mathcal{L}(V, W)$ be a linear map between vector spaces. Show the following:
(a) ker L and $\operatorname{Im} L$ are linear subspaces of V and W respectively.
(b) L is injective if and only if $\operatorname{ker} L=\{0\}$.
(c) If $\operatorname{dim}(V)=\operatorname{dim}(W)$, then L is injective if and only if it is surjective.
5. Let V, W be finite dimensional real vector spaces. Prove the following isomorphisms:
(i) $\mathbb{C} \cong \mathbb{R}^{2}(\mathbb{C}$ as a real vector space $)$.
(ii) $\mathcal{L}\left(\mathbb{R}, \mathbb{R}^{n}\right) \cong \mathbb{R}^{n}$.
(iii) $\mathrm{V} \cong \mathbb{R}^{n}$ for some $n \in \mathbb{N}$.
(iv) $\mathcal{L}(V, W) \cong \mathbb{R}^{\operatorname{dim}(V) \times \operatorname{dim}(W)}$.
6. Consider three maps $f, g, h: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ acting as shown in the image below. Select whether the following statements are true or false.
(i) f and h are linear but g is not.
(ii) f and g are linear but h is not.
(iii) f has a positive real eigenvalue.
(iv) g has a unique real eigenvalue.
(v) Any vector of \mathbb{R}^{2} is an eigenvector of h.

