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Observation: 122 + 332 = 1233. How many other examples can you find?

We’re trying to find solutions to the equation a2 + b2 = a ⊕ b, where ⊕ means concatenate
their decimal expansion. If b has k digits, then this can be written:

a2 + b2 = 10ka + b

Write this as:
a2 − 10ka + b2 − b = 0

and solve this as a quadratic equation for a. We get:

a =
10k ±

√
102k − 4(b2 − b)

2

Firstly, this tells us that for every b, there are two possible a: a and 10k − a, when b has
k digits. With the example above k = 2, so we get the other possible a as 100 − 12 = 88. So
882 + 332 = 8833.

The quadratic equation has an integer solution if and only if 102k − 4(b2 − b) is a perfect
square. So we reduce this to solving:

102k − 4(b2 − b) = N2

or after some rewriting:
102k + 1 = N2 + (2b− 1)2

At this point we’re in the realm of number theory – solving a quadratic Diophantine equation.
There is a fairly standard method for finding all solutions to this equation (for fixed k). Move
to Z[i], then the right hand side factorises as the norm of the Gaussian integer N + (2b − 1)i.
Since Z[i] is a UDF, we can find all solutions by finding the prime decomposition of 102k + 1 in
Z[i], and equating the decompositions of both sides. To decompose 102k + 1 in Z[i], factor it in
Z, and write each prime factor as the sum of two squares if possible.

For example, take k = 5:

102×5 + 1 = 101× 3541× 27961

= (102 + 12)× (542 + 252)× (1442 + 852)

= (10 + 1i)(10− 1i)× (54 + 25i)(54− 25i)× (144 + 85i)(144− 85i)

Uniqueness of prime factorisation in Z[i] means:

N + (2b− 1)i = i`(10 + 1i)a(10− 1i)b × (54 + 25i)c(54− 25i)d × (144 + 85i)e(144− 85i)f

∗Name taken from http://web.science.mq.edu.au/~alf/SomeRecentPapers/174a.pdf, a paper dealing with
the same question, and giving a different style of solution.
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where ` = 0, 1, 2, or 3, and a + b = 1, c + d = 1, e + f = 1.
With a = 1, c = 1, e = 1, and ` = 0, we get:

N + (2b− 1)i = 48320 + 87551i

We read off N = 48320, and 2b − 1 = 87551 =⇒ b = 43776 which indeed has 5 digits. Plug
back in to get a = 25840.

So we get another example:

258402 + 437762 = 2584043776

Modulo things like decomposing 102k+1 as a product of primes, and writing these as the sum
of two squares, at this point it is reasonably straight-forward to program a computer to generate
all possible solutions.

Doing so, one will eventually stumble on something like:

88321167 88321167 8832122 + 32116788 32116788 3211682 =

88321167883211678832123211678832116788321168

and wonder whether adding any number of the blocks 88321167 and 32116788 gives a solution.
To prove this is the case, write out an expression for such a and b, and sum the geometric

series in each:

a =

n∑
i=0

88321167× 108i+6 + 883212

= 88321167× 106 ×
(

108n+8 − 1

108 − 1

)
+ 883212

=
121

137
× 108n+14 +

44

137

b =

n∑
i=0

32116788× 108i+6 + 321168

= 32116788× 106 ×
(

108n+8 − 1

108 − 1

)
+ 321168

=
44

137
× 108n+14 +

16

137

In this case b has 8(n+ 1) + 6 = 8n+ 14 digits. So we confirm this gives an infinite family of
solutions by checking whether:

a2 + b2 = 108k+14a + b

This is just a simple case of multiplying out:

a2 + b2 =

(
121

137
× 108n+14 +

44

137

)2

+

(
44

137
× 108n+14 +

16

137

)2

=
1212 + 442

1372
× 1016n+28 +

2× 121× 44 + 2× 44× 16

1372
108n+14 +

442 + 162

1372

=
121

137
× 1016n+28 +

88

137
× 108n+14 +

16

137
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verses:

108n+14a + b = 108n+14

(
121

137
× 108n+14 +

44

137

)
+

(
44

137
× 108n+14 +

16

137

)
=

121

137
× 1016n+28 +

2× 44

137
108n+14 +

16

137

=
121

137
× 1016n+28 +

88

137
× 108n+14 +

16

137

And they agree!
Observing some of the simplifications that happen in this proof, one can reverse engineer it

as a method to producing candidate families for some other solutions. For example we find that
prepending:

97490513219843586716000250948678015641328399 to 97490513220 and

15641328399974905132198435867160002509486780 to 15641328400

gives another infinite family of solutions.
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