Name |
Titel |
Sec |
Seiten |
|
1 |
Silas Höll |
Definitions and examples: Lie algebras,
ideals, representations |
1,2 |
1-10 |
2 |
Tammo Braun |
Solvable, nilpotent and semisimple Lie
algebras |
3,4 |
10-20 |
3 |
Jakob Feldner |
Killing form, Casimir element and Jordan
decomposition |
5,6 |
21-31 |
4 |
Konstantin Singer |
weights, maximal vectors and root space
decomposition |
7,8 |
31-40 |
5 |
Julian Theissler |
Root systems and Weyl chambers |
9-10.2 |
42-50 |
6 |
Simon Belka |
The Weyl group and classification of root
systems |
10.3-11 |
51-62 |
7 |
Leonie Kempf |
Construction of root systems and Theory of
Weights |
12-13 |
63-71 |
8 |
Max Schultz |
Isomorphism Theorem and Cartan subalgebras |
14-15 |
73-81 |
9 |
Luca Sauter |
Conjugacy Theorems (for Borel and Cartan
subalgebras) |
16 |
81-87 |
10 |
Maren Biener |
Universal enveloping algebras and PBW
Theorem |
17 |
89-95 |
11 |
Julia Geißert |
correspondence {root
systems}<-->{semisimple Lie Algebras} |
18,19 |
95-106 |
12 |
Anahita Wick |
Weight spaces and finite dimensional
modules |
20,21 |
107-116 |
13 |
Niklas Strobel |
Freudenthal’s recursive formula for
multiplicities |
22 |
117-125 |
14 |
Cythia Hoffmann |
Harish-Chandra’s Theorem on “characters” |
23 |
126-134 |
15 |
Jannis Hettenbach |
Formulas of Weyl, Konstant and Steinberg |
24 |
135-144 |