CHAPTER 4

Differential calculus

Remark 4.1. Recall that for a function f : R D> Q - R

f'(wo) = lim f(x; = j:(()x[))
 lim f(xo+h) — f(zo)
o h—0 h

This can also be formulated with sequences:

V(xn) € Q\{zo}, lim x, =x9: lim Fan) = f(20)
n— o0 n—oo Ty — X0
Definition 4.2 (Partial derivative).
Let n € N, Q C R" open. For x € Q and j € {1,...,n} a function f: Q — R™
is called partially differentiable in the j*" coordinate direction at z, if the limit:

f(z+ hej) — f(x) flxi, 2, ... x5+ h, oo xy) — f21,. .. 2p)

e h = Jm h
exists. One writes:
Of v v fl@+hey) = fx)
a (1) = 031 () = Jimy :

and calls the vector 9; f(x) € R™ the j** partial derivative at .

If f is partially differentiable in all directions, at all 2 and all the partial deriva-
tives 0, f : 0 — R™ are continuous functions, then f is called continuously par-
tially differentiable. The vector space of the continuously partially differentiable
functions on Q C R” is denoted by C*(Q, R™).

Remark 4.3. Observe that the definition can immediately be extended to maps
between any finite dimensional vector spaces. Indeed, the definitions also work
if the target space is a general normed vector space. Also, we may analogously
define derivatives in arbitrary directions.

Definition 4.4 (Vector field).
A continuous map f : R™ D Q — R" is called a vector field on Q.
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4. DIFFERENTIAL CALCULUS 26

Definition 4.5 (Higher order partial derivatives). A function f: R™ D Q — R™
is called r-times continuously partially differentiable, if for all j = (j1,...,4r),

ji € {17"'777‘}
1. fisc.p.d.
2. 9;, f is c.p.d.

3. 8j28j1 is C.p.d.

4. 0. ...0; f is continuous

The real vector space of r-times c.p.d. functions is denoted by C" (2, R™).
Definition 4.6. Let Q C R", g € CY(Q,R"), f € C?*(,R). Then:

Vi:Q—=R" z—Vf(x)=(01f(x),...,0nf(z))

is called the gradient of f,

0
divg: Q —» R, x +— divg(x 28?
J

is called the divergence of g,

d2g3(x) — O392(x)
curlg : Q — R", z—curlg(x) = | O3g1(z) — 0193(x)

O1g2() — Dagr(z)

for n = 3 is called the curl of g, and:

: 0% f
Af:Q—R, z— Af(z) =div(Vf)(x) = W@)

j=1 "3
is called the Laplace of f.

Ezercise 4.1. Let g : R - R", x+ g(z) =z and f: R"\{0} - R, =z +—
||z]|2. Compute divg and Af.

Theorem 4.7 (Schwarz).
Let f € C?(Q,R™). ThenVx € Q, i,j € {1,...,n}

Corollary 4.8. Let 2 C R3, f € C?(Q,R) and g € C*(Q,R3). Then curl(Vf) =
0 and div(curlg) = 0.
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The derivative as linear approximation

For f: R — R differentiability at zp € R means

T—T0 T — X T—=T0 T — TQ
where p(z,x0) = f(z) — f(x0) — f'(x0)(x — 0) or, after reshuffling

f@) = f(zo) + f'(z0)(x — w0) + ¢ (2, 70)

where

o(x,z9) = o(|lx —xo|) &  lim M:O.
T—TQ ‘q;—xo‘

The map R — R, =z — f/(zg) -z is R-linear and the map R — R, z +—
f(zo)+ f(x0)(x—x0) is affine-R-linear. Hence, we think of f(z¢)+ f'(zo)(x —x0)
as the (affine) linear approximation to f near x.

Definition 4.9 (Total derivative).
Let Q@ C R™ open and f : Q@ — R™. We call f differentiable at xy € €Q, if there
exists an linear-map A : R™ — R™ such that:

o @) = Flw) = A = w0)l

=0
z—vao |z — zoll2

Then A is uniquely determined by the above equation, is denoted by D f|,, and
called the total derivative or the differential of f at xg.
If f:Q — R™ is differentiable at all x € Q, then f is called differentiable on 2
and

Df:Q— LR" R™), x— Df|y

is a m X n matrix-valued function on €.

Remark 4.10. f : Q — R™ is differentiable at o = f(z) = f(x0) + Df|z,(x —
o) + o([|z — zol|2)

Theorem 4.11 (Jacobi matrix).
Let f:Q — R™ be differentiable at a point xo € Q2. Then

_0fi
(Dflao)ij = oz, (o)
or, more explicitly
O1fi(zo) ... Onfi(xo) V fi(zo)
Dflzy = : : = :

1s called the Jacobian matriz.
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Proposition 4.12. Let Q C R" open and f € CY(Q,R™). Then f is differen-
tiable.

cont. part. diff. = differentiable = part. diff.
J

continuous

None of the implications holds in the reversed direction! But cont. part. diff. <
differentiable with continuous derivative.

Proposition 4.13 (Chain rule). Let Q C R™ and ' C R™ be open. Consider
maps

R 5 Q% o cRm L R

If g is differentiable at x € Q and f is differentiable at g(x) € ', then fog:
Q — R is differentiable at x and

D(fog)|l‘ :Df|g(as) ODg‘CE'

Remark 4.14. Often times the chain rule is written with a multiplication instead
of a composition, i.e. D(f o g)lz = Dfly(z) - Dgle- This is because if we think of
linear maps in terms of matrices, composition is just matrix multiplication. Let,
for instance v € R™. Then, the components of D(f o g)|, are

(D(fog)lz)i=> > (Dflyw))ii(Dgle) kv -
k=1 j=1
Corollary 4.15. For a function f € CY(Q,R™), xg € Q, and v € R™ we have
avf(x()) = Df|zov .

Fundamental theorems

First want to state the Taylor theorem. To do so, however, we have to understand
higher-order differentials. For f: Q — W, with Q C V an open subset of a finite
dimensional vector space and W a normed space, the differential D f is a map

Df:Q— L(V,IV).
Thus the second differential D(Df) is a map
D(DF): Q — LV, L(V,W)) 2 Lo(V x V, W)
(= bilinear maps V' x V — W) and the k" derivative:

DFf:G = Lp(Vx...xV,W).

k-times
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Theorem 4.16 (Taylor). Let Q C V open, x¢ € Q, and 6 > 0 such that Bs(xo) C
Q. Then for any function f € C*(Q, W) and x € Bs(zo)
1
f(@) = f(20) + Dflay (= w0) + 5 D* flug (@ = 20, 2 = 70)

1
+...+5Dkf|xo(:c—x0,...,1:—a:0)+0(Hx—az0||€/).

Definition 4.17 (Local extremum). Let X be a topological space and f: X —
R. A point g € X is called a local mazimum of f, if

U Cc U(xo) : Ve e U\{zo} :  f(x) < f(zo)

If the strict inequality < holds, we call it a strict local mazimum. The defini-
tions of local minimum and strict local minimum are analogous, by reversing the
direction of the inequalities.

Proposition 4.18. Let @ C V and f € CY(,R) have a local extremum at
xo € Q. Then Df|y, = 0.

Proposition 4.19. Let Q C V and f € C*(Q,R) and ¢ € Q such that Df|,, =
0.

1. If D?f|4o(hyh) > 0 Yh € V\{0}, then f has a strict local minimum at x.
2. D?f|so(h,h) < 0 Vh € V\{0}, then f has a stric local mazimum at xo.
3. If D2 f|,, is indefinite, then f has no local extremum at x.

Theorem 4.20 (Fundamental theorem of calculus). Let f : [a,b] — R be con-
tinuous in [a,b] and differentiable in (a,b). Then ,

b
£(b) - fla) = / f'(w) dz.

Theorem 4.21 (Mean value theorem). For a function f : [a,b] — R continuous
and differentiable on (a,b). Then 3xg € (a,b):

iy Sb) = fla)
Theorem 4.22 (FTC in higher dimension). Let Q@ C R™ and f : Q@ — K" be
continuously differentiable. Let ~y : [a,b] — Q continuously differentiable. Then

b
F6O) - £0@) = [ Dflw o7/ (t) dt.
a KneRn  ER?
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Here the integral of a vector should be understood as the integral of each compo-
nent, i.e.

b n
FOB)); — Fy(a); = / S D F )i (7 (1));
a =1

n b . )
=3 [5Gy

J=1
for everyi=1,...m.

Theorem 4.23 (MVT in higher dimension). Q C R*, f € CY(Q,K™). Let
x,h € R™ such that {x +th |t € [0,1]} C Q. Then

1
f+ )~ f@) = | [ Dfloemdt ] b
0
Corollary 4.24. The setup is as in the Theorem 4.23. Then

1
5@ = £ < | [ DA\ende] o=
0

sup [[Df]-||
zETY

For f:R™ — R we obtain again

fy) = f(z) = Dfl:- (y — )

Definition 4.25 (Equivalence of norms).
Two norms || || and || - || on a vector space V' are equivalent, if 3¢, C' > OVx € V:

clzlla < ll#lly < Cllzlla -
Theorem 4.26. On finite dimensional vector spaces, all norms are equivalent.

Theorem 4.27. All finite dimensional normed spaces are complete (Banach
spaces).

Definition 4.28 (Frechet derivative).
Let X and Y be Banach spaces and 2 C X open. A map f:Q — Y is Frechet
differentiable at x € §Q, if there exists a continuous linear map A : X — Y such
that

flx+h) = f(z)+ Ah+o(||h]x)

for h in a neighbourhood of 0 € X. The notation A = D f|, remains.
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Example 4.29. X = C%([0,7],R"). An element x € X isamap z : [0,T] — R".
We can equip this space with a norm

l2]lx = llzlloo + %[00 + [[£]l0o

an turn it into a Banach space with respect to that norm. The action is given by
T
S:X—->R z+— S)= /L(x(t),x'(t))dt,
0

where L : R" xR" = R, (q,v) = L(g,v) € C? (e.g. L(g,v) = im|v|> =V (q)).
We compute the derivative DS|; of S: z,h € X

S(x+h) =

—y

L (af(t) +R(t), & (t) + h(t)) dt
0T

— [ (£®:30) + {DuLlwsn - B0 + DoLlwscy - hO)}) + o(A1%)
0

T
= S(z) +/ (D(IL’(x(t),ab(t)) “h(t) + DyL|(z0),5(t)) - h(t)) +o(||h[%)
0

DS|zh
= S() + DvL|(z(1),a(1)) - M(T") = DoL(2(0),2:0))
T

d
+/ <DQL‘(x(t),5c(t)) - (CﬁDvL’(z(t),i(t))>> h(t) dt + o(||h]%)
0
for h € X such that h(0) = h(T) =0

d
DSlsh =0 & DyLla,iw) — 7 PvLll@w.am) =0

the Euler-Lagrange equation.
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Exercises

1. Let f:R3\ {0} = R and F : R? — R? be defined by
f(@) = llzll2,  F(z) =z =z

for some A € R and zy € R?. Compute Vf, V2f, Af, div F and curl F.

2. Let f:V — W be a map between finite dimensional normed spaces and fix
vo € V. Show that there exists at most one linear map L € L(V, W) such that

17 (w0 +0) = f(w) = L@)w _

[v]lv—0 lvllv

3. Fix a € (0,1). We say that f € C%%([a,b]) if
3C > 0Vz,y € [a,b] = [f(z) = f(y)| < Clz —y|*.
Show the following inclusions:

CY([a,b]) € C%([a, b)) € C¥([a,b]) C C([a,b]).

4. Let f:R" D B,(0) = R be a C! function such that

1
sup [[Vf(@)]]2 < -
z€B,-(0) r

Show that if there is some x € B, (0) such that f(z) =0, then ||f|lc < 1.



CHAPTER 5

Implicit functions and ordinary
differential equations

Implicit function theorem

Say we have a system of m algebraic equations on n variables

Fi(z1,...,2,) =0

Fo(x1,...,2y) =0

In the case of linear equations, if n = m, basic linear algebra tells us that the
solvability depends on the degeneracy of the coefficient matrix, whereas if n < m,
the degeneracy of a coefficient sub-matrix determines the parametrizability of the
space solutions.

In the nonlinear case, one simply "linearizes" the problem around a point and
obtains a similar statement locally. Consider a function

F:R"xR™ = R™ — F
;o (2y) (z,9)
Rn+m
and think of level sets as solutions to a system of algebraic equations, i.e.
Fl(xla"'axn7y17"'7ym> =0
Flz,y) =0 <=
Fm(l'ly"'vxnvyla"'vym) =0

where we want to solve for the (yi,...,yn) variables in terms of the extra
(21,...,x,) parameters.

Theorem 5.1 (Implicite function theorem). Let Q@ C R"™™ be open, F €
CL(Q,R™), and
N ={(z,y) € Q| F(z,y) = 0}.
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