
Chapter 2

Topological, metric, and normed
spaces

Definition 2.1 (Sequence).
A sequence (xn) = (x1, x2, x3, . . .) in a set X is a map:

x : N → X, n 7→ xn

A sequence (xn) in R converges to x ∈ R, if

∀ε > 0 ∃Nε ∈ N ∀n ≥ Nε : |xn − x| < ε

(if for every ε > 0 it holds ’eventually’ that |xn − x| < ε) and we write

lim
n→∞

xn = x or simply xn → x .

Similarly, a sequence (xn) in Rk converges to x ∈ Rk, if

∀ε > 0 ∃Nε ∈ N ∀n ≥ Nε : ∥xn − x∥2 < ε

where ∥ · ∥2 denotes the usual Euclidean distance (see Example 2.3). We observe
that in both examples the notion of norm is the key tool in order to define
convergence of sequences.

Definition 2.2 (Norm and normed space).
Let V be a vector space either over R or C. A norm ∥ · ∥ on V is a map:

∥ · ∥ : V → [0,∞), x 7→ ∥x∥

with the properties:

1. ∥x∥ = 0 ⇔ x = 0

2. ∀x ∈ V, λ ∈ K : ∥λx∥ = |λ| · ∥x∥
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3. ∀x, y ∈ V : ∥x+ y∥ ≤ ∥x∥+ ∥y∥

The pair (V, ∥ · ∥) is called a normed space.

Example 2.3. 1. On V = Rn or Cn the following maps are norms:

∥x∥2 =
√

|x1|2 + |x2|2 + . . .+ |xn|2 euclidean norm
∥x∥∞ = max{|x1|, . . . , |xn|} maximum norm
∥x∥1 = |x1|+ |x2|+ . . .+ |xn| 1-norm

or, more generally, for p ∈ [1,∞), we obtain:

∥x∥p =
( n∑
j=1

|xj |p
) 1

p p-norm

2. Let X a set, (Y, ∥ · ∥Y ) a normed space, and

V := {f : X → Y | sup
x∈X

∥f(x)∥Y <∞}.

Then ∥f∥∞ = sup
x∈X

∥f(x)∥Y is a norm on V.

Definition 2.4 (Convergence in normed spaces).
A sequence (xn) in a normed space (V, ∥ · ∥) converges to x ∈ V if

∀ε > 0 ∃Nε ∈ N ∀n ≥ Nε : ∥xn − x∥ < ε .

A norm, however, can only be defined on a vector space and ideally we would
like to forget about such structure. In view of the definition of convergence for
normed spaces, a notion of "distance" between points should suffice.

Definition 2.5 (Metric and metric space).
Let X be a set. A metric d on X is a map:

d : X ×X → [0,∞)

with the following properties:

1. d(x, y) = 0 ⇔ x = y

2. Symmetry: ∀x, y ∈ X : d(x, y) = d(y, x)

3. Triangle inequality: ∀x, y, z ∈ X : d(x, z) ≤ d(x, y) + d(y, z)

The pair (X, d) is called a metric space

Example 2.6. 1. Let (V, ∥ · ∥) be a normed space. Then d : V ×V → [0,∞),
(x, y) 7→ d(x, y) := ∥x− y∥ defines a metric on V.
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2. Let X be as set. The discrete metric on X is defined by:

d(x, y) =

{
0 if x = y

1 otherwise

3. The euclidean unit sphere S2 := {x ∈ R3 | ∥x∥2 = 1} with the metric:

d(x, y) := arccos(⟨x, y⟩)

is a metric space.

Definition 2.7 (Convergence in metric spaces).
A sequence (xn) in a metric space (X, d) converges to x ∈ X if

∀ε > 0 ∃Nε ∈ N ∀n ≥ Nε : d(xn, x) < ε .

Definition 2.8 (Open sets in a metric space).
Let (X, d) be a metric space.

1. For x0 ∈ X and r > 0 the set:

Br(x0) := {x ∈ X | d(x, x0) < r}

is called the open ball , with the radius r and the centre x0.

2. A subset of U ⊂ X is called a neighbourhood of x0 ∈ X, if U contains an
open ball around x0, i.e.

∃r > 0 : Br(x0) ⊂ U.

Then x0 is called an interior point of U .

3. A subset U ⊂ X is called open, if it contains only interior points, i.e.

∀x ∈ U∃r > 0 : Br(x) ⊂ U.

Example 2.9. 1. Let (X, d) be a metric space. Then for any x ∈ X and
r > 0 the set Br(x) is open.

2. Let X be equipped with the discrete metric. Then any subset U ⊆ X is
open: B 1

2
= {x} ∀x ∈ X

Proposition 2.10. Let (X, d) be a metric space. Then:

1. ∅ and X are open.

2. If U, V ⊂ X are open, then also U ∩ V is open.



2. Topological, metric, and normed spaces 12

3. If Ui ⊂ X is open for all i ∈ I, then also
⋃
i∈I

Ui is open.

The second property implies that intersections of finitely many open sets are
open. However, this does not hold for infinite intersections: Let Un = (− 1

n ,
1
n) ⊂

R, n ∈ N. Then
⋂
n∈N

Un = {0} is not open.

Definition 2.11 (Closed set).
A subset A ⊂ X of a metric space is closed , if its complement is open, i.e.
AC = {x ∈ X | x /∈ A} is open.

Example 2.12. 1. Let X = R and a, b ∈ R with a < b. Then [a, b], [a,∞)
are closed, but [a, b) is neither open nor closed.

2. For any metric space (X, d) the sets ∅ and X are open and closed.

A metric endows a set not only with a notion of convergence, but also with a
geometry (distance, angles, etc.), but actually, open sets turn out to be enough
in order to define convergence.

Definition 2.13 (Topology and topological spaces).
Let X be a set. A topology T on X is a collection T ⊂ P(X) of subsets of X
with the following properties:

1. ∅, X ∈ T

2. U, V ∈ T ⇒ U ∩ V ∈ T

3. Ui ∈ T for all i ∈ I ⇒
⋃
i∈I

Ui ∈ T

The sets U ∈ T are called the open sets and (X, T ) is called a topological space.
A ⊂ X is closed , if AC ∈ T . U ⊂ X is called a neighbourhood of a x0 ∈ X (and
x0 is an interior point of U), if:

∃O ∈ T with x0 ∈ O ⊂ U.

Remark 2.14. The property 2. implies that intersections of finitely many open
sets are open. However, this does not hold for infinite intersections: Let Un =
(− 1

n ,
1
n) ⊂ R, n ∈ N. Then

⋂
n∈N

Un = {0} is not open.

Example 2.15. 1. T = {∅, X} forms the so-called trivial topology on X.

2. T = P(X) forms the so called discrete topology on X.

3. According to Proposition 2.10, the open sets in a metric space form a topol-
ogy.
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Definition 2.16 (Relative topology).
(X, T ) a topological space and Y ⊂ X a subset of X. Then T |Y = {O∩Y | O ⊂
T } is a topology on Y , the subspace or relative topology . The elements U ⊂ T |Y
are called relative open sets.

Example 2.17. 1. X = R, Y = [0, 1]. Then Y ∈ T |Y , i.e. Y is relatively
open in itself. Also [0, 12) ⊂ Y is relatively open, since [0, 12) = (−1

2 ,
1
2) ∩ Y

2. (X, d) a metric space and Y ⊂ X a subset. Then (Y, d|Y ) is a metric space.

d|Y : Y × Y → [0,∞], (y1, y2) 7→ d|Y (y1, y2) = d(y1, y2)

3. (V, ∥ · ∥) normed space and U ⊂ V a vector subspace. Then (U, ∥ · ∥|U ) is
a normed space.

Definition 2.18 (Interior, closure, boundary).
Let (X, T ) be a topological space and Y ⊂ X.

1. The set
◦
Y =

⋃
U∈T
U⊂Y

U is called the interior of Y .

2. The set Y =
⋂

U∈T
U⊂Y C

UC is called the closure of Y .

3. The set ∂Y = Y \
◦
Y is called the boundary of Y .

Proposition 2.19. 1.
◦
Y ⊂ Y ⊂ Y .

2.
◦
Y is the largest open set contained in Y .

3. Y is open ⇔ Y =
◦
Y .

4. Y is the smallest closed set containing Y .

5. Y is closed ⇔ Y = Y .

6. (
◦
Y )C = (Y C) and

(
Y C

)◦
=

(
Y
)C .1

Proposition 2.20. Let (X, T ) be a topological space and Y ⊂ X. Then:

1.
◦
Y is the set of interior points of Y .

1This can be proven using de Morgan’s laws: For a family of sets (Ai)i∈I it holds

(a)
( ⋂

i∈I

Ai

)C

=
⋃
i∈I

AC
i ,

(b)
( ⋃

i∈I

Ai

)C

=
⋂
i∈I

AC
i .
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2. x ∈ ∂Y ⇔ for any neighbourhood U of x U ∩ Y ̸= ∅ and U ∩ Y C ̸= ∅.

3.
◦
Y = Y \∂Y and Y = Y ∪ ∂Y

Example 2.21. 1. For Y = [a, b) ⊂ R we have
◦
Y = (a, b), Y = [a, b], ∂Y =

{a, b}.

2. For Q ⊂ R we have
◦
Q = ∅, Q = R, ∂Q = R.

Definition 2.22 (Convergence in topological spaces).
Let X be a topological space. A sequence (xn) in X converges to a ∈ X and we
write:

lim
n→∞

xn = a,

if for any neighbourhood U of the point a there exists N ∈ N such that xn ∈ U
for all n ≥ N .

Remark 2.23. In general convergence points are not unique: On any set X with
the trivial topology any sequence converges to every point in X!

Definition 2.24 (Hausdorff spaces).
A topological space (X, T ) is Hausdorff , if:

∀x, y ∈ X,x ̸= y,∃U, V ∈ T : x ∈ U, y ∈ V, U ∩ Y = ∅ .

Proposition 2.25. 1. In Hausdorff spaces, sequences have at most one limit.

2. All metric spaces are Hausdorff.

Definition 2.26 (Cluster point).
A point a ∈ X is called a cluster point of a sequence (xn) if any neighbourhood
U of a contains infinitely many elements of (xn).

Thus far, we have encountered spaces with different level of abstraction,

normed spaces ⊂ metric spaces ⊂ Hausdorff spaces ,

in which we call always define a notion of convergence and they indeed coincide.
Both in physics and mathematics, the analysis is often carried out in so-called
Banach spaces.

Definition 2.27 (Cauchy sequence).
A sequence (xn) in a metric space X is called Cauchy sequence, if

∀ε > 0∃N ∈ N∀n,m ≥ N : d(xn, xm) < ε

Proposition 2.28. Every convergent sequence in a metric space is also a Cauchy
sequence.
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Definition 2.29 (Complete metric space, Banach space).

1. A metric space X is called complete if every Cauchy sequence in X con-
verges.

2. A complete normed space (the norm induces the metric) is called a Banach
space.

Example 2.30. 1. R,C,Rn,Cn (with e.g. the Euclidean norm) are Banach
spaces.

2. (Q, | · |) is not complete, as there exists a Cauchy sequence (xn) ⊂ Q with
lim
n→∞

xn =
√
2 but

√
2 /∈ Q.



2. Topological, metric, and normed spaces 16

Exercises

1. Let X be a set and (Y, ∥ · ∥Y ) a normed space. Consider the vector space

V
.
= {f : X → Y | sup

x∈X
∥f(x)∥Y } .

Prove that ∥f∥∞
.
= supx∈X ∥f(x)∥Y is a norm on V .

2. Let (X, d) be a metric space.

(a) Prove that Br(x) is open for any r > 0 and x ∈ X.

(b) Prove that ∅ and X are open.

(c) Prove that if Y,Z ⊂ X are open, then Y ∩ Z and Y ∪ Z are open.

(d) Consider now the metric

d(x, y)
.
=

{
1 x ̸= y

0 x = y
.

Prove that any subset Y ⊂ X is open.

3. Prove that

(a) all sequences in a Hausdorff space have at most one limit.

(b) all metric spaces are Hausdorff.

4. Prove that every convergent sequence in a metric space is a Cauchy sequence.

5. Find two examples of

(a) metric spaces that are not normed spaces.

(b) normed spaces that are not Banach.

(c) metric spaces that are not complete.

(d) topological spaces that are not Hausdorff.
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