Differential calculus

Remark 4.1. Recall that for a function $f: \mathbb{R} \supset \Omega \rightarrow \mathbb{R}$

$$
\begin{aligned}
f^{\prime}\left(x_{0}\right) & =\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}} \\
& =\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}
\end{aligned}
$$

This can also be formulated with sequences:

$$
\forall\left(x_{n}\right) \subset \Omega \backslash\left\{x_{0}\right\}, \lim _{n \rightarrow \infty} x_{n}=x_{0}: \quad \lim _{n \rightarrow \infty} \frac{f\left(x_{n}\right)-f\left(x_{0}\right)}{x_{n}-x_{0}}
$$

Definition 4.2 (Partial derivative).
Let $n \in \mathbb{N}, \Omega \subset \mathbb{R}^{n}$ open. For $x \in \Omega$ and $j \in\{1, \ldots, n\}$ a function $f: \Omega \rightarrow \mathbb{R}^{m}$ is called partially differentiable in the $j^{t h}$ coordinate direction at x, if the limit:

$$
\lim _{h \rightarrow 0} \frac{f\left(x+h e_{j}\right)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{f\left(x_{1}, x_{2}, \ldots, x_{j}+h, \ldots, x_{n}\right)-f\left(x_{1}, \ldots, x_{n}\right)}{h}
$$

exists. One writes:

$$
\frac{\partial f}{\partial x_{j}}(x)=\partial_{j} f(x):=\lim _{h \rightarrow 0} \frac{f\left(x+h e_{j}\right)-f(x)}{h}
$$

and calls the vector $\partial_{j} f(x) \in \mathbb{R}^{m}$ the $j^{t h}$ partial derivative at x.
If f is partially differentiable in all directions, at all Ω and all the partial derivatives $\partial_{j} f: \Omega \rightarrow \mathbb{R}^{m}$ are continuous functions, then f is called continuously partially differentiable. The vector space of the continuously partially differentiable functions on $\Omega \subset \mathbb{R}^{n}$ is denoted by $C^{1}\left(\Omega, \mathbb{R}^{m}\right)$.
Remark 4.3. Observe that the definition can immediately be extended to maps between any finite dimensional vector spaces. Indeed, the definitions also work if the target space is a general normed vector space. Also, we may analogously define derivatives in arbitrary directions.

Definition 4.4 (Vector field).
A continuous map $f: \mathbb{R}^{n} \supset \Omega \rightarrow \mathbb{R}^{n}$ is called a vector field on Ω.

Definition 4.5 (Higher order partial derivatives). A function $f: \mathbb{R}^{n} \supset \Omega \rightarrow \mathbb{R}^{m}$ is called r-times continuously partially differentiable, if for all $j=\left(j_{1}, \ldots, j_{r}\right)$, $j_{i} \in\{1, \ldots, n\}$

1. f is c.p.d
2. $\partial_{j_{1}} f$ is c.p.d.
3. $\partial_{j_{2}} \partial_{j_{1}}$ is c.p.d.
4. $\partial_{j_{r}} \ldots \partial_{j_{1}} f$ is continuous

The real vector space of r-times c.p.d. functions is denoted by $C^{r}\left(\Omega, \mathbb{R}^{m}\right)$.
Definition 4.6. Let $\Omega \subset \mathbb{R}^{n}, g \in C^{1}\left(\Omega, \mathbb{R}^{n}\right), f \in C^{2}(\Omega, \mathbb{R})$. Then:

$$
\nabla f: \Omega \rightarrow \mathbb{R}^{n} \quad x \mapsto \nabla f(x)=\left(\partial_{1} f(x), \ldots, \partial_{n} f(x)\right)
$$

is called the gradient of f,

$$
\operatorname{div} g: \Omega \rightarrow \mathbb{R}, \quad x \mapsto \operatorname{div} g(x)=\sum_{j=1}^{n} \frac{\partial g_{j}}{\partial x_{j}}(x)
$$

is called the divergence of g,

$$
\operatorname{curl} g: \Omega \rightarrow \mathbb{R}^{n}, \quad x \mapsto \operatorname{curl} g(x)=\left(\begin{array}{c}
\partial_{2} g_{3}(x)-\partial_{3} g_{2}(x) \\
\partial_{3} g_{1}(x)-\partial_{1} g_{3}(x) \\
\partial_{1} g_{2}(x)-\partial_{2} g_{1}(x)
\end{array}\right)
$$

for $n=3$ is called the curl of g , and:

$$
\Delta f: \Omega \rightarrow \mathbb{R}, \quad x \mapsto \Delta f(x)=\operatorname{div}(\nabla f)(x)=\sum_{j=1}^{n} \frac{\partial^{2} f}{\partial x_{j}^{2}}(x)
$$

is called the Laplace of f.
Exercise 4.1. Let $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, \quad x \mapsto g(x)=x$ and $f: \mathbb{R}^{n} \backslash\{0\} \rightarrow \mathbb{R}, \quad x \mapsto$ $\|x\|_{2}$. Compute div g and Δf.

Theorem 4.7 (Schwarz).
Let $f \in C^{2}\left(\Omega, \mathbb{R}^{m}\right)$. Then $\forall x \in \Omega, i, j \in\{1, \ldots, n\}$

$$
\partial_{j} \partial_{i} f(x)=\partial_{i} \partial_{j} f(x)
$$

Corollary 4.8. Let $\Omega \subset \mathbb{R}^{3}, f \in C^{2}(\Omega, \mathbb{R})$ and $g \in C^{2}\left(\Omega, \mathbb{R}^{3}\right)$. Then $\operatorname{curl}(\nabla f)=$ 0 and $\operatorname{div}(\operatorname{curl} g)=0$.

The derivative as linear approximation

For $f: \mathbb{R} \rightarrow \mathbb{R}$ differentiability at $x_{0} \in \mathbb{R}$ means

$$
\lim _{x \rightarrow x_{0}}\left(\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}-f^{\prime}\left(x_{0}\right)\right)=\lim _{x \rightarrow x_{0}} \frac{\varphi\left(x, x_{0}\right)}{x-x_{0}}=0
$$

where $\varphi\left(x, x_{0}\right)=f(x)-f\left(x_{0}\right)-f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)$ or, after reshuffling

$$
f(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\varphi\left(x, x_{0}\right)
$$

where

$$
\varphi\left(x, x_{0}\right)=o\left(\left|x-x_{0}\right|\right) \quad: \Leftrightarrow \quad \lim _{x \rightarrow x_{0}} \frac{\left|\varphi\left(x, x_{0}\right)\right|}{\left|x-x_{0}\right|}=0
$$

The map $\mathbb{R} \rightarrow \mathbb{R}, \quad x \mapsto f^{\prime}\left(x_{0}\right) \cdot x$ is \mathbb{R}-linear and the map $\mathbb{R} \rightarrow \mathbb{R}, \quad x \mapsto$ $f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)$ is affine- \mathbb{R}-linear. Hence, we think of $f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)$ as the (affine) linear approximation to f near x_{0}.

Definition 4.9 (Total derivative).
Let $\Omega \subset \mathbb{R}^{n}$ open and $f: \Omega \rightarrow \mathbb{R}^{m}$. We call f differentiable at $x_{0} \in \Omega$, if there exists an linear-map $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ such that:

$$
\lim _{x \rightarrow x_{0}} \frac{\left\|f(x)-f\left(x_{0}\right)-A\left(x-x_{0}\right)\right\|_{2}}{\left\|x-x_{0}\right\|_{2}}=0
$$

Then A is uniquely determined by the above equation, is denoted by $\left.D f\right|_{x_{0}}$, and called the total derivative or the differential of f at x_{0}.
If $f: \Omega \rightarrow \mathbb{R}^{m}$ is differentiable at all $x \in \Omega$, then f is called differentiable on Ω and

$$
D f: \Omega \rightarrow \mathcal{L}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right),\left.\quad x \mapsto D f\right|_{x}
$$

is a $m \times n$ matrix-valued function on Ω.
Remark 4.10. $f: \Omega \rightarrow \mathbb{R}^{m}$ is differentiable at $x_{0} \Rightarrow f(x)=f\left(x_{0}\right)+\left.D f\right|_{x_{0}}(x-$ $\left.x_{0}\right)+o\left(\left\|x-x_{0}\right\|_{2}\right)$

Theorem 4.11 (Jacobi matrix).
Let $f: \Omega \rightarrow \mathbb{R}^{m}$ be differentiable at a point $x_{0} \in \Omega$. Then

$$
\left(\left.D f\right|_{x_{0}}\right)_{i j}=\frac{\partial f_{i}}{\partial x_{j}}\left(x_{0}\right)
$$

or, more explicitly

$$
\left.D f\right|_{x_{0}}=\left(\begin{array}{ccc}
\partial_{1} f_{1}\left(x_{0}\right) & \ldots & \partial_{n} f_{1}\left(x_{0}\right) \\
\vdots & & \vdots \\
\partial_{1} f_{m}\left(x_{0}\right) & \ldots & \partial_{n} f_{m}\left(x_{0}\right)
\end{array}\right)=\left(\begin{array}{c}
\nabla f_{1}\left(x_{0}\right) \\
\vdots \\
\nabla f_{m}\left(x_{0}\right)
\end{array}\right)
$$

is called the Jacobian matrix.

Proposition 4.12. Let $\Omega \subset \mathbb{R}^{n}$ open and $f \in C^{1}\left(\Omega, \mathbb{R}^{m}\right)$. Then f is differentiable.

$$
\text { cont. part. diff. } \Rightarrow \underset{\substack{\text { differentiable } \\ \text { continuous }}}{ } \Rightarrow \text { part. diff. }
$$

None of the implications holds in the reversed direction! But cont. part. diff. \Leftrightarrow differentiable with continuous derivative.

Proposition 4.13 (Chain rule). Let $\Omega \subset \mathbb{R}^{n}$ and $\Omega^{\prime} \subset \mathbb{R}^{m}$ be open. Consider maps

$$
\mathbb{R}^{n} \supset \Omega \xrightarrow{g} \Omega^{\prime} \subset \mathbb{R}^{m} \xrightarrow{f} \mathbb{R}^{l} .
$$

If g is differentiable at $x \in \Omega$ and f is differentiable at $g(x) \in \Omega^{\prime}$, then $f \circ g$: $\Omega \rightarrow \mathbb{R}^{l}$ is differentiable at x and

$$
\left.D(f \circ g)\right|_{x}=\left.\left.D f\right|_{g(x)} \circ D g\right|_{x}
$$

Remark 4.14. Often times the chain rule is written with a multiplication instead of a composition, i.e. $\left.D(f \circ g)\right|_{x}=\left.\left.D f\right|_{g(x)} \cdot D g\right|_{x}$. This is because if we think of linear maps in terms of matrices, composition is just matrix multiplication. Let, for instance $v \in \mathbb{R}^{n}$. Then, the components of $\left.D(f \circ g)\right|_{x}$ are

$$
\left(\left.D(f \circ g)\right|_{x}\right)_{i}=\sum_{k=1}^{n} \sum_{j=1}^{m}\left(\left.D f\right|_{g(x)}\right)_{i j}\left(\left.D g\right|_{x}\right)_{j k} v_{k}
$$

Corollary 4.15. For a function $f \in C^{1}\left(\Omega, \mathbb{R}^{m}\right), x_{0} \in \Omega$, and $v \in \mathbb{R}^{n}$ we have

$$
\partial_{v} f\left(x_{0}\right)=\left.D f\right|_{x_{0}} v
$$

Fundamental theorems

First want to state the Taylor theorem. To do so, however, we have to understand higher-order differentials. For $f: \Omega \rightarrow W$, with $\Omega \subset V$ an open subset of a finite dimensional vector space and W a normed space, the differential $D f$ is a map

$$
D f: \Omega \rightarrow \mathcal{L}(V, W)
$$

Thus the second differential $D(D f)$ is a map

$$
D(D f): \Omega \rightarrow \mathcal{L}(V, \mathcal{L}(V, W)) \cong \mathcal{L}_{2}(V \times V, W)
$$

(= bilinear maps $V \times V \rightarrow W)$ and the $k^{t h}$ derivative:

$$
D^{k} f: G \rightarrow \mathcal{L}_{k}(\underbrace{V \times \ldots \times V}_{k \text {-times }}, W) .
$$

Theorem 4.16 (Taylor). Let $\Omega \subset V$ open, $x_{0} \in \Omega$, and $\delta>0$ such that $B_{\delta}\left(x_{0}\right) \subset$ Ω. Then for any function $f \in C^{k}(\Omega, W)$ and $x \in B_{\delta}\left(x_{0}\right)$

$$
\begin{aligned}
f(x)=f(& \left.x_{0}\right)+\left.D f\right|_{x_{0}}\left(x-x_{0}\right)+\left.\frac{1}{2} D^{2} f\right|_{x_{0}}\left(x-x_{0}, x-x_{0}\right) \\
& +\ldots+\left.\frac{1}{k!} D^{k} f\right|_{x_{0}}\left(x-x_{0}, \ldots, x-x_{0}\right)+o\left(\left\|x-x_{0}\right\|_{V}^{k}\right)
\end{aligned}
$$

Definition 4.17 (Local extremum). Let X be a topological space and $f: X \rightarrow$ \mathbb{R}. A point $x_{0} \in X$ is called a local maximum of f, if

$$
\exists U \subset \mathcal{U}\left(x_{0}\right): \forall x \in U \backslash\left\{x_{0}\right\}: \quad f(x) \leq f\left(x_{0}\right)
$$

If the strict inequality $<$ holds, we call it a strict local maximum. The definitions of local minimum and strict local minimum are analogous, by reversing the direction of the inequalities.

Proposition 4.18. Let $\Omega \subset V$ and $f \in C^{1}(\Omega, \mathbb{R})$ have a local extremum at $x_{0} \in \Omega$. Then $\left.D f\right|_{x_{0}}=0$.

Proposition 4.19. Let $\Omega \subset V$ and $f \in C^{2}(\Omega, \mathbb{R})$ and $x_{0} \in \Omega$ such that $\left.D f\right|_{x_{0}}=$ 0 .

1. If $\left.D^{2} f\right|_{x_{0}}(h, h)>0 \forall h \in V \backslash\{0\}$, then f has a strict local minimum at x_{0}.
2. $\left.D^{2} f\right|_{x_{0}}(h, h)<0 \forall h \in V \backslash\{0\}$, then f has a stric local maximum at x_{0}.
3. If $\left.D^{2} f\right|_{x_{0}}$ is indefinite, then f has no local extremum at x_{0}.

Theorem 4.20 (Fundamental theorem of calculus). Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous in $[a, b]$ and differentiable in (a, b). Then,

$$
f(b)-f(a)=\int_{a}^{b} f^{\prime}(x) d x
$$

Theorem 4.21 (Mean value theorem). For a function $f:[a, b] \rightarrow \mathbb{R}$ continuous and differentiable on (a, b). Then $\exists x_{0} \in(a, b)$:

$$
f^{\prime}\left(x_{0}\right)=\frac{f(b)-f(a)}{b-a}
$$

Theorem 4.22 (FTC in higher dimension). Let $\Omega \subset \mathbb{R}^{n}$ and $f: \Omega \rightarrow \mathbb{K}^{n}$ be continuously differentiable. Let $\gamma:[a, b] \rightarrow \Omega$ continuously differentiable. Then

$$
f(\gamma(b))-f(\gamma(a))=\int_{a}^{b} \underbrace{\left.D f\right|_{\gamma(t)}}_{\mathbb{K}^{n} \leftarrow \mathbb{R}^{n}} \circ \underbrace{\gamma^{\prime}(t)}_{\in \mathbb{R}^{n}} d t
$$

Here the integral of a vector should be understood as the integral of each component, i.e.

$$
\begin{aligned}
f(\gamma(b))_{i}-f(\gamma(a))_{i} & =\int_{a}^{b} \sum_{j=1}^{n}\left(\left.D f\right|_{\gamma(t)}\right)_{i j}\left(\gamma^{\prime}(t)\right)_{j} d t \\
& =\sum_{j=1}^{n} \int_{a}^{b} \frac{\partial f_{i}}{\partial x_{j}}(\gamma(t)) \frac{d \gamma_{j}}{d t}(t) d t
\end{aligned}
$$

for every $i=1, \ldots m$.
Theorem 4.23 (MVT in higher dimension). $\Omega \subset \mathbb{R}^{n}, f \in C^{1}\left(\Omega, \mathbb{K}^{m}\right)$. Let $x, h \in \mathbb{R}^{n}$ such that $\{x+$ th $\mid t \in[0,1]\} \subset \Omega$. Then

$$
f(x+h)-f(x)=\left(\left.\int_{0}^{1} D f\right|_{x+t h} d t\right) \cdot h
$$

Corollary 4.24. The setup is as in the Theorem 4.23. Then

$$
\|f(x)-f(y)\| \leq \underbrace{\left\|\left.\int_{0}^{1} D f\right|_{x+t h} d t\right\|_{o p}}_{\sup _{z \in \overline{x y}}\left\|\left.D f\right|_{z}\right\|} \cdot\|x-y\|
$$

For $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ we obtain again

$$
f(y)-f(x)=\left.D f\right|_{z} \cdot(y-x)
$$

Definition 4.25 (Equivalence of norms).
Two norms $\|\cdot\|_{a}$ and $\|\cdot\|_{b}$ on a vector space V are equivalent, if $\exists c, C>0 \forall x \in V$:

$$
c\|x\|_{a} \leq\|x\|_{b} \leq C\|x\|_{a} .
$$

Theorem 4.26. On finite dimensional vector spaces, all norms are equivalent.
Theorem 4.27. All finite dimensional normed spaces are complete (Banach spaces).

Definition 4.28 (Frechet derivative).
Let X and Y be Banach spaces and $\Omega \subset X$ open. A map $f: \Omega \rightarrow Y$ is Frechet differentiable at $x \in \Omega$, if there exists a continuous linear map $A: X \rightarrow Y$ such that

$$
f(x+h)=f(x)+A h+o\left(\|h\|_{X}\right)
$$

for h in a neighbourhood of $0 \in X$. The notation $A=\left.D f\right|_{x}$ remains.

Example 4.29. $X=C^{2}\left([0, T], \mathbb{R}^{n}\right)$. An element $x \in X$ is a map $x:[0, T] \rightarrow \mathbb{R}^{n}$. We can equip this space with a norm

$$
\|x\|_{X}=\|x\|_{\infty}+\|\dot{x}\|_{\infty}+\|\ddot{x}\|_{\infty}
$$

an turn it into a Banach space with respect to that norm. The action is given by

$$
S: X \rightarrow \mathbb{R} \quad x \mapsto S(x)=\int_{0}^{T} L(x(t), \dot{x}(t)) d t
$$

where $L: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}, \quad(q, v) \mapsto L(q, v) \in C^{2}\left(\right.$ e.g. $\left.L(q, v)=\frac{1}{2} m\|v\|^{2}-V(q)\right)$. We compute the derivative $\left.D S\right|_{x}$ of $S: x, h \in X$

$$
\begin{aligned}
S(x+h) & =\int_{0}^{T} L(x(t)+h(t), \dot{x}(t)+\dot{h}(t)) d t \\
& =\int_{0}^{T}\left(L(x(t), \dot{x}(t))+\left\{\left.D_{q} L\right|_{(x(t), \dot{x}(t))} \cdot h(t)+\left.D_{v} L\right|_{(x(t), \dot{x}(t))} \cdot \dot{h}(t)\right\}\right)+o\left(\|h\|_{X}^{2}\right) \\
& =S(x)+\underbrace{\int_{0}^{T}\left(\left.D_{q} L\right|_{(x(t), \dot{x}(t))} \cdot h(t)+\left.D_{v} L\right|_{(x(t), \dot{x}(t))} \cdot \dot{h}(t)\right)}_{\left.D S\right|_{x x} \cdot h}+o\left(\|h\|_{X}^{2}\right) \\
& =S(x)+\left.D_{v} L\right|_{(x(T), \dot{x}(T))} \cdot h(T)-\left.D_{v} L\right|_{(x(0), \dot{x}(0))} \\
& +\int_{0}^{T}\left(\left.D_{q} L\right|_{(x(t), \dot{x}(t))}-\left(\left.\frac{d}{d t} D_{v} L\right|_{(x(t), \dot{x}(t))}\right)\right) h(t) d t+o\left(\|h\|_{X}^{2}\right)
\end{aligned}
$$

for $h \in X$ such that $h(0)=h(T)=0$

$$
\left.D S\right|_{x} h=\left.0 \quad \Leftrightarrow \quad D_{q} L\right|_{(x(t), \dot{x}(t))}-\left.\frac{d}{d t} D_{v} L\right|_{(x(t), \dot{x}(t))}=0
$$

the Euler-Lagrange equation.

Exercises

1. Let $f: \mathbb{R}^{3} \backslash\{0\} \rightarrow \mathbb{R}$ and $F: \mathbb{R}^{3} \rightarrow R^{3}$ be defined by

$$
f(x)=\|x\|_{2}, \quad F(x)=\lambda x-x_{0}
$$

for some $\lambda \in \mathbb{R}$ and $x_{0} \in \mathbb{R}^{3}$. Compute $\nabla f, \nabla^{2} f, \Delta f, \operatorname{div} F$ and curl F.
2. Let $f: V \rightarrow W$ be a map between finite dimensional normed spaces and fix $v_{0} \in V$. Show that there exists at most one linear map $L \in \mathcal{L}(V, W)$ such that

$$
\lim _{\|v\|_{V} \rightarrow 0} \frac{\left\|f\left(v_{0}+v\right)-f\left(v_{0}\right)-L(v)\right\|_{W}}{\|v\|_{V}}=0
$$

3. Fix $\alpha \in(0,1)$. We say that $f \in C^{0, \alpha}([a, b])$ if

$$
\exists C>0 \forall x, y \in[a, b]: \quad|f(x)-f(y)| \leq C|x-y|^{\alpha} .
$$

Show the following inclusions:

$$
C^{1}([a, b]) \subset C^{0,1}([a, b]) \subset C^{0, \alpha}([a, b]) \subset C([a, b])
$$

4. Let $f: \mathbb{R}^{n} \supset B_{r}(0) \rightarrow \mathbb{R}$ be a C^{1} function such that

$$
\sup _{x \in B_{r}(0)}\|\nabla f(x)\|_{2} \leq \frac{1}{r}
$$

Show that if there is some $x \in B_{r}(0)$ such that $f(x)=0$, then $\|f\|_{\infty} \leq 1$.

Implicit functions and ordinary differential equations

Implicit function theorem

Say we have a system of m algebraic equations on n variables

$$
\begin{aligned}
F_{1}\left(x_{1}, \ldots, x_{n}\right) & =0 \\
\vdots & \\
F_{m}\left(x_{1}, \ldots, x_{n}\right) & =0
\end{aligned}
$$

In the case of linear equations, if $n=m$, basic linear algebra tells us that the solvability depends on the degeneracy of the coefficient matrix, whereas if $n<m$, the degeneracy of a coefficient sub-matrix determines the parametrizability of the space solutions.
In the nonlinear case, one simply "linearizes" the problem around a point and obtains a similar statement locally. Consider a function

$$
F: \underbrace{\mathbb{R}^{n} \times \mathbb{R}^{m}}_{\mathbb{R}^{n+m}} \rightarrow \mathbb{R}^{m}, \quad(x, y) \mapsto F(x, y)
$$

and think of level sets as solutions to a system of algebraic equations, i.e.

$$
F(x, y)=0 \Longleftrightarrow \begin{cases}F_{1}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right) & =0 \\ \vdots \\ F_{m}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right) & =0\end{cases}
$$

where we want to solve for the $\left(y_{1}, \ldots, y_{m}\right)$ variables in terms of the extra $\left(x_{1}, \ldots, x_{n}\right)$ parameters.

Theorem 5.1 (Implicite function theorem). Let $\Omega \subset \mathbb{R}^{n+m}$ be open, $F \in$ $C^{1}\left(\Omega, \mathbb{R}^{m}\right)$, and

$$
N \doteq\{(x, y) \in \Omega \mid F(x, y)=0\} .
$$

