CHAPTER 3

Continuity, compact sets,
connected sets

Definition 3.1 (Continuity and sequential continuity).
Let X,Y be topological spaces, f : X — Y a map, and a € X

1. We say that f is sequentially continuous at a, if for a sequence (),

lim x, = a implies that
n—oo

lim f(z,) = f(a).

n—oo
2. We say that f is continuous at a, if

YU €U (f(a)3V €eU(a): f(V)cCU!
If a function is (sequentially) continuous at all points a € X, then we say that f

is (sequentially) continuous on X.

Proposition 3.2. If f: X = Y s continuous at x € X, then f is also sequen-
tially continuous at x.

Proposition 3.3 (e-d-continuity in metric spaces). A function f : X — Y
between metric spaces X,Y is continuous at x € X, if and only if

Ve>030>0: f(Bs(a)) C B:(f(a))
Ezxercise 3.1. Proof Proposition 3.3.

Proposition 3.4. A function f: X — Y between metric spaces X,Y is contin-
wous at a € X, if and only if it is sequentially continuous at a.

Proof. = Proposition 3.2

'U(x) is the set of all neighbourhoods of the point .

17
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< (by contraposition A = B < —B = —A)
Assume that f is not continuous at a, i.e.

3e >0¥0>0:  f(Bs(a)) ¢ B(f(a)).
For § = 1 choose z,, € Bs(a)\f~!(B:(f(a))) # 0. Then HILH;O x, = a, but
f(zyn) ¢ B:(f(a))Vn = f is not sequentially continuous.
OJ

Theorem 3.5. Let X,Y be topological spaces. A map f: X — Y is continuous
(on X ), if the preimage f~1(O) C X of any open set O C'Y is open.

Example 3.6. 1. In a metric space (X,d) the distance function to a point
be X,
dy: X = [0,00), x> dp(z):=d(z,b)

is continuous.?

2. In a normed space (V| -||) the norm:
-1V = [0, 00),

addition:
+:VxV =V, (x,y)—xz+y,

and multiplication by scalars:
G KxV =V, (Av)—=Awv
are all continuous.

3. The composition of continuous functions is continuous. If f: X — Y and
g:Y — Z are continuous then also go f : X — Z is continuous.

4. If X is equipped with the discrete topology, then every map f: X — Y
is continuous. If X is equipped with the trivial topology, then every map
f:Y — X is continuous.

Remark 3.7. 1. Let (X,dx) and (Y,dy) be metric spaces. Then a metric on
X x Y is for example

d((z1,y1), (x2,92)) := (dz(x1,22)P + dy(y17y2)p)1/p 1<p<o

2. Let (X, Tx) and (Y,7y) topological space. Then the (product) topology
on X XY is generated by

{01 XOQ : 01 ETX, OQETY}

also called bose topology.

2Also d : X x X — [0, 00) is continuous using a suitable metric on X x X. For the definition
of this metric, see Remark 3.7.
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3. Let (X;,T;), i € I, be topological spaces. Then the product topology on

[ X; is generated by
el

{HOi : O; € T; and O; # X; only for finitely many i € I}.
el
Definition 3.8 (Lipschitz continuity).

Let X,Y be metric spaces. A function f : X — Y is called Lipschitz-continuous,
if there exists 0 < L < oo such that

Vo, 29 € X : dy(f(l’l), f(l‘g)) <L dx(l‘l,xg).

Then L is called a Lipschitz-constant for f. If f has a Lipschitz-constant L < 1,
then f is called contraction.

Example 3.9. 1. f(x) = ax + b is Lipschitz continuous with L = a.

2. f € CYR) then L = sup|f'(z)|.
zeR

3. f(z) = 22 is continuous but not Lipschitz continuous in R.

4. f(z) = /|z| is continuous but not Lipschitz continuous in R, as its deriva-
tive around 0 diverges.

Definition 3.10 (Homeomorphic functions, isometries and isometric isomor-
phisms).

1. Two topological spaces X,Y are homeomorphic if there exists a bicontinu-
ous bijection
f: X =Y ahomeomorphism

2. Amap f: X — Y between metric spaces is an isometry, if

Ve, xe € X o dy (f(z1), f(z2)) = dp(x1,22) .
X and Y are isometric, if there exists a bijective isometry f: X — Y.

3. Two normed spaces V and W are isometrically isomorphic, if there exists
a linear bijection (isomorphism) A : V' — W such that

VoeV: |[Av|w = |vllv.
Example 3.11. 1. The interval (a,b) C R is homeomorphic, but not isomet-
ric to R. The map

1 1
a—x b—=zx

fi(a,b) >R, z+ f(x)=

is an example of a homeomorphism.



3. CONTINUITY, COMPACT SETS, CONNECTED SETS 20
2. The isometries of Euclidean space (R™,ds) are translations, rotations and
reflections and compositions thereof (euclidean group).
3. R? and C with the standard norms are isometrically isomorphic.

Definition 3.12 (Pointwise and uniform convergence).
Let X be a set, Y a metric space and

fm:X—=>Y neN and f: X Y

both functions.

1. We say that f,, converges pointwise to f, if

Ve e X : T}LHgOdY(fn(ﬂf%f(ﬂf)) =0. & lim fu(z) = f(z)

n—oo

2. We say that f,, converges uniformly to f, if

lim sup dy (fn(z), f(x)) =0

n—oo zeX

If (Y,||-|) is a normed space, then f,, — f uniformly, if and only if
lim ||fn — flleo =0
n—oo

Example 3.13. f, :[0,1] — [0,1], z — f,(x) = 2™, then pointwise

fn(x)njff(x): {0 forz <1

1 forz=1"

However, (f,) does not converge uniformly to f since sup |fn(z)— f(z)| = 1.
z€[0,1]

To see this consider z = 1 — ¢ for arbitrarily small 6 > 0. Then, f,(x) =

(1 —8)" = 1 —nd + O(§?), whereas f(x) = 0, so after sending § — 0 we get

sup [fn(z) — f(z)| = 1.

z€(0,1]

Proposition 3.14 (Uniform limits of continuous functions are continuous).
Let (X, T) a topological and (Y,d) a metric space. Let f, : X =Y be a sequence
of continuous functions and let f,, — f uniformly. Then f is continuous.

Corollary 3.15. Let X be a topological space, (Y, ||-||y) a complete normed space
and Cyp(X,Y) the space of continuous bounded functions, i.e.

Co(X,Y)={f: X =Y continuous | sup ||f(x)|ly < oc}.
zeX

Then the normed space (Cp(X,Y), | - |loo) s complete.
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Definition 3.16 (Open cover and finite subcover).
Let (X,7T) be a topological space and Y C X. A family (U;);cr of open sets,
U; € T Vi€ 1, is called an open cover of Y, if

Y c|Jus
iel

A set K C X is called compact, if any open cover (U;);er of K admits a finite
subcover, i.e. there exists iq,...,i, € I such that:

Kc |J U
=010 yin
Example 3.17. 1. Every finite subset K = {z1,...,x,} of a topological

space is compact.

o0
2. (0,1] C R is not a compact set. The open cover (0,1] C |J (,2) admits
n=2
no finite subcover.

Theorem 3.18 (Bolzano-Weierstral). Let K C X be compact. Then any se-
quence in K has a cluster point in K.

Remark 3.19. In metric spaces also the converse is true, namely, that if every
sequence in a subset has a cluster point, then it is compact.

Proposition 3.20. Let f : X — Y be a continuous function and K C X a
compact set. Then also f(K) CY is compact.

Proposition 3.21. 1. Let X be a topological space and K C X compact.
Then any close subset A C K is also compact.

2. If X is a Hausdorff space and K compact, then K is closed.

Definition 3.22 (Sequential compactness).
Let X be a topological space. Then, K C X is called sequentially compact if
every sequence in K has a convergent subsequence with limit in K.

Proposition 3.23. A subset K C (X, d) of a metric space is compact if and only
if it is sequentially compact.

Definition 3.24 (Bounded sets and the diameter of a set).
Let X be a metric space.

1. A subset B C X is bounded, if

IC e RVz,y € B: d(z,y) <C

2. The diameter of the set Y C X is

diam(Y) = sup{d(z,y) | z,y € Y} € [0,00) U {o0}
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Theorem 3.25.
Let X be a metric space and K C X compact. Then K is bounded and closed.

Theorem 3.26 (Heine-Borel). A subset K of a finite-dimensional normed space
is compact if it is bounded and closed.

Theorem 3.27 (Weierstral). Let f : K — R be a continuous function and K
compact. Then f is bounded (f(K) C R is bounded) and attains its mazimum
and its mintmum.

Definition 3.28 (Equicontinuity).
Let X,Y be metric spaces and A C C(X,Y). Then the set A is called equicon-
tinuous at x € X, if

Ve>030 >0VfeA: f(Bs(x)) C B(f(z)).

Theorem 3.29 (Arzela-Ascoli). Let X be a compact metric space and consider
C(X,C) equipped with the || - ||so-norm. A subset K C C(X,C) is compact, if
and only if it is closed, bounded pointwise (i.e. Yx € X :

sup | f(x)] < o0)
fekK

and equicontinuous.

Definition 3.30 (Connected, disconnected and path connected spaces).
Let X be a topological space. If X is the union of two disjoint, open, non-empty
sets, then X is disconnected, otherwise connected.
X is path-connected, if any two points zg, 1 € X can be connected by a contin-
uous path, i.e. there exists

v:[0,1] = X

continuous, with y(0) = zg and (1) = z;.
Proposition 3.31. If X is path-connected then X is connected.

Proposition 3.32. Let O be an open subset of a normed space. Then O is
connected, if and only if it is path connected.

Proposition 3.33. Let f : X — Y be continuous and A C X (path) connected.
Then also f(A) CY is (path) connected.

Definition 3.34 (Bounded functions).
A function f: X — Y with X a set and (Y, d) a metric space, is called bounded,
if and only if f(X) C Y is bounded.

Definition 3.35 (Bounded linear maps and their norms).
A linear map A : V. — W between normed spaces is called bounded, if A(B1(0))
is bounded, i.e.

AC eRVz eV |Az||lw < Cllz|y.
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The smallest such constant C' is called the operator norm of A, i.e.
1Allop = sup{[| Azl | = € B1(0)}
The space of bounded linear maps V' — W is denoted by
LV, W) or B(V,W)
and || - ||lop is & norm on L(V,W).
Remark 3.36. 1. If Ae L(V,W) we have for all z € V

[Az]lw < |[Allop - ll2llv

2. Ae L(V,W) is bounded if and only if it is continuous.
3. If dim V' < oo, then all linear maps V' — W are bounded.

4. If (W] - |lw) is a Banach space, then (L(V, W), || - |lop) is also complete.
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Exercises

1. (Proposition 3.2) Let f : X — Y be a map between topological spaces
and assume that it is continuous at © € X. Prove that it is also sequentially
continuous at x.

2. (Proposition 3.3) Show that a map f: X — Y between metric spaces X,Y
is continuous at x € X, if and only if

Ve >036>0: f(Bs(a)) C Bs(f(a)).

3. (Theorem 3.18) Let K C X be a compact subset of a topological space.
Show that any sequence in K has a cluster point in K.

4. (Proposition 3.21) Show that any compact subset of a Hausdorff space is
closed.

5. Find an example of

(a)
(b)
()

)

(d) a connected but not path connected topological space.

a sequence of maps that converges pointwise but not uniformly.



	3 Continuity, compact sets, connected sets
	 Exercises


