
Chapter 6

Measure and integration theory

Remark 6.1. 1. Idea of the Riemann Integral: Approximate f by "stair func-
tions", i.e. decompose the domain into intervals (rectangles, cubes, ...) and
use

g(x) =

n∑
i=1

αiχ[ai,ai+1](x)

where for A ⊂ R the characteristic function of A is defined:

χA(x) =

{
1 x ∈ A
0 x /∈ A

The integral of a stair function is:∫
g(x)dx =

n∑
i=1

αi(ai+1 − ai)

2. Idea of the Lebesgue integral: Decompose the range of the function into
intervals [αi, αi+1) and approximate by "simple functions"

g(x) =
n∑
i=1

αiχAi(x)

e.g. Ai = f−1([αi, αi+1)) (not interval in general).
The integral of a simple function is given by:∫

g(x) dx =
n∑
i=1

αλ(Ai)

where λ(Ai) is the "length" of Ai (area, volume, measure).

Example 6.2. f(x) = χQ∩[0,1](x) is not Rieman integrable, but it is Lebesgue
integrable:

1∫
0

f(x)dx = 1 · λ(Q ∩ [0, 1]) + 0 · λ([0, 1]\Q) = 0
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Remark 6.3. Two advantages of the Lebesgue integral:

1. There are more integrable functions, meaning spaces of Lebesgue integrable
functions are complete.

2. The Lebesgue integral can be defined on all spaces where one can define a
measure λ (not only on R or Rn).

Basics of measure theory

In 1924 Banach and Tarski managed to prove that there exists no volume map
vol : P(R3) → [0,∞) such that

1. vol(∅) = 0, vol([0, 1]3) = 1

2. X1, ..., Xk ∈ P(R3) pairwise disjoint, then

vol
( k⋃
i=1

Xi) =
k∑
i=1

vol(Xi)

3. Invariant under transformations. Let v ∈ R3, A ∈ O(3), X ∈ R3, then

vol({Ax+ v : x ∈ X}) =: vol(A ·X + v) = vol(X)

To circumvent this problem σ-algebras and measure theory was created.

Definition 6.4 (σ-algebra).
A family A ⊂ P(X) of subsets of a set X is called σ-algebra, if

1. ∅ ∈ A

2. A ∈ A ⇒ AC ∈ A

3. Ak ∈ A for k ∈ N ⇒
∞⋃
k=1

Ak ∈ A

The elements of A are called the A-measurable sets.

Proposition 6.5. Let A be a σ-algebra on X. Then

1. X ∈ A

2. Ak ∈ A for k ∈ N ⇒
∞⋂
k=1

Ak ∈ A

3. A,B ∈ A ⇒ A\B ∈ A
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Example 6.6. 1. P(X) and {∅, X} are σ-algebras on X.

2. If Aj , j ∈ I are, σ-algebras on X, so is
⋂
j∈I

Aj .

Definition 6.7 (Generating system).
Let F ⊂ P(X). Then the σ-algebra generated by F is:

AF =
⋂

B is σ-alg.
F⊂B

B

Any F ⊂ P(X) that generates A is called generating system for A.

Definition 6.8 (Borel σ-algebra).
Let (X, T ) be a topological space. Then the σ-algebra

AT = B

generated by the topology is called the Borel σ-algebra on X.

Definition 6.9 (Measure).
Let A ⊂ P(X) be a σ-algebra. A map µ : A → [0,∞] is called a measure, if

1. µ(∅) = 0

2. For pairwise disjoint sets Ak ∈ A, k ∈ N,

µ
( ∞⋃
k=1

Ak

)
=
∞∑
k=1

µ(Ak) (σ-additivity)

We further call µ

1. a finite measure, µ(X) <∞,

2. a σ-finite measure, if there exists a decomposition X =
∞⋃
k=1

Ak such that

µ(Ak) <∞ ∀k.

The pair (X,A) is called a measurable space, the triple (X,A, µ) is called a
measure space.

Example 6.10. Let X be a set and x0 ∈ X. Then

v : P(X) → [0,∞], A 7→ v(A) =

{
|A| if A is finite
∞ otherwise

"counting measure"

and

δx0 : P(X) → [0,∞], A 7→ δx0(A) =

{
1 if x0 ∈ A

0 otherwise
"Dirac measure at x0”

are measures.



6. Measure and integration theory 44

Proposition 6.11. Let µ be a measure on (X,A) and A,B ∈ A. Then

µ(A ∪B) + µ(A ∩B) = µ(A) + µ(B)

and if A ⊂ B

µ(B) = µ(A) + µ(B\A) ⇒ µ(A) ≤ µ(B). monotony

For Aj ∈ A, j ∈ N,

µ
( ∞⋃
j=1

Aj

)
≤
∞∑
j=1

µ(Aj) sub-additivity

and if Aj ⊂ Aj+1 ∀j, then

lim
j→∞

µ(Aj) = µ
( ∞⋃
j=1

Aj

)
Definition 6.12 (Measurable function and the push-forward of a measure).
Let (X,A) and (Y, C) be measure spaces. A map f : X → Y is called A- C-
measurable, if

C ∈ C ⇒ f−1(C) ∈ A.

If µ is a measure on (X,A) then

f∗µ : C → [0,∞], C 7→ f∗µ(C) = µ
(
f−1(C)

)
is called its push-forward under f .

Remark 6.13 (Terminology from probability theory). A measure space (X,A, µ)
with µ(X) = 1 is called a probability space. Then the elements A ∈ A are called
events and µ(A) the probability of the event. Measurable functions f : X →
Y , (Y, C) a measurable space, are called random variables and the probability
measure f∗µ is called the distribution of f .

Theorem 6.14 (Lebesgue measure). There is a unique measure λ on (Rn,B) that
is translation invariant (i.e. λ(A+ x) = λ(A), ∀A ∈ B∀x ∈ Rn) and normalised
to λ((0, 1)n) = 1. It is called the Lebesgue-Borel measure and its completion is
called the Lebesgue measure.

Basics of integration theory

Definition 6.15 (Simple function).
A function g : X → [−∞,∞] is called simple, if g(X) = {α1, . . . , αk} is finite,
i.e.

g(x) =

k∑
j=1

αjχAj (x) with Aj ∩Ai = ∅ for i ̸= j



6. Measure and integration theory 45

Definition 6.16 (Integral of non-negative measurable functions).
Let (X,A, µ) be a measure space and g : X → [0,∞] a simple and measurable,
then ∫

X

g dµ
.
=

k∑
j=1

αjµ(Aj) .

For a measurable function f : X → [0,∞]∫
X

f dµ = sup
{∫
X

g dµ
∣∣∣ g : X → [0,∞] simple, measurable and g ≤ f

}
.

Definition 6.17 (Integral of measurable functions).
A measurable function f : X → [−∞,∞] is integrable, if for f+ = max{f, 0} and
f− = max{−f, 0} it holds that∫

f+ dµ <∞
∫
f− dµ <∞.

Then ∫
f dµ

.
=

∫
f+ dµ−

∫
f− dµ .

Proposition 6.18. Let f, g : X → R be integrable and α ∈ R. Then

1.
∫
αf dµ = α

∫
f dµ

2.
∫
(f + g) dµ =

∫
f dµ+

∫
g dµ

3.
∣∣∣ ∫ f dµ∣∣∣ ≤ ∫

|f | dµ

4. f ≤ g ⇒
∫
f dµ ≤

∫
g dµ

Theorem 6.19 (Beppo-Levi, Monotone convergence). Let fn : X → [0,∞]
measurable and fn ≤ fn+1 for all n ∈ N. Let f := lim

n→∞
fn (pointwise), then

lim
n→∞

∫
fn dµ =

∫
f dµ

Corollary 6.20 (Fatou’s lemma). Let fn : X → [0,∞] be measurable. Then∫
lim inf
n→∞

fn dµ ≤ lim inf
n→∞

∫
fn dµ

Definition 6.21 (Almost everywhere).
We say that a local property holds almost everywhere with respect to a measure
µ on X, if it holds for all x ∈ A ⊂ X and

µ(X\A) = 0,

i.e. if it fails to hold a in a null set only.
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Example 6.22. 1. Almost every real number is irrational with respect to
Lebesgue’s measure on R.

2. Let f : X → [0,∞] be measurable. Then∫
X

f dµ = 0 ⇔ f = 0 almost everywhere

3. Changing an integrable function f on a null set does not change
∫
f dµ.

4. For integrable functions we do not include ±∞ into the range anymore.

Remark 6.23. 1. Every Rieman integrable function f : [a, b] → R is also
Lebesgue integrable and the integrals coincide.

2. A function f : X → C is integrable, if |f | is integrable and∫
f dµ =

∫
Re f dµ+ i

∫
Imf dµ

3. Analogously for f : X →W (W -finite dimensional).

4. For f : X →W , W a Banach space, the generalisation is called the Bochner
integral.

Definition 6.24 (Lp-spaces).
Let (X,A, µ) be a measure space and 1 ≤ p <∞. We define the vector space

Lp(X,µ) .= {f : X → R | f is measurable and |f |p is integrable}

as well as

∥f∥Lp
.
=

(∫
X
|f |p dµ

) 1
p

<∞ .

Moreover, Lp(X,µ) = Lp(X,µ)/ ∼ with respect to the equivalence relation

f ∼ g ⇔ f = g almost everywhere .

Definition 6.25 (L∞ and the essential supremum).
Let (X,A, µ) be a measure space. For measurable f : X → R we define

∥f∥L∞
.
= inf

{
0 ≤ λ ≤ ∞ | µ

(
|f |−1((λ,∞])

)
= 0

}
=: ess sup |f |.

Using this definition one can define

L∞(X,µ) = {f : X → R | f measurable and ∥f∥L∞ <∞}

and
L∞(X,µ) = L∞(X,µ)/ ∼ .
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Remark 6.26. It is almost immediate to generalize Lp spaces to complex-valued
(or vector-valued) measurable functions.

Theorem 6.27 (Completeness of Lp-spaces). Let (X,A, µ) be a measure space
and 1 ≤ p ≤ ∞. Then (Lp(X,µ), ∥ · ∥Lp) is a Banach space.

Theorem 6.28 (Hölder inequality). Let f, g : X → R be measurable and 1 ≤
p, q ≤ ∞ such that 1

p +
1
q = 1 (conjugated exponents) where 1

∞ = 0. Then

∥fg∥L1 ≤ ∥f∥Lp · ∥g∥Lq

Corollary 6.29. Let µ be a finite measure on X. Then,

Lp(X,µ) ⊂ Lq(X,µ)

for all 1 ≤ q ≤ p ≤ ∞.

Remark 6.30. For p = q = 2 this is the Cauchy-Schwarz inequality on the Hilbert
space L2. Hence for f, g ∈ L2 ⇒ fg ∈ L1, since∣∣∣ ∫ fg dµ

∣∣∣
=|⟨f,g|f,g⟩L2 |

≤
∫

|fg| dµ ≤ ∥f∥L2 · ∥g∥L2 .

Theorem 6.31 (Minkowski inequality). Let f, g : X → R be measurable and
1 ≤ p ≤ ∞. Then

∥f + g∥p ≤ ∥f∥p + ∥g∥p .

Definition 6.32 (Convergence of measurable functions).
Let (X,µ) be a measure space. A sequence (fn) of real-valued measurable func-
tions

1. converges to f pointwise if

∀ε > 0 ∀x ∈ X ∃Nε,x ∈ N s.t. ∀n ≥ Nε,x : |f(x)− fn(x)| < ε .

2. converges to f uniformly if

∀ε > 0 ∃Nε ∈ N s.t. ∀x ∈ X ∀n ≥ Nε : |f(x)− fn(x)| < ε .

3. converges to f almost everywhere if there is a set Y ⊂ X with µ(Y ) = 0
such that fn → f pointwise in X \ Y .

4. converges to f almost uniformly if there is a set Y ⊂ X with µ(Y ) = 0
such that fn → f uniformly in X \ Y .

5. converges to f in in Lp-norm if

∀ε > 0 ∃Nε ∈ N s.t. ∀n ≥ Nε : ∥f(x)− fn(x)∥Lp < ε .
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6. converges to f in measure if

∀ε > 0 : lim
n→∞

µ({x ∈ X : |f(x)− fn(x)| ≥ ε}) = 0 .

Since we identify functions that coincide almost everywhere, we only care
about the notions 3-6 of convergence. By definition it is clear that almost uniform
convergence implies almost everywhere convergence. It is also not hard to show
that Lp convergence implies convergence in measure for any 1 ≤ p <∞. For the
rest of the section let (X,µ) be a measure space and let (fn) be a sequence of
real-valued measurable functions.

Theorem 6.33 (Uniform - Lp). Let µ be a finite measure and suppose that (fn)
is a sequence in Lp(X,µ) which converges uniformly to a measurable function f .
Then, f ∈ Lp(X,µ) and

fn → f in Lp .

Theorem 6.34 (Almost everywhere - Lp). Suppose that (fn) is a sequence in
Lp(X,µ) which converges almost everywhere to a measurable function f . If there
exists a function g ∈ Lp(X,µ) such that

|fn(x)| ≤ |g(x)| ∀n ∈ N and a.e. x ∈ X

then f ∈ Lp(X,µ) and
fn → f in Lp .

Corollary 6.35. Let µ be a finite measure on X and suppose that (fn) is a
sequence in Lp(X,µ) which converges almost everywhere to a measurable function
f . Suppose that there is a real number M ≥ 0 such that

|f(x)| ≤M ∀x ∈ X,n ∈ N.

Then, f ∈ Lp(X,µ) and
fn → f in Lp .

Theorem 6.36 (Measure - Lp). Suppose that (fn) is a sequence in Lp(X,µ)
which converges in measure to a measurable function f . If there exists a function
g ∈ Lp(X,µ) such that

|fn(x)| ≤ |g(x)| ∀n ∈ N and a.e. x ∈ X

then f ∈ Lp(X,µ) and
fn → f in Lp .

Theorem 6.37 (Almost uniform - Measure). If fn → f almost uniformly, then
it also converges in measure. Conversely, if fn → f in measure, then there exists
a subsequence that it converges in almost uniformly to the same limit.
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Theorem 6.38 (Almost everywhere - almost uniformly - measure convergence).
Let µ be a finite measure and suppose that fn → f almost everywhere. Then,
fn → f almost uniformly and in measure.

We summarize all these convergence types and their interplay in the following
diagrams. Solid arrow means that the convergence in the tail implies convergence
in the nose. Dashed arrow means that convergence in the tail implies subconver-
gence (convergence through a subsequence) in the nose. The absence of arrow
means a counter example can be found. Whenever Lp convergence is involved, it
is understood that the functions are in Lp.

General measure space

AE AU

Lp M

Finite measure space

AE AU

Lp M

Dominated convergence

AE AU

Lp M
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Exercises

1. (Proposition 6.5) Let A be a σ-algebra on X. Show that

1. X ∈ A

2. Ak ∈ A for k ∈ N =⇒
⋂
k∈NAk ∈ A

3. A,B ∈ A =⇒ A \B ∈ A

2. (Proposition 6.11) Let µ be a measure on (X,A) and A,B ∈ A. Show that

(i) if A ⊂ B, then µ(A) ≤ µ(B).

(ii) For Aj ∈ A, j ∈ N,

µ
( ∞⋃
j=1

Aj

)
≤
∞∑
j=1

µ(Aj) .

3. (Corollary 6.29) Let µ be a finite measure on (X,A). Show that

Lp(X,µ) ⊂ Lq(X,µ)

for all 1 ≤ q ≤ p ≤ ∞.

4. Let (X,µ) be a measure space and let (fn) be a sequence in Lp(X,µ).

(a) Show that if fn → f in Lp, then fn → f in measure.

(b) (Theorem 6.33) Show that if µ is a finite measure and fn → f uniformly,
then f ∈ Lp(X,µ) and fn → f in Lp.

5. Find an example of

(a) a sequence in Lp([0, 1]) that converges pointwise but not in Lp to a function
in Lp([0, 1]).

(b) a sequence in Lp([0, 1]) that converges in Lp but not almost everywhere.
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