Proseminar zur Linearen Algebra

Thema: Lie-Algebren

nach James Humphreys: 
Introduction to Lie algebras and representation theory


Name
Titel
Sec
Seiten
1
Silas Höll
Definitions and examples: Lie algebras, ideals, representations
1,2
1-10
2
Tammo Braun
Solvable, nilpotent and semisimple Lie algebras
3,4
10-20
3
Jakob Feldner
Killing form, Casimir element and Jordan decomposition
5,6
21-31
4
Konstantin Singer
weights, maximal vectors and root space decomposition
7,8
31-40
5
Julian Theissler
Root systems and Weyl chambers
9-10.2
42-50
6
Simon Belka
The Weyl group and classification of root systems
10.3-11
51-62
7
Leonie Kempf
Construction of root systems and Theory of Weights
12-13
63-71
8
Max Schultz
Isomorphism Theorem and Cartan subalgebras
14-15
73-81
9
Luca Sauter
Conjugacy Theorems (for Borel and Cartan subalgebras)
16
81-87
10
Maren Biener
Universal enveloping algebras and PBW Theorem
17
89-95
11
Julia Geißert
correspondence {root systems}<-->{semisimple Lie Algebras}
18,19
95-106
12
Anahita Wick
Weight spaces and finite dimensional modules
20,21
107-116
13
Niklas Strobel
Freudenthal’s recursive formula for multiplicities
22
117-125
14
Cythia Hoffmann
Harish-Chandra’s Theorem on “characters”
23
126-134
15
Jannis Hettenbach
Formulas of Weyl, Konstant and Steinberg
24
135-144