Self-Similar Sums of Squares^{*}

Steven Charlton

Observation: $12^2 + 33^2 = 1233$. How many other examples can you find?

We're trying to find solutions to the equation $a^2 + b^2 = a \oplus b$, where \oplus means concatenate their decimal expansion. If b has k digits, then this can be written:

$$a^2 + b^2 = 10^k a + b$$

Write this as:

$$a^2 - 10^k a + b^2 - b = 0$$

and solve this as a quadratic equation for a. We get:

$$a = \frac{10^k \pm \sqrt{10^{2k} - 4(b^2 - b)}}{2}$$

Firstly, this tells us that for every b, there are two possible a: a and $10^k - a$, when b has k digits. With the example above k = 2, so we get the other possible a as 100 - 12 = 88. So $88^2 + 33^2 = 8833$.

The quadratic equation has an integer solution if and only if $10^{2k} - 4(b^2 - b)$ is a perfect square. So we reduce this to solving:

$$10^{2k} - 4(b^2 - b) = N^2$$

or after some rewriting:

$$10^{2k} + 1 = N^2 + (2b - 1)^2$$

At this point we're in the realm of number theory – solving a quadratic Diophantine equation. There is a fairly standard method for finding all solutions to this equation (for fixed k). Move to $\mathbb{Z}[i]$, then the right hand side factorises as the norm of the Gaussian integer N + (2b - 1)i. Since $\mathbb{Z}[i]$ is a UDF, we can find all solutions by finding the prime decomposition of $10^{2k} + 1$ in $\mathbb{Z}[i]$, and equating the decompositions of both sides. To decompose $10^{2k} + 1$ in $\mathbb{Z}[i]$, factor it in \mathbb{Z} , and write each prime factor as the sum of two squares if possible.

For example, take k = 5:

$$10^{2\times5} + 1 = 101 \times 3541 \times 27961$$

= $(10^2 + 1^2) \times (54^2 + 25^2) \times (144^2 + 85^2)$
= $(10 + 1i)(10 - 1i) \times (54 + 25i)(54 - 25i) \times (144 + 85i)(144 - 85i)$

Uniqueness of prime factorisation in $\mathbb{Z}[i]$ means:

$$N + (2b - 1)\mathbf{i} = \mathbf{i}^{\ell}(10 + 1\mathbf{i})^{a}(10 - 1\mathbf{i})^{b} \times (54 + 25\mathbf{i})^{c}(54 - 25\mathbf{i})^{d} \times (144 + 85\mathbf{i})^{e}(144 - 85\mathbf{i})^{f}$$

^{*}Name taken from http://web.science.mq.edu.au/~alf/SomeRecentPapers/174a.pdf, a paper dealing with the same question, and giving a different style of solution.

where $\ell = 0, 1, 2$, or 3, and a + b = 1, c + d = 1, e + f = 1.

With a = 1, c = 1, e = 1, and $\ell = 0$, we get:

$$N + (2b - 1)\mathbf{i} = 48320 + 87551\mathbf{i}$$

We read off N = 48320, and $2b - 1 = 87551 \implies b = 43776$ which indeed has 5 digits. Plug back in to get a = 25840.

So we get another example:

$$25840^2 + 43776^2 = 2584043776$$

Modulo things like decomposing 10^{2k+1} as a product of primes, and writing these as the sum of two squares, at this point it is reasonably straight-forward to program a computer to generate all possible solutions.

Doing so, one will eventually stumble on something like:

$$88321167\,88321167\,883212^{2} + 32116788\,32116788\,321168^{2} = \\8832116788321167883211678832123211678832116788321168$$

and wonder whether adding any number of the blocks 88321167 and 32116788 gives a solution.

To prove this is the case, write out an expression for such a and b, and sum the geometric series in each:

$$a = \sum_{i=0}^{n} 88321167 \times 10^{8i+6} + 883212$$

= 88321167 × 10⁶ × $\left(\frac{10^{8n+8} - 1}{10^8 - 1}\right)$ + 883212
= $\frac{121}{137} \times 10^{8n+14} + \frac{44}{137}$
 $b = \sum_{i=0}^{n} 32116788 \times 10^{8i+6} + 321168$
= $32116788 \times 10^6 \times \left(\frac{10^{8n+8} - 1}{10^8 - 1}\right)$ + 321168
= $\frac{44}{137} \times 10^{8n+14} + \frac{16}{137}$

In this case b has 8(n+1) + 6 = 8n + 14 digits. So we confirm this gives an infinite family of solutions by checking whether:

$$a^2 + b^2 = 10^{8k+14}a + b$$

This is just a simple case of multiplying out:

$$a^{2} + b^{2} = \left(\frac{121}{137} \times 10^{8n+14} + \frac{44}{137}\right)^{2} + \left(\frac{44}{137} \times 10^{8n+14} + \frac{16}{137}\right)^{2}$$
$$= \frac{121^{2} + 44^{2}}{137^{2}} \times 10^{16n+28} + \frac{2 \times 121 \times 44 + 2 \times 44 \times 16}{137^{2}} 10^{8n+14} + \frac{44^{2} + 16^{2}}{137^{2}}$$
$$= \frac{121}{137} \times 10^{16n+28} + \frac{88}{137} \times 10^{8n+14} + \frac{16}{137}$$

verses:

$$10^{8n+14}a + b = 10^{8n+14} \left(\frac{121}{137} \times 10^{8n+14} + \frac{44}{137}\right) + \left(\frac{44}{137} \times 10^{8n+14} + \frac{16}{137}\right)$$
$$= \frac{121}{137} \times 10^{16n+28} + \frac{2 \times 44}{137} 10^{8n+14} + \frac{16}{137}$$
$$= \frac{121}{137} \times 10^{16n+28} + \frac{88}{137} \times 10^{8n+14} + \frac{16}{137}$$

And they agree!

Observing some of the simplifications that happen in this proof, one can reverse engineer it as a method to producing candidate families for some other solutions. For example we find that prepending:

97490513219843586716000250948678015641328399 to 97490513220 and 15641328399974905132198435867160002509486780 to 15641328400

gives another infinite family of solutions.