
Chapter 1

Elements of Algebra

Definition 1.1 (Group).
A group G is a set together with a map ∗ : G×G→ G such that

(i) ∗ is associative: (a ∗ b) · c = s ∗ (b ∗ c) ∀ a, b, c ∈ G,

(ii) there exists an identity element e ∈ G such that a ∗ e = e ∗a = a ∀ a ∈ G,

(iii) for every a ∈ G there exists an inverse element a−1 ∈ G such that a∗a−1 =
a−1 ∗ a = 1.

If G is a finite set, we say that (G, ∗) is a finite group. If a ∗ b = b ∗ a for all
a, b ∈ G, we say that (G, ∗) is an abelian group. Whenever a subset H ⊂ G forms
a group with respect to ∗ it is called a subgroup of G.

Example 1.2. 1. Z,Q,R,C are all abelian groups with respect to the usual
addition, where e = 1 and a−1 = −a.

2. Zn
.
= {0, 1, . . . , n − 1} is a finite abelian group with respect to addition

modulo n for every n ∈ Z. The identity element is 0 and the inverse of a is
n− a.

3. Then the collection of all permutations of the elements of finite set forms
a group under composition. Such groups are called Symmetric groups and
if the set has n elements, the group is denoted by Sn.

4. The set GL(n,R) of all real, invertible n × n matrices forms a group un-
der matrix multiplication and the set of orthogonal matrices O(n,R) is an
example of a subgroup.

Proposition 1.3. Let (G, ∗) be a group. Then

1. the identity element is unique.

2. the inverse of any element is unique.
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3. (a−1)−1 = a for all a ∈ G.

4. (a ∗ b)−1 = b−1 ∗ a−1 for all a, b ∈ G.

Exercise 1.1. Proof Proposition 1.3.

Definition 1.4. A map f : (G, ∗G) → (H, ∗H) is called a group homomorphism
if

f(a ∗G b) = f(a) ∗H f(b) ∀ a, b ∈ G.

Moreover, if f is bijective, we call it a group isomorphism. We say that two
groups are isomorphic (denoted by ∼=) whenever there exists a group isomorphism
between them.

Definition 1.5 (Conjugacy classes, cosets and normal subgroup).
Let (G, ∗) be a group.

1. The conjugacy class of a ∈ G is defined to be

Ga
.
= {g ∗ a ∗ g−1 | g ∈ G} .

2. Given a subgroup H ⊂ G and an element g ∈ G, we define the left/right
cosets by

gH
.
= {gh | h ∈ H} and Hg

.
= {hg | h ∈ H} .

3. A subgroup H ⊂ G is said to be normal if

gH = Hg ∀g ∈ G .

Definition 1.6 (Quotient group).
Let N be a normal subgroup of (G, ∗). Then the space of cosets

G/H
.
= {gH | g ∈ G}

forms a group under the operation

(g1H) · (g2H) = (g1 ∗ g2)H .

Example 1.7. 1. 2Z .
= {0, 2, 4, . . .} is a normal subgroup of Z and Z/2Z ∼=

Z2.

2. R/Z ∼= U(1)
.
= {z ∈ C : |z| = 1}.

Definition 1.8 (Group action).
Let (G, ∗) be a group and X be a set. A group action of G on X is a map

G×X → X, (g, x) 7→ g ▷ x

such that
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(i) e ▷ x = x ∀x ∈ X

(ii) (a ∗ b) ▷ x = a ▷ (b ▷ x) a, b ∈ G.

A group action is said to be free if

g ▷ x = x =⇒ g = e .

A group action is said to be transitive if

∀x, y ∈ X ∃g ∈ G : x = g ▷ y .

Example 1.9. 1. Any group acts freely and transitively on itself by left (or
right) multiplication.

2. Symmetric groups act on the set of vertices of polyhedra.

3. Z acts on R by translation by an integer, i.e.

n ▷ x = x+ n .

Such action is not transitive nor free.

4. GL(n,R) and its subgroups act on the vector space Rn (by matrix multi-
plication).

Theorem 1.10 (Cayley’s theorem).
Every group is isomorphic to a subgroup of a symmetric group.

Definition 1.11 (Ring).
A ring R is a set together with an addition + : R×R→ R and a multiplication
× : R×R→ R such that

(i) (R,+) is an abelian group,

(ii) × is associative,

(iii) distributivity holds:

a× (b+ c) = a× b+ a× c ∀ a, b, c ∈ R

(a+ b)× c = a× c+ b× c ∀ a, b, c ∈ R.

We say (R,+,×) is a commutative ring whenever the multiplication is also com-
mutative. If there is an element 1 ∈ R such that a× 1 = 1× a = a for all a ∈ R,
we say that (R,+,×) is a unital ring .

Example 1.12. 1. (Z,+, ·) is a unital commutative ring.
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2. The set R[x] of polynomials with coefficients in any commutative ring R is
itself a ring.

Definition 1.13 (Field).
A field is a unital commutative ring with 0 ̸= 1 such that all nonzero elements
have a multiplicative inverse.

Example 1.14. 1. Q, R and C are fields under the usual operations.

2. Zp is a finite (Galois) field if and only if p is prime.

Definition 1.15 (Vector space).
A vector space (or linear space) over a field K (R or C) is a set V along with an
addition

+ : V × V → V

and a scalar multiplication
· : K× V → V

satisfying

(i) additive commutativity: u+ v = v + u ∀u, v ∈ V .

(ii) additive and multiplicative associativity:

(u+ v) + w = u+ (v + w) ∀u, v, w ∈ V

(λµ) · v = λ · (µ · v) ∀ v ∈ V and ∀λ, µ ∈ K

(iii) additive identity: ∃ 0 ∈ V : v + 0 = v ∀v ∈ V

(iv) multiplicative identity: ∃ 1 ∈ V : 1 · v = v ∀v ∈ V

(v) additive inverse: ∀ v ∈ V ∃(−v) ∈ V : v + (−v) = 0

(vi) distributivity:

λ · (u+ v) = λ · u+ λ · v ∀u, v ∈ V and λ ∈ K
(λ+ µ) · v = λ · v + µ · v ∀ v ∈ V and ∀λ, µ ∈ K

If a set W ⊂ V forms a vector space under the same operation, it is called a
linear subspace.

Remark 1.16. the six properties above are equivalent to the fact that V is an
abelian group under the addition and that scalar multiplication λ· : V → V is a
ring homomorphism for any λ ∈ K.
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Definition 1.17.
A set of vectors β = {v1, v2, . . .} on a vector space V is said to be linearly
independent if there exists a set of scalars {λ1, λ2, . . .}, not all zero, such that

λ1v1 + λ2v2 + . . . = 0 .

Moreover, if any vector v ∈ V can be written as a linear combination of elements
of β, i.e.

v = λ1v1 + λ2v2 + . . . for some scalars λ1, . . . , λn ,

we call β a basis of V . The number of elements of β is called the dimension of
V .

Example 1.18. 1. R3 is a three dimensional vector space and the Cartesian
coordinate vectors e1 = (1, 0, 0), e2 = (0, 1, 0) and e3 = (0, 0, 1) form a
basis.

2. C is a one dimensional vector space over C and a two dimensional vector
space over R.

3. The space Mn,m(K) of all n × m matrices is a vector space over K with
componentwise operations.

4. The space L2([0, 1]) of square integrable real functions on the unit interval
is an infinite dimensional vector space and

{e2πnx : n ∈ N}

forms a basis (Fourier expansion).

Definition 1.19 (Linear maps).
A map L : V → W between vector spaces (over the same field) is said to be
linear whenever

L(λ · v1 + v2) = λ · L(v1) + L(v2) .

A bijective linear map is called a linear isomorphism. The space of all linear maps
between V andW is denoted by L(V,W ) and it has a vector space structure under
pointwise operations. We define the kernel and the image of the linear map by

kerL
.
= {v ∈ V : f(v) = 0}

and
Im f

.
= {w ∈W : ∃v ∈ V , w = L(v)}

respectively.

Theorem 1.20 (The Rank nullity theorem). Let L : V → W be a linear map
and suppose that V is finite dimensional. Then,

dim(V ) = dim(ker f) + dim(Im f) .
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Theorem 1.21. Every finite dimensional vector space over is isomorphic to Rn
for some n ∈ N.

Definition 1.22 (Eigenvalues and eigenvectors).
Let L ∈ L(V, V ) be a linear map. We say that a scalar λ is an eigenvalue of L
with eigenvector v ∈ V whenever

L(v) = λv

holds. The linear subspace ker(L− λidV ) is called the eigenspace of λ.

Definition 1.23 (Inner product).
An inner product on a vector space V over K is a map ⟨·, ·⟩ : V ×V → K satisfying

1. ⟨v, w⟩ = ⟨w, v⟩, ∀v, w ∈ V .

2. ⟨λv + w, u⟩ = λ⟨v, u⟩+ ⟨w, u⟩, ∀v, w, u ∈ V .

3. ⟨v, v⟩ > 0, ∀v ∈ V \ {0}.

A vector space together with an inner product is called an inner product space.

Definition 1.24.
Let (V, ⟨·, ·⟩ be an inner product space. A linear map L ∈ L(V, V ) is called
Hermitian (Symmetric) if

⟨L(v), w⟩ = ⟨v, L(w)⟩, ∀v, w ∈ V,

it is called positive definite if

⟨L(v), v⟩ > 0, ∀v ∈ V.

Theorem 1.25 (Finite dimensional Spectral theorem). Let V be a finite dimen-
sional complex (real) inner product space and consider a linear map L ∈ L(V, V ).
If L is Hermitian (symmetric), then there exists a basis of V consisting of eigen-
vectors of L.

Remark 1.26. In the finite dimensional case, all the above concepts have their
matrix counterpart: once we fix a basis on each vector space, vectors and linear
maps are uniquely represented by their component matrices.
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Exercises

1. (Proposition 1.3) Let (G, ∗) be a group. Show the following statements:

(a) the identity element and the inverse of any element are unique.

(b) (a−1)−1 = a for all a ∈ G.

(b) (a ∗ b)−1 = b−1 ∗ a−1 for all a, b ∈ G.

2. (Cayley’s Theorem) Prove that any group is a subgroup of a symmetric
group.

3. Find an example of

(i) A nonabelian group with no more elements than 6.

(ii) A group action that is free but not transitive.

4. Let L ∈ L(V,W ) be a linear map between vector spaces. Show the following:

(a) kerL and ImL are linear subspaces of V and W respectively.

(b) L is injective if and only if kerL = {0}.

(c) If dim(V ) = dim(W ), then L is injective if and only if it is surjective.

5. Let V,W be finite dimensional real vector spaces. Prove the following isomor-
phisms:

(i) C ∼= R2 (C as a real vector space).

(ii) L(R,Rn) ∼= Rn.

(iii) V ∼= Rn for some n ∈ N.

(iv) L(V,W ) ∼= Rdim(V )×dim(W ).

6. Consider three maps f, g, h : R2 → R2 acting as shown in the image below.
Select whether the following statements are true or false.

(i) f and h are linear but g is not.

(ii) f and g are linear but h is not.

(iii) f has a positive real eigenvalue.

(iv) g has a unique real eigenvalue.

(v) Any vector of R2 is an eigenvector of h.
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