Professor Deitmar Abgabe: 26.5.2025, 10:00

Vier Punkte pro Aufgabe.

1. (a) Sei R ein Integritaetsring. Welche Eigenschaft von R ist dazu äquivalent, dass R[x] ein Hauptidealring ist?

(b) Sei R ein kommutativer Ring mit Eins. Zeige dass $R \times R$ mit (a, b) + (c, d) = (a + c, b + d) und

$$(a,b)(c,d) = (ac,ad+bc)$$

ein kommutativer Ring mit Eins wird.

(c) Sei R ein Integritaetsring, $f \in R \setminus \{0\}$ und sei $S = \{1, f, f^2, \ldots\}$. Zeige dass es einen kanonischen Isomorphismus

$$R[x]/(fx-1)R[x] \stackrel{\cong}{\longrightarrow} S^{-1}R$$

gibt.

2. Sei $n \in \mathbb{N}$. Zeige dass jeder \mathbb{Z} -Modulhomomorphismus $\phi : \mathbb{Z}^n \to \mathbb{Z}^n$ sich in eindeutiger Weise zu einem \mathbb{Q} -Vektorraumhomomorphismus $\mathbb{Q}^n \to \mathbb{Q}^n$ fortsetzen laesst und dass die darstellende Matrix bezueglich der Standardbasis von \mathbb{Q}^n ganzzahlig, d.h. in $M_n(\mathbb{Z})$ ist. Zeige, dass auf diese Weise eine Bijektionen

$$\operatorname{End}_{\mathbb{Z}}(\mathbb{Z}^n) \stackrel{\cong}{\longrightarrow} \operatorname{M}_n(\mathbb{Z}), \quad \text{und} \quad \operatorname{Aut}_{\mathbb{Z}}(\mathbb{Z}^n) \stackrel{\cong}{\longrightarrow} \operatorname{GL}_n(\mathbb{Z})$$

entstehen.

- 3. (a) Definiere die Begriffe Kern, Cokern und exakte Sequenz fuer Modulhomomorphismen.
 - (b) Sei M ein R-Modul und seien $P,Q \subset M$ Untermoduln. Zeige dass die Sequenz

$$0 \to P \cap Q \xrightarrow{\alpha} P \times Q \xrightarrow{\beta} P + Q \to 0$$

exakt ist, wobei $\alpha(x) = (x, x)$ und $\beta(x, y) = x - y$.

4. Seien P,Q Untermoduln einer R-Moduls M. Zeige dass die Abbildung $P \to P + Q \to (P+Q)/Q$ einen Isomorphismus

$$P/P\cap Q\stackrel{\cong}{\longrightarrow} (P+Q)/Q$$

induziert.

Sommer 2025 Professor Deitmar

Abgabe: **19.5.2025, 10:00**

Vier Punkte pro Aufgabe.

1. Sei G eine Gruppe und K ein Körper. Sei R = K[G] die Menge aller Abbildungen $f: G \to K$ die endlichen Traeger haben, d.h.

$$R = \{f : G \rightarrow K : f(x) = 0 \text{ für fast alle } x \in G\}.$$

Zeige, dass R mit dem Faltungsprodukt

$$f * g(x) = \sum_{y \in G} f(y)g(y^{-1}x) = \sum_{ab=x} f(a)g(b)$$

ein (i.A. nichtkommutativer) Ring ist. Man nennt K[G] auch den *Gruppenring* oder die *Gruppenalgebra*. Für $g \in G$ sei $\delta_g \in R$ gegeben durch

$$\delta_g(x) = \begin{cases} 1 & x = g, \\ 0 & x \neq g. \end{cases}$$

Zeige, dass $\delta_g * \delta_h = \delta_{gh}$ und dass K[G] genau dann kommutativ ist, wenn G eine abelsche Gruppe ist.

- 2. Seien a, $b \in R$ Ideale in dem Ring R. Zeige, dass die folgenden Mengen ebenfalls Ideale sind:
 - (a) $a + b = \{a + b : a \in a, b \in b\},\$
 - (b) $a \cdot b = \left\{ \sum_{j=1}^{n} a_j b_j : a_j \in a, b_j \in b \right\}$,
 - (c) $a \cap b$.
- 3. Sei K ein Koerper. Zeige, dass K[x, y] kein Hauptidealring ist.
- 4. Sei $\phi: R \to R'$ ein Ringhomomorphismus. Sind Urbilder von Idealen wieder Ideale? Sind Urbilder von Primidealen wieder Primideale? Sind Urbilder von maximalen Idealen wieder maximale Ideale?

Blatt 4

Abgabe: 12.5.2025, 10:00

Sommer 2025 Professor Deitmar

Vier Punkte pro Aufgabe.

1. Sei $\varepsilon = e^{\pi i/3}$. Dann gilt $\varepsilon^6 = 1$, sowie $\overline{\varepsilon} = 1 - \varepsilon$, also $\varepsilon^2 = \varepsilon - 1$. Sei $\mathbb{Z}[\varepsilon]$ der von ε erzeugte Unterring von \mathbb{C} . Zeige

$$\mathbb{Z}[\varepsilon] = \mathbb{Z} \oplus \mathbb{Z}\varepsilon.$$

- 2. Zeige, dass die Einheiten des Rings $\mathbb{Z}[\varepsilon]$ genau die Potenzen von ε sind. (Hinweis: Zeige, dass $\mathbb{Z}[\varepsilon]$ keine Elemente z mit 0 < |z| < 1 enthaelt.)
- 3. Sei V ein endlich-dimensionaler K-Vektorraum und sei $T:V\to V$ linear. Zeige, dass die Abbildung $\phi_T:K[x]\to \operatorname{End}(V)$ ein Homomorphismus in den nichtkommutativen (!) Ring $\operatorname{End}(V)$ ist. Zeige, dass der Kern gleich der Menge m(x)K[x] ist, wobei m(x) das Minimalpolynom von T ist.
- 4. Sei R ein Ring. Zeige, dass $f(x) = \sum_{j=0}^{\infty} a_j x^j$ in dem Ring R[[x]] genau dann eine Einheit ist, wenn a_0 in R^{\times} liegt.

Lineare Algebra 2 Blatt 3

Sommer 2025 Professor Deitmar

Abgabe: **5.5.2025, 10:00**

Vier Punkte pro Aufgabe.

1. Ein Element a eines Rings R heisst nilpotent, falls $a^n = 0$ fuer ein $n \in \mathbb{N}$. Zeige: ist a nilpotent, dann ist 1 - a eine Einheit.

2. (a) Zeige, dass die Polynommultiplikation assoziativ ist, d.h. dass fuer drei Polynome $f, g, h \in K[X]$ gilt

$$(fg)h = f(gh).$$

- (b) Zeige, dass der Ring \mathbb{Z}/m genau dann ein Koerper ist, wenn m eine Primzahl ist.
- 3. Sei R ein Ring und $M \neq \emptyset$ eine Menge. Zeige, dass die Menge aller Abbildungen $f: M \to R$ ein Ring wird mit den punktweisen Verknuepfungen. Was sind die Einheiten dieses Rings?
- 4. Sei M eine nichtleere Menge und sei $R = \mathcal{P}(M)$ die Potenzmenge. Zeige, dass R mit den Verknuepfungen

$$A + B = A\Delta B = (A \cup B) \setminus (A \cap B)$$

und

$$A \cdot B = A \cap B$$

ein Ring ist. Zeige, dass M die einzige Einheit ist.

Sommer 2025 Professor Deitmar

Abgabe: **28.4.2025**, **10:00**

Blatt 2

Vier Punkte pro Aufgabe.

- 1. Beweise oder widerlege:
 - (a) Es gibt einen Gruppenisomorphismus $(\mathbb{R}, +) \to (\mathbb{R}_{>0}, \times)$,
 - (b) Es gibt einen Gruppenisomorphismus $(\mathbb{Q},+) \to (\mathbb{Q}_{>0},\times)$.
- 2. Sei *A* eine endliche abelsche Gruppe. Zeige

$$\prod_{a \in A} a^2 = 1.$$

- 3. Sei G eine Gruppe der Ordnung 55, die auf einer Menge X mit 18 Elementen operiere. Zeige, dass es mindestens zwei Fixpunkte gibt. Ein Fixpunkt ist ein Punkt $x \in X$ mit gx = x für jedes $g \in G$.
- 4. Beweise oder widerlege: Sind A, B Untergruppen von G und gilt $G = A \cup B$, dann ist $A \subset B$ oder $B \subset A$.

Sommer 2025 Professor Deitmar

Abgabe: **22.4.2025, 10:00**

Vier Punkte pro Aufgabe.

- 1. Sei *G* eine Gruppe, so dass fuer jedes $a \in G$ gilt $a^2 = 1$. Zeige, dass *G* abelsch ist.
- 2. Ein *Homomorphismus* von Gruppen ist eine Abbildung $\phi : G \to H$ zwischen Gruppen, so dass $\phi(ab) = \phi(a)\phi(b)$ gilt. Ein *Isomorphismus* von Gruppen ist ein Homomorphismus, der bijektiv ist. Zeige:
 - (a) Ist ϕ ein Homomorphismus, dann gilt $\phi(1) = 1$ und $\phi(a^{-1}) = \phi(a)^{-1}$ fuer jedes $a \in G$.
 - (b) Ist ϕ ein Isomorphismus, dann ist die Umkehrabbildung ebenfalls ein Homomorphismus.
- 3. Seien e_1, \ldots, e_n die Standard Basis von K^n und betrachte die Bilinearform $b(e_i, e_j) = \delta_{i,j}$. Linearformen auf K^n werden als Zeilenvektoren aufgefasst. Sei v_1, \ldots, v_n irgendeine Basis und sei S die Matrix mit den Spalten v_1, \ldots, v_n . Zeige, dass v_1^*, \ldots, v_n^* die Zeilen der Matrix S^{-1} sind.
- 4. Sei

$$0 \to V_0 \to \cdots \to V_n \to 0$$

eine exakte Sequenz von endlich-dimensionalen Vektorraeumen. Zeige, dass

$$\sum_{j=0}^{n} (-1)^{j} \dim(V_{j}) = 0.$$