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1 Singular cohomology

1.1 Cohomology of chain complexes
Definition 1.1.1. A cochain complex is a sequence of homomorphisms of abelian groups
o AR AR T pe

such that d**1d* = 0 for all k € Z. The map d* is called the coboundary operator or the differential of the
complex. A cochain map ¢* : A* — B* is a family of group homomorphisms ¢* : A¥ — BF such that the

diagram
dk
Ak A, Ak+L
prk J/(!)k-f-l
dk
Bk B y Bk+1
commutes for every k € Z.

So, a cochain complex is just the same as a chain complex with the numbering reversed. That seems
silly, but below we give a connection between chain an cochain complexes which makes the distinction

useful.

Definition 1.1.2. Let

4 41 dx
_”_>Akl_)Ak_)Ak+l_)”.

denote a cochain complex. Then its cohomology is defined as
H*(A®) = ker(d¥)/ im(d*).

One writes ZF = ker(d)), B = im(d*!), so that H* = Z¥/B*. Elements of Z* are called cocycles and

elements of B* are coboundaries.

Definition 1.1.3. (From chains to cochains) Let - -+ — C41 i> Cu i> Cy-1 — ... be a chain complex of
abelian groups. For a given abelian group R let C"(R) = Hom(C,, R) be the dual group. (The group R will
later be a ring, which is why we call it R.) Letd : C" — C"*! be the operator dual to 9, so dd(f) = ¢(2f)
for ¢ € C*(R). Then --- —» C"! 4, cn -4 ¢ S s a chain complex. The cohomology group with
coefficients in R is by definition

H¥(C,R) = H( Hom(C., R)).

Definition 1.1.4. Let R be an abelian group and X a topological space. The set of singular cochains with
coefficient in R is defined as
C"(X,R) = Hom(C,(X), R).

The corresponding chomology group is called the singular cohomology
HY(X,R)

of X.
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Definition 1.1.5. Let A be an abelian group. An exact sequence of the form
o> Fh >F5Fp—>A—>0
with free abelian groups F| is called a free resolution of A. Then
F = ..FF->F—-0

is a chain complex of free abelian groups. The cohomology H*(F, R) is defined as above. Note that F is
the “cut-off” complex. One also writes this as F, — A. For instance, one has

H°(F,R) = ker(Hom(Fy, R) — Hom(F, R))
= Hom(Fy/F;,R) = Hom(A, R).

This means that H°(F, R) does not depend on the choice of the resolution.

Lemma 1.1.6.

(a) Let F,F’ be free resolutions of the abelian groups A, A’. Then every group homomorphism o : A — A’ can be
extended to a chain map F — F’, such that there is a commutative diagram

F, fa F, h Fy fo A 0
laz lal J{LY() J/a

A A A e A S
F, F, F, A 0

Any two such extensions of « are chain-homotopic.

(b) For any two free resolutions F, F’ of A there are canonical isomorphisms
HP(F',R) = HY(F,R) = H”( Hom(F., R)).

Proof. Since Fy is free, the homomorphism a o f : Fg — A can be lifted to F), this defines ag. Now assume
that @, is already defined. The homomorphism a;_; o f, : F, — F,_, satisfies f’ | o (ay-10 f;) =0,
which means that the image lies in the kernel of f’ |, which equals the image of f,. Since F, is free, this
homomorphism can be lifted to a, : F,, — F},.

In order to show that two given extensions of « are chain-homotopic, it suffices to show that in the case
a = 0 any extension is nullhomotopic.

So let a = 0 and let a;, be any extension. We are looking for group homomorphisms P, : F, — F/ _; such
that
anp = f,:+1pn + Pn—lfn-

Set P_; : A — F| to be zero. The relation we need, is ag = f{Po. Such a Py exists, since the image of ag

lies in the kernel of f/, i.e., in the image of f] and Fy is free.

Inductively, let P,,_; already be defined. We are looking for some P, such that a, — P_1 f, = fri +Pn- To
show that such a map exists, it suffices to show that the image of a;, — P;,-1 f, lies in the image of f/,,, i.e.,
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in the kernel of f;. Because of a,—1 = f,P,-1 + Py—2fy—1 one has

fr;(an - Pn—lfn) = f;;an - (fn’Pn—l)fn
= footn = (@1 = Puofu-1) fu
= f;;an - an—lfn =0.

So P, exists and therefore part (a) is proven.

Part (b) is now easy. Since chain-homotopic maps give the same map on the homology, every ho-
momorphism a : A — A’ induces an uniquely determined homomorphism on the homology. For two
different resolutions F, F” of the same group A we apply thistoa = Id : A — A and we get uniquely deter-
mined homomorphisms on the homology, ¢ : H(F) — H(F’) and by the same token, ¢ : H(F’) — H(F). By
uniqueness, ¢ oy must coincide with the identity and the same for o ¢, to the two are isomorphisms. O

It follows, that up to canonical isomorphy, the groups H*(F, R) only depend on A and R, not on the
resolution. We call this group
Ext‘(4, R).

Lemma 1.1.7. For a given abelian group A there is an exact sequence
0->F—->F—>A->0,
with free groups Fy, F1. So any abelian group has a free resolution of length 2.

Proof. Let S be any set of generators of A. Let Fy be the free abelian group with generator set S’ of the
same cardinality as S. Any bijection f : S — S extends to a surjective group homomorphism f : Fy — A.
Let F; be the kernel of f. As F; is a subgroup of a free abelian group, it is a free abelian group itself
(Lang, Algebra). Therefore the sequence F; — Fy — A satisfies the claim. m]

The lemma implies that for abelian groups A, B one has Ext"(A,B) = 0 for k > 2. Further we have
calculated, that
Ext’(A, B) = Hom(A, B).

So the only interesting group is Ext'(A, B).

* o ¥
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1.2 Triviality of Ext
Definition 1.2.1. An abelian group B is called divisible, if for every b € B and every n € IN there exists
x € B with nx = b. For example Q and Q/Z are divisible, Z is not, nor is and non-trivial finite group.

Lemma 1.2.2. Lat A, A’, B, B’ be abelian groups.

(a) One has

Ext'(A @ A’, B) = Ext'(A, B) ® Ext}(A’, B),
Ext'(A,B® B’) = Ext!(A, B) ® Ext'(A, B')

(b) If A is free or if B is divisible, one has
Ext'(A,B) = 0.

(c) Ext'(Z/nZ,B) = B/nB.

Proof. (a) The first follows from the fact that the direct sum of free resolutions of A and A’ is a free
resolution of A @ A’. The second follows from Hom(F, B @ B’) = Hom(F, B) ® Hom(F, B") applied to
members F of a free resolution of A.

(b) The case of A being free is clear, as 0 = A — A — 0 is a free resolution. Now let B be divisible and
let0 - Ay —» A9 = A — 0 be a free resolution. We need to show that the induced homomorphism
Hom(Ay, B) = Hom(A4, B) is surjective. Solet ¢p : A; — B be a group homomorphism. We need to show
that it can be extended to Ag. Let S be the set of all pairs (H, 1)), where H C Ay is a subgroup containing
Ai and ¢ : H — B is an extension of ¢. We order S by

Hy)<H,Y) o HCH, ¥lu=1y.

Zorn’s lemma shows that there exists a maximal element (H,1y). We claim that H = Ag. Assume
otherwise and let ap € Ap \ H. If there exists n € IN such that nay € H, then pick by € B with nby = (nap)
and set {(a)) = by. Then i extends ¢ to the group generated by H and ay, so ¢ is not maximal, a
contradiction. If no such n exists, set {(ap) = 0 and then as well i extends 1.

(c) comes from the resolution 0 — Z 5 Z - Z/nZ — 0. O

Lemma 1.2.3. Let

05A-5BLco0

be an exact sequence of abelian groups. Then the following are equivalent:

(a) There exists a group homomorphism s : C — B with s = Idc.
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(b) There is a group homomorphism t : B — A with ta = Id a.

0——sA—2sp_"
"

t

@
o

(c) There is an isomorphism 1\ : B — A & C such that the diagram

B

00— —0

“\/

D>
@

commutes.

Definition 1.2.4. If these equivalent conditions are satisfied, we say that the sequence 0 - A — B —

C — 01is a split exact sequence.

Proof. (c) = (a) and (c) = (b) are clear.
(a) = (c): Lets : C — B with fs = Idc. For b € B one has b — sB(b) € im a, since im a = ker § and
b — sp(b)) = p(b) — Psp(b) = p(b) — B(b) =
So one can define i : B — A® C by
Y(b) = a”' (b - sB(b)) ® B(D).

For a € A one has Y(a(a)) = a 'a(a)®0 = a® 0. For b € B one has pyy(b) = B(b). Hence the diagram

commutes.

(b) = (c): Lett : B — A be given with ta = Id. Define

p(b) = t(b) ® B(b).
The commutativity of the diagram is clear. m]

Lemma1.2.5. (a) Let0 —» A — B L5 F = 0be an exact sequence of abelian groups. If F is free, then the
sequence splits.

(b) Let0 - A - B £, ¢ = 0be an exact sequence of abelian groups. Then the dual sequence
« B a4
0-C—B —A

is exact. If the first sequence splits, then o is also surjective. In general, a* is not always surjective.



Topologie 7

Proof. (a) Let F be free with generating set X. For each x € X, pick any element b = s(x) € B with (b) = x.
The map s : X — B extends to a group homomorphism s : F — B with § o s = Idr.

(b) Let f : C = Rin C* with B*(f) = 0,1i.e., f o f =0, so f vanishes on the image of . Since f is surjective,
we get f = 0 and so " is injective.

One has A*f* = (Ba)* = 0" = 0.

Let f € B* with a*(f) = 0, i.e., f o a = 0, so f vanishes on the image of &, which is the kernel of 8. That
means that f factors through B/ ker § = C, therefore there exists g : C = R with f = go = °(g).

If the first sequence splits, say B = B; @ By, then this sequence splits into two isomorphisms A =, By
and B, — C, which dualise to isomorphisms of the dual groups.

For the addendum consider the following counterexample. LetR = Zand n € IN. Since Hom(Z/nZ,Z) =
0, the exact sequence
05Z-52Z—ZnZ—0

dualises to

0502757, ]

One can show that Ext'(4, B) is in natural bijection with the set of all isomorphism classes of exact
sequences
0-A—-C—>B—-0.

The trivial group element stands for the class of splitting sequences.

* ¥ ¥
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1.3 The Universal Coefficient Theorem

Theorem 1.3.1 (Universal Coefficient Theorem for cohomology). For a given chain complex C of free
abelian groups and an abelian group R there is a canonical split exact sequence

0 — Ext'(H,_1(C), R) — H"(C, R) - Hom(H,(C),R) — 0.

Heren > 0, where we formally set H_1(C) = 0. This sequence is functorial in C, i.e., any chainmap f : C — D

induces a commutative diagram

0 — Ext!(H,_1(C), R) —— H"(C, R) —— Hom(H,(C), R) — 0

I I I

0 — Ext'(H,_1(D), R) —— H"(D, R) —~ Hom(H,.(D), R) — 0

Proof. We define a homomorphism
h: H"(C,R) — Hom(H,(C), R)

as follows: Let [¢] € H*(C,R), so ¢ : C, = R with ¢ 0 d = d¢ = 0. This means that ¢(B,) = 0, where
B, =im(d,+1). So the restriction of ¢ to Z, = kerd, induces a homomorphism a :Z,/B, & R, ie., an
element of Hom(H,,(C), R). We set h([¢]) = ¢. For the well-definedness let ) = ¢ + da = ¢ + a0 d and let

z€Z,. Thenaod(z) = a( d(z) ) =0, so we get ¢ = 5
~——
0

Lemma 1.3.2. The group homomorphism h is surjective. The sequence
0 — kerh — H"(C,R) - Hom(H,(C), R) — 0
splits.
Proof. Since B, is a subgroup of the free group C,_1, the group B,,_ is free abelian. Hence the sequence
0—Zy = Cy~2 By = 0
splits. Therefore there is a projectionp : C, — Z, withp|z, = Id. Letn € Hom(H,(C),R),son : Z,/B, — R.
Definefj=nop:C, = R. Onehasdfj=flod =nopod=no0d=0,sincep =Id on Z, O B, and n is zero

on B,. This means that 7] defines a cohomology class [7}] with h([7]]) = 1 (by construction of 1), which
implies that / is surjective and the sequence of the lemma is split by the map 1+ [A]. m]
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We consider a commutative diagram with split exact rows

0 Zn+1 Cn+1 Bn 0
lo J«‘; l«o
J
0 Zy C, B-1 0

As the rows are split, the dual diagram has exact rows as well:

d

0 Zyn Gt B, 0
)‘\O Td /[0
0 z, c, B, 0

Here A* = Hom(A, R). This means that we get an exact sequence of cochain complexes 0 « Z* « C* «
B* « 0. As the complexes Z and B have zero boundary maps, the corresponding long exact sequence of
cohomology groups has the form

B, 7, «H'(CR)«<B,_|«Z |« ...

The connection homomorphism 6 : Z;, — B}, in this sequence is the dual map of the inclusion iy, : B, —

*
nrs

Z,, since one gets 6(z) by picking a pre-image of z € Z; in C,, then applies 4 and takes the pre-image in
B;,. In this first step, the homomorphism z : Z, — R is extended to C,, in the second, it is composed with
d and in the third this extension is undone again by restriction to B,,. So in the end, z is only restricted to
B,. Hence one has 6 = i},. One gets the exact sequence

% 23

I b1
v By, «— Z, «H'(CR) B, | «—— Z,_ |« ...

which gives the short exact sequence
0 « ker(i;) < H"(C,R) < coker(i; ;) « 0.

Elements of ker(i},) are homomorphisms Z, — R, which vanish on B, i.e., the homomorphisms B, /Z,, —
R. In other words: ker(i;,) = Hom(H,(C),R). The map H"(C,R) — ker(i;,) = Hom(H,(C), R) equals the
map h. So there is a canonical isomorphism ker i = cokeri, ;. The sequence

0= By 25 Z,_1 > Hy0(C) > 0

is a free resolution of H,-1(C), so there is a canonical isomorphism kerh = cokeri, | = Ext!(H,-1(C), R).
The theorem is proven, except for the functoriality. For this, one looks at the construction of the
sequence, i.e., the map h, which comes about by interpreting a cohomology class as a homomorphism
on homology. One finds that a chain map f would map this construction for the complex D to the
corresponding construction for C and thus induce the same map, i.e., the diagram is commutative. O

Proposition 1.3.3. Let ¢ : Co — D, be a morphism of chain complexes, which induces isomorphisms in the
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homology groups ¢. : Hy(C.) —> Hi(D.). Then the corresponding pullback maps on cohomology
¢ : HY(D,R) — H*(C,R)

are isomorphisms, too.
In particular, it follows that singular cohomology of a simplicial complex can also be computed using the simplicial

chain complex.

Proof. This is clear from the functoriality statement in the Universal Coefficient Theorem and the five

lemma. m]

Let X, Y be topological spaces. For a continuous map f : X — Y, the chain map f; : Cu(X) — Cu(Y)
dualises to a cochain map
ffCY) - CY(X),

which induces a map f* : H'(Y,R) — H"(X, R) on the cohomology groups.
Proposition 1.3.4. Let f,g: X — Y be continuous maps. If f and g are homotopic, then one has f* = g*.

Consequently, if A is a deformation retract of X, the inclusion A — X induces isomorphisms H"(X, R) = H"(A, R).

Proof. If f and g are homotopic, then the induced maps on homology coincide. The universal coefficient
theorem yields the following diagram with exact rows:

0 —— Ext!(H,_1(C), R) —— H"(C, R) —— Hom(H,(C), R) — 0

N

0 —— Ext!(H,_1(D), R) —— H"(D, R) —~ Hom(H,(D), R) —— 0

The zeros to the left and right come from the fact that f and g induce the same map on homology. This
implies that f* — ¢* = 0 in the middle, too. ]

* X ¥
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1.4 The sequence of a pair
Lemma 1.4.1. Let (X, A) be a pair of spaces. The exact sequence
0 = CulA) -5 Cu(X) -5 Cu(X,4) > 0

splits. Consequently, C,,(X, A) is a free abelian group and the Universal Coefficient Theorem applies to the chain
complex Co(X, A).

Proof. Let F be the free abelian group generated by all singular simplices, whose image does not lie in A.
Then C,(X) = C,(A) @ F and the projection to the first summand yields a splitting. O

Definition 1.4.2. As the group R will be fixed throughout, we occasionally leave it off the notation.
We define C"(X) = C,(X)* = Homg(C,(X), R) as well as C"(X, A) = C,(X, A)* and dualise to get a exact
sequence

0 — C'(X, A) L C'(x) =5 C'(A) = 0.

The relative coboundary map d : C"(X, A) — C"*1(X, A) is defined by restriction of d : C*(X) — C"*}(X)
and gives the relative cohomology H"(X, A) = Z"(X, A)/B"(X, A).

Proposition 1.4.3. There is an exact sequence
0> H' (X A) — ...
o HEX, A) 5 HRO 25 HRA) =5 B (X A) - .

Proof. In the sequence
0 — C"(X,A) - C"(X) - C"(A) = 0,

the maps j* and i* are cochain maps, i.e., i'd = di* and j*d = dj*, since i and j are chain maps. Therefore,
the claim follows from Theorem 5.4.3 of AlgTopl. ]

Theorem 1.4.4 (Excision in cohomology).

(@) IfA,Z c X are subsets with Z C A, then the inclusion i : (X\Z,ANZ) < (X, A) induces isomorphisms

HY(X, A) = HY(X \ Z, A\ 2).

(b) If X is path-connected and A C X regularly closed, then there is an exact sequence
0 — R — H(A) - HY(X/A) - ...

o HYX/A) 2 HAX) -5 HRA) -5 HFLU(X/A) — ...

where i : A < Xis the inclusion and m : X — X/A is the projection.
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Proof. (a) The inclusion induces a chainmap iy : C, = C,(X\Z,AN\Z) = C;, = C,,(X, A). By the Universal
Coeffient Theorem this yields a commutative diagram with exact rows:

0 — Ext'(H,_1(C), R) —— H"(C, R) —— Hom(H,(C), R) — 0

T

0 — Ext'(H,_1(C’), R) —— H"(C’, R) — Hom(H,(C’), R) —— 0

In this diagram, the maps a and § are induced by maps i. : H,(C) — H,(C’), which by Theorem 5.8.1
from AlgTop1 are isomorphisms. Therefore, @ and f are isomorphisms, too. By the five lemma, the map
i* then is an isomorphism.

The proof of (b) is analogous to the proof of the exact pair-sequence in homology. m]

Proposition 1.4.5. (a) Let X be path-connected and xo € X a point. Then one has

HNX, x0) = HY(X), k>1
H°(X, xo) = 0.

(b) Let A C X be a deformation retract of X. For every k one has
HY(X,A) = 0.
(c) Let A C X be regularly closed. Then the quotient map q : (X, A) — (X/A, A/A) induces isomorphisms
g : H'(X/A,AJA) = H'(X, A).
Proof. Analogous to the corresponding proofs in homology. ]

* X ¥
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1.5 The Mayer-Vietoris Sequence

Theorem 1.5.1. Let A, B be subsets with X = A U B. Then there is an exact sequence
0 - H(X) -5 HO(A)® HO(B) — ...

oo HAX) -5 HEA) @ HEB) -2 HEA N B) =5 H*(X) — ...

Proof. We write Ci(A + B) for Ci(A) + Ci(B) C Cp(X). As Ci(A + B) is free, Lemma 1.2.5 says that the exact

sequence of chain complexes
0—>CG(ANB)— CG(A)®Ci(B) = C(A+B) — 0
dualises to an exact sequence of cochain complexes
0 — C"(A+B,R) 2, C*(A,R) @ C*(B,R) 2, C"(ANB,R) — 0.

This induces a long exact sequence on cohomology, which coincides with the one in the theorem, except
for the term H*(X), which is replaced by the cohomology of the complex C¥ = CX(A + B). Let D be the
complex D¥ = CK(X). The inclusion i : Cx(A + B) < Ci(X) induces a dual map i : CK(X) — C*(A + B). Let
i* and i, be the induced maps on the (co-)homology. The map i, is an isomorphism by Lemma 5.12.1 of

AlgTopl. The Universal Coefficient Theorem yields a commutative diagram with exact rows

0 — Ext!(H,_1(C), R) —— H"(C, R) —— Hom(H,(C), R) — 0

T

0 — Ext'(H,_1(D), R) —— H"(D, R) —~ Hom(H,.(D), R) — 0

The maps a and f are isomorphisms, hence so is i*. m|

It is not hard to see that there also is a relative version:

Theorem 1.5.2. Let A, B be subsets with X = AUBandlet K c Aand L C B be closed sets. Then there is
an exact sequence
0 — HX, X~ (KUL)) 5 HYA, A\ K)® H'(B,B~ L) - ...
o HYX, XN (KUL) -2 HY(A, AN K) ® H(B, B\ L)

2, HYANB,(ANB)~ (KN L)) == H*(X, X\ (KUL)) = ...

* X ¥
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1.6 The Cup-product

Definition 1.6.1. From now on, the coefficient group R shall carry an extra structure of a commutative
ring with unit, like for instance Z, Z/nZ oder Q. So maps to R can not only be added, but also multiplied.
For two cochains a € CK(X, R) and 8 € C!(X, R) we define the cup-product a - € C**/(X, R) by

(0( ~ .B)(O) = a(o_l[vg,...,vk])ﬁ(d[vk,...,vk+1])/

where ¢ : [vy,..., 0] = X is a singular simplex and the product on the right takes place in R. The
product extends to a bilinear map from C*(X, R) x C/(X, R) to C**/(X, R).

Lemma 1.6.2. (a) The cup-product is associative and distributive, i.e., for « € CK(X,R), B € C(X,R) and
y € C"(X, R) one has

(@-p)-y=a-B-7)
a-PB+y)=a-B+a~-y,
B+y)-a=p-a+y~-a.

The cup product makes C* = @, C¥(X, R) a generally noncommutative ring.

(b) The set C°(X,R) = Map(X, R) forms a subring. The constant map 1 : x > 1 is a unit of the ring C*. It
satisfies d1 = 0.

(c) Fora € CX(X,R) and B € C'(X, R) one has
d(a - B) = da - B+ (-1)fa - dp.
Proof. (a) follows from associativity of multiplication in the ring R.
(b) The first assertion is clear by definition. As for the second, let ¢ : [vg, v;] — X be a simplex. Then

d1(0) = 1(J0) = 1(0(v1) - o)) = 0.
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(c) Leto : [vg,...,Uk141] = X be asingular k + I + 1 simplex in X. Then one has

k+1+1
d(@ - )o) = Y (1@~ B)(0li,..01..010111)

j=0
k

= Y (Va5 DB )
j=0
k+1+1

+ Z (_1)]‘0‘(0[%”'7%])ﬁ(ohvkw.ﬁj.-.,vmn])
j=k+1
k+1

= Y (1 a(0lon, .4, 0BGl 1)
j=0
k+1+1

+ Y (1 a0p, 0BGl 5, 001)
j=k

= da - (o) + (-1)a - dB(0). O

Definition 1.6.3. The lemma implies
Zk - Zl c Zk+l

and
zk_ B!, BE - 7! ¢ B,

Since H' = Z!/B!, the cup-product yields an associative and distributive multiplication
HY(X,R) x H(X,R) — H"'(X,R),

which turns

H'(X,R) = @ HY(X,R)
k=0

intoaring. Thisringis called the cohomology ring of X with coefficients in R. Thisis a (non-commutative)
ring with unit. The unit is induced by the unit 1 in C*(X, R).

Proposition 1.6.4. Let f : X — Y be continuous, Then the maps

ff:C(YR) = C*(X,R),
f*:H*(Y,R) —» H*(X,R)

are unital ring homomorphisms.

Proof. This follows from

fHa - B)o) = (@~ p)(foo)

Il
S
—~~
—~
~
o
Q
=

g
k<!
=
=
—~~
~~
~
o
Q
=
)
k]
f
N

,,,,,

= f#(a)(al[vo,...,vk]) f#(ﬁ)(al[vk,---,vk+1])
= fla - f'Blo). o
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1.7 Graded algebras

Definition 1.7.1. An R-algebra is a (not neccessarily commutative) ring A, which at the same time is an
R-module, such that the multiplication map A X A — A is R-bilinear. This means that one has

r(ab) = (ra)b = a(rb)

forre Randa,b € A.

Examples 1.7.2. (a) The set of n X n matrices, A = M,(R), is an R-algebra with matrix multiplication.
(b) The polynomial ring A = R[X] is a commutative R-algebra with unit.

(c) Every ring is a Z-algebra.

Definition 1.7.3. An algebra homomorphism is a map ¢ : A — B between R-algebras, which is an

R-module homomorphism and a ring homomorphism.
Examples 1.7.4. (a) Leta € R, then ¢, : R[X] — R, given by f(X) — f(«) is an algebra homomorphism.

(b) If S is an invertible matrix in M,(R), then A — SAS™! is an algebra homomorphism from M, (R) to
itself.

Definition 1.7.5. An R-algebra A is called a graded algebra, if there are R-submodules A, forn =0,1,...,
such that A = @ A, with
AnAm - An+m-

Anelementa € A, is called homogeneous. An arbitrary element of A is a sum of homogeneous elements.
Let for instance a = ag + - - - + a, with a; € A;. If a, # 0, then we say that s has degree 1,

deg(a) = n.

Examples 1.7.6. (a) The polynomial ring A = R[x] is graded with A, = R - x"
(b) The cohomology ring A = H*(X, R) is graded by A, = H"(X, A).

Definition 1.7.7. A graded algebra A is called graded-commutative, if for a € Ay and b € A; one has

ab = (-1)"pa.

Theorem 1.7.8. The cohomology ring of a space X is graded-commutative. So for a € H¥(X,R) and
B € H'(X,R). one has
a-p=(1-a

Proof. For an n-simplex o : [v,...,v,] = X let ¢ be the n-simplex ¢ : [v,, ..., 0] — X with the reversed

order of vertices. Recall that the notation [vy, ..., v,] stands for the convex hull of the points vy,...,v, €
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RN, together with the affine isomorphism [ey,...,e,] — [vo,...,v,] given by ¢; = ©v;, where ey, ..., e,
is the standard basis of R". Therefore, [v,, ..., 0] is the same convex hull, together with [ey, ...,v,] —

[04,...,v0] mapping e; = v,,_;.

Therefore one has o(v;) = 0(v,—;). The reversal of order is a compositionof n+(n—1)+---+1 =n(m+1)/2
transpositions of neighboured vertices. Let ¢, = (=1)""*D/2, Define a linear map p : C,(X) — C,(X) by

p(o) = €,0.

We claim that p is a chain map, which is chain-homotopic to the identity. This implies the theorem, since

implies exei(p*P ~ p*Y) = exp (Y ~ ), as R is commutative. One has

(k+D(k+1+1) K2 4+2k+12 +k+1 k(k+1)+1(1+1)
2 2 = 2

=(=1) (-1 = (-1 exer.

ek = (=1)

Since p* = Id on the cohomology, we get ¢ - ¢ = (-1)M'¢) - ¢.

We need to show dp = pd holds. For this let ¢ be an n-simplex. We compute

p&(a) =p [Z(—1)i0|[v0,,..z>,...,v,,]]

= en1 ) (10l 0, ol

1

n(n+1) n(n-1)

Onehas ¢, =(-1)"2 =(-1)"2 ™ = ¢,1(-1)". This implies, that p is a chain map.

We now construct a chain-homotopy to the identity. Let A be an n-simplex. As in the construction of the

prism-operator we divide I x A ¢ RN*! into (1 + 1) simplices as follows. If

{O}XA = [vg,...,v,] and

{1} X A = [wy,...,w,],
Then I x A is the union of the simplices
[vo, ..., 01, wi, ..., Wy, i=0,...,n

Let 7t : I X A — A be the projection. We define P : C,(X) = C,+1(X) by

n
P(G) = Z(_l)lgn—i(o © 7z)|[vo,...,v,v,w,,,...,w,v]«
i=0
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We want to show dP + Pd = p — Id. For this we compute

BP(O) =0 Z(—l)ign_ig o 77|[v0,...,vi,w,,,...,wi]

1

= Z(_l)lﬂfn—ia o n'[vo,..ﬁ,m.,vf,wn‘..,wi]

j<i
n—j+1
+Z(_1) 1 En—i0n|[7](],...,Uf,ZU,,,...be...,w,‘]'
j=i

The terms with i = j yield

&p0 © 7—(|[wy,,..4,wo] + E &Ep—-i0 O 7-(l[vo,...,v,-_l,w,,,“.,w,-]
D >0
i=0

+ Z(_l)n+i+1€n—10 © 7'(l[vo,...,v,-,wn,.4.,w,-+1] —0o° T[|[vg,...,vy,]-
i<n
Replacing i in the second sum by i — 1, using (=1)"*e, i1 = —€,_;, One sees that these two sums cancel
each other. The remaining terms give p(0) — o. It remains to show that the terms with i # j give —Pd.

The definition yields
P&(G) = Z(_l)iﬂén—i—la o 7-[|[vu,...,v,-,w,,,...zb/-...,w,v]
i<j
+ Z(_l)i+j_1€n—i(7 © nl[vg,...ﬁj...,v[,wn ..... w;]
i>j
By €,-i = (=1)""e,_i_1 the claim follows. O
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1.8 The Kiinneth formula

Definition 1.8.1. The tensor produkt of two abelian groups A, B is the group with generators 2 ® b for
a € Aand b € B and relations

@+a)®b=a®b+a @b,
a®(b+b)=a®b+axl.

Examples 1.8.2. (a) For every abelian group one has Z® A = A.
(b) Q®(Z/nZ) = 0.

Definition 1.8.3. If R is a commutative ring with unit and if M, N are R-modules, then the R-module
M ®g N is defined as the quotient M ® N modulo the subgroup generated by all elements of the form

me®n—-mern, rek.
The group M ®; N becomes an R-module by
rim@n) :=rm®n.

Examples 1.8.4. (a) For every R-Modul M one has R®x M = M.
(b) If R = Q( \/E), then R®r R = R, but R ®g R is a 4-dimensional Q-vector space.

(c) If V, W are vector spaces over a field F with bases vy, ..., v, and wy, ..., w,, then a basis for the vector
space V ® W is given by

(Vi ® W)) 1<i<n -
1<j<m

In particular, one has
dim (V @ W) = (dim V)( dim W).
Definition 1.8.5. If A, B are algebras over R, then A ® B becomes an R-algebra with product

@eb)a ®V')=ad ®bV'.

Example 1.8.6. With this product the matrix algebra M,,(R) ® M, (R) is isomorphic to M,,;»(R). An
isomorphism M,,(R) ® M,,(R) — M,;»(R) is given as follows: let A = (a;;) € M,,(R) and B € M,(R). Then
one maps A ® B to the matrix
m B ... ayuB
€ Myun(R).

amiB ... ammB

Definition 1.8.7. If the algebras A and B are graded, then there is a second product, the graded product,
defined by
@@b)@ ®b) = (-1)*80 sy @ bl

where the elements b and a” are homogeneous. For arbitrary elements this product is extended bilinearly.
The ensuing algebra is called the graded tensor-product algebra.
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The external cup-product is defined as a map
H*(X,R) x H'(Y,R) =5 H*(X X Y,R)

by (a,b) = axb = pj(a) - p5(b), here p; and p; are the coordinate projections of X X Y. The same formula

defines the relative version

HYX,A,R) x H(Y,B,R) = H"*(X x Y,A x B, R).

The external product is R-bilinear, hence it defines an R-linear map

¥ H'(X,R) &g H'(Y,R) » H'(X X Y,R).

Theorem 1.8.8. (a) Let X and Y be topological spaces. Equip H*(X, R) ®r H*(Y, R) with the structure of the
graded tensor-product algebra, then the external cup-product is an algebra homomorphism.

(b) If X is a CW-complex and H*(Y, R) is a finitely generated free R-module for every k > 0, then the external

cup-product is an isomorphism. For every n one has

H'(X x Y,R) = @ H(X,R) ® H'(Y,R).

k+l=n

Proof. (a) Leta,a’ € H'(X,R) and b, b’ € H(Y, R) be homogeneous elements. Then one has

Y((@eb)@ o)) = (-1)*E0%E e © bl)
— (_1)deg(b)deg(tl’)rfi(aul) - Pz(bb’)
= (-1)80 95O @) - pi(@') - p3(0) - py(b)
=@ - pa(0) - p1@) - pr(t)
= pa®b)y@ e b).

Therefore, ¢ is an algebra homomorphism.

(b) We fix Y and write yx for the algebra-homomorphism given by the external cup product. We write

uk(x) = @D H'(X, R) & HI(Y, R),
i+j=k
and

VE(X) = HY(X x Y, R).

note that since each H/(Y, R) is finitely generated and free, we get U(| |, Z,) = [], U¥(Z,) for any family
(Z,) of spaces. We show by induction on n, that v¥x, : U¥(X,) — VK(X,) is an isomorphism. Forn = 0
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this is clear as iy : U(pt) — V¥(pt) is an isomorphism. Now let 7 > 1 and write

X/ Xy-1 = |_| ea/ |_| de,

where e, = D", and the interiors are the cells of dimension n. As every e, is contractible, one gets

ur (I_‘ ea) = H UK (e,) = H Uk(pt) = Vk (I_I ea).

By induction, we can assume that 1) induces isomorphisms

() l)

The exact sequence of the pair (| |, e, | |, den) together with the five-lemma implies that i gives isomor-

phisms U¥(X,,/X,-1) = V¥(X,,/X,-1). The exact sequence of the pair (X,, X,-1) and the five lemma give

that ¢ : UX(X,) = V¥(X,) for all k,n. The fact that X is the union of the X,, induces UM(X) = lim uk(x,)
n

and the same for V*. The map 1, being given by the external cup product, is compatible with these

projective limits and so 1 is an isomorphism on V¥(X) as it is so on V¥(X,,). m|

Example 1.8.9. Let R"/Z" = T" be the n=dimensional torus. Let & be a generator of the free R-module
HY(T,R) and let i= p;(a) € H'(T", R), where pj: T" — T is the projection onto the j-th factor. We claim

that H*(T", R) is the free R-module generated by all elements @, - ... - a;, where 1 <i; <--- <i, <n.

In particular it follows H*(T", R) = RN with N = ( Z ] This indeed follows from the Kiinneth formula

and an induction on 7.

* % %
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1.9 Orientations
Lemma 1.9.1. Let n € N and let M be an n-dimensional manifold and x € M. Then

Z k=mn,
Hy(M, M\ {x}) =
0 otherwise.

Proof. The point x has an open neighbourhood U = R" and by excision we get Hx(M,M \ {x}) =
Hi(R",R" \ {0}). We first consider the case n > 2. Note that R” \ {0} is homotopy equivalent to S"~!. The
long exact sequence of relative Homology states

++ > Hy(R" \ {0}) - Hi(R") - Hy(R", R \ {0}) LN Hi (RN {0}) > ..

N Hl(lR”) N Hl(IR”, R" \ {O}) -
P —
0

HO(]R" N {0}) = HO(]R”) - HO(]R”,IR” N {0}) -0,
———— ——
Z 4

from which the claim can be read off. In the case n = 1 we have H; (]R \ {0}) = 7? and the map to Hy(R)
is surjective, hence the claim follows in this case, too. ]

Definition 1.9.2. Let M be an n-dimensional manifold. For a subset A C M we write
A°=M~NA

and call this set the complement of A.

Lemma 1.9.3. Let B C A C X and suppose that B is a deformation retract of A. Then the inclusion o : Cy(B) —
Ci(A) induces a chain map B : C(X, B) — Cik(X, A) and the latter induces an isomorphism

Hi(X, B) = Hy(X, A)
for every k.

Proof. We get a commutative diagram with exact rows

0 Ck(B) Cr(X) C(X,B) ——0

EE

0 Cr(A) Ci(X) C(X,A) ——0
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The commutativity of this diagram implies that these give commutative diagrams on homology

> Hk(B) Hk(X) Hk(X, B) e Hk_l(B) —_— ...
FETRT
..—— Hi(A) Hi(X) Hi(X,A) —— Hj1(A) — ...
As a, is an isomorphism, the five-lemma implies that g, is, too. ]

Definition 1.9.4. A local orientation at the point x € M is the choice of a generator of the group
Hy(M, M\ {x}) = Hy(M, {x]°).

Given a choice of a local orientation at every point x. For any two x, y in a chart U one chooses a ball B
in U = IR" which contains x and y, then B¢ is a deformation retract of {x}° as well as {y} and so there are
canonical isomorphisms

H,(M, {x}°) = H,(M, B°) = H,(M, {y}).

If these isomorphisms map the orientation at x to the one at y, then the choice of local orientations is
called compatible.

An orientation is a compatible choice of local orientations. An orientation does not necessarily exist. If
it does, we call the manifold M orientable. If M is orientable and connected, there are exactly 2 different
orientations.

Proposition 1.9.5. Let M be a manifold. There exists an orientable covering M—>M of degree 2.

In particular, if M is connected and the fundamental group I has no subgroup of index 2, then M is orientable.

Proof. Let

M={e:reM
be the set of all local orientations of points x € M. The covering map p : M — Mist 7, - x. Fora point
7, € M and a chart (U, ¢) around the point x € M, let V be the set of all 7,, y € U such that 7, and 7,
induce the same element in H,(M, U¢). By the uniqueness of 7, the map 7, qb(y) is a chart on V, which
makes M a covering manifold of M. This manifold is orientable, since 7, € M can also be viewed as an
orientation in Hn(V, LN {Tx}).

The addendum follows as a 2-sheeted connected covering is the quotient of the universal covering M by
a subgroup of I of index 2. m|

* ¥ ¥
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1.10 Poincaré duality

Definition 1.10.1. Let R be an abelian group. Let
Ci(X,R) = Ci(X)®R.

Then d®Id makes this a chain complex and we define its homology to be the homology with coefficients
in R,
Hi(X,R) = Hy(C.(X,R))

Definition 1.10.2. Letp : O — X be a continuous map. A section to p is a continuous map s : X — Q
such that p(s(x)) = x for every x € X.

If a section exists, p must be surjective.
Examples 1.10.3.
e The projection p : R™** — R" has a natural section given by the embedding s : R" < R"**.

e Themapp : T > T,z z%2 does not have a section, as that would entail the existence of a

continuous square root.

Definition 1.10.4. Let M be an n-dimensional manifold and let Mz denote the disjoint union of all
H, (M, {x}°) as x runs through M. Then, as M c My, which consists of generators only, the set Mz carries

a natural topology, making the map Mz — M a covering of infinite degree.
Lemma 1.10.5. Let M be a manifold of dimension n and let A C M be a compact subset.

(@) If x = ay is a section of the covering space Mz — M, then there exists a uniquely determined class
aa € H,(M, A°), whose image in H,(M, {x}) is a, for every x € A.

Note that this does not claim the existence of a section, but only the “globalisation” of a given section.
(b) Hi(M, A°) =0 forall k > n.
Proof. (1) We observe that if the lemma holds for compact sets A, B and A N B, then it holds for A U B.
First we consider the case k > n. The relative Mayer-Vietoris sequence gives:
0 — Hy(M, (AU BY) %> H(M, A%) & Hy(M, B)
4, H(M, (AN BY).
The zero upfront comes from the assumption that Hk+1(M, (AN B)C) = 0. One has ¢(a) = (a,a) and

Y(a, B) = a — B. For k > n, the middle term is zero by assumption, so then we have Hk(M, (Au B)C) =0.
This proves (b).

For (a) let x — a, be a section. The hypotheses gives unique classes as € H,(M, A°), ag € H,(M, B)
and aanp € Hn(M, AN B)C) having image a, for all x in A, B, A N B respectively. By uniqueness, the

images of a4 and ap in H,,(M, AN B)C) both equal to aanp. The exactness of the sequence implies that
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(aa, ap) = ¢(aaup) for a uniquely determined aaup € H,(M, (A U B)°). This then means that asup has
image ay at every x € A U B as required. This finishes the proof of (1).

(2) We now reduce to the case M = R". The compact set A can be written as a union A; U - - - U A,,, where
each Ay is contained in a chart U = R". We repeatedly apply part 1) to reduce the claim to the single A;

or intersections of those. By excision, we then can replace M by R".

(3) Let M = R" and A a finite union of convex compact sets Ay, ..., A, then, as before, we reduce to the
case m = 1. When A is convex, then {x}° deformation retracts to A¢ for every x € A.

(4) Let now A C R" be an arbitrary compact set. Let o € Hi(IR", A°) be represented by a relative cycle
z and let C C A° be the union of the images of the singular simplices in dz. Since C is compact, it has
a positive distance 0 from A. We cover A by finitely many closed balls which do not meet C. Let K
be the union of these balls, then z defines an element ax in Hi(R”, K°), mapping to a € Hi(R", A°). If
k > n, then H(IR",K*) = 0, so ax = 0, hence a = 0 and so Hi(R", A°) = 0. If k = n and a, is zero in
H,(R", {x}) for all x € A, then the same is true for all x € K, as K is a union of closed balls B meeting A and
H,(R", B°) = H,(R", {x]°) is an isomorphism for x € B. Then by 3), ax = 0, and so is . This finishes the
uniqueness in (a). The existence is clear, as we can choose @4 to be the image of ap forany ball B> A. O

Theorem 1.10.6. Let M be a connected compact connected manifold of dimension n.

(a) If M is orientable, the map H,(M) — H, (M, {x}°) = Z is an isomorphism for every x € M.
(b) If M is non-orientable, the group H,(M) is zero.

() Hk(M) =0 fork > n.

Proof. In Lemma 1.10.5, we can choose A = M. Part (c) of the theorem is immediate by part (b) of
the lemma. Finally, let I'(M) be the set of sections of Mz — M. Then I'(M) is a Z-module. There
is a map H,(M) — I'(M) sending a class a to the section x +— a, = the image of @ under the map
H,(M) — H,(M, {x]°). By part (a) of the lemma, this homomorphism is an isomorphism, so I'(M) = H,(M).

We claim that for a given x¢ € M the evaluation map

Oz, : T(M) = Hp(M, {xo}) = Z

s > s(xg)

is an isomorphism. For injectivity, let s € I'(M) with s(xp) = 0. Choose an orientation, i.e., a compatible

isomorphism ¢, : H,(M, {x}°) = Z. Let k € Z and let My C M be the set of all x € M with ¢.(s(x)) = k.

Let x € M. By compatibility, we have U C M; for any chart U around x. Therefore, M; is open. Its

complement My = Uiz« M is open, too. As M is connected and My # 0, we get M = My, so s = 0 and 0y,

is injective.

For surjectivity, note that orientability of M implies that 0,,(I'(M)) contains a generator of H, (M, {xo}) = Z.
o

The theorem is proven.
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Definition 1.10.7. If M is compact, connected and orientable, the theorem implies that there is a class
w € H,(M) such that w induces a generator of H, (M, {x}°) for one, and hence every, x € M. Such a class w
is called a fundamental class. It is uniquely determined up to sign.

Definition 1.10.8. For a ring R, a space X and indices k > [ we define an R-bilinear pairing

~: C(X,R) x C'(X,R) — Cr_i(X,R)

Lemma 1.10.9. One has
do ~a)= (—1)1(80 ~a—0~ da)

Therefore the product of a cycle and a cocycle is a cycle, so the cap product induces a bilinear map

Hi(X,R) x H(X,R) = Hy_i(X, R).

Proof. By degree reasons, both sides are zero if k = [. So we assume k > [ + 1. Setting 0; = 0, 5., We

........

compute
k
do ~a = Z(—l)fcj ~a
=0
I
:Z(_1)]a(o|[vo,...?)}...,v,+1])G|[vl+1 ,,,,, o]
=0
k
+ Z (_1)]a(0|[ ,,,,, vz])o—[v;,...@...,vk]/
j=l+1
1+1
0 ~da= Z(_1)]a(0|[vo,..@...,vl,,l])G|[vl+1/--~/vk]'
=0
k
i1
07(0 ~ a) = Z(—l)] a(alz,o ,,,, v,])al[w/“;}ka].
j=I
This implies the claim. ]

Theorem 1.10.10. Let M be a compact connected orientable manifold and let w € H,(M) be a fundamental
class. Then the map

D : H{(M) - H,-«(M),

aPw~a

is an isomorphism for every k.

Proof. The proof is involved and shall not be given here, as this lecture has other goals. At this point, it is
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sufficient to understand, how the structure of manifold and the notion of orientation go into the duality
theorem. The details of the proof are technical and one learns little from them. m]

* X X
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1.11 De Rham and group cohomology
Definition 1.11.1. Let M be a smooth manifold and let Q¥(M) be the real vector space of smooth k-
differential forms. The exterior differential d* : QF — Q1 satisfies d*1d* = 0, so one can define the de
Rham Cohomology of M as

HEL (M) := ker(d")/ im(@* ).

Let 0 : A¥ — M be a smooth map. Then a k-differential form w can be integrated over the image of o, we

[e

Ce(M) x QF(M) - R,

denote this as

We get a bilinear map

which a priori is only defined for smooth elements on C(X), but can be extended by approximation.

fdw=fa).
o do

This implies that the above pairing yields a bilinear pairing

Then Stoke’s Theorem says

Hy(M) x Hip (M) - R.
One can show that, if M is orientable, this pairing induces an isomorphism
H\ (M) = H(M)".
Where the right hand side denotes the real vector space of all group homomorphisms from H, (M) to
(R, +).

The deRham cohomology gives rise to Lie-algebra cohomology, which is connected to group cohomology
of Lie groups. For complex manifolds one can decompose the exterior differential into “holomorphic”
and “anti-holomorphic” parts, which gives rise to the Dolbeault cohomology.

Group cohomology

Definition 1.11.2. For a group I', one defines the group cohomology as the cohomology of its classifying
space
HK(T',R) = H*(BT, R).

This looks a bit roundabout, but there is a host of purely algebraic definitions of group cohomology.
I recommend the book by Brown Cohomology of groups for a taster. The group cohomology of Galois
groups plays an important role in number theory.

Later we shall define group cohomology from a different viewpoint and also with more general coeffi-
cients, meaning that we shall replace the group R with a I'-module.

* * ¥
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2 Categories and functors

2.1 Categories

Definition 2.1.1. A category is a triple (Ob, Hom, o) where Ob is a class, the elements of which are called
objects of the category. Hom is a family of sets (Hom(X, Y))x yeob. The elements of Hom(X, Y) are called
morphisms from X to Y. Finally, o is a family of maps: for any three objects X, Y, Z:

Hom(X, Y) x Hom(Y, Z) - Hom(X, Z)
(f 8 —g8of

such that

e go(foh)=(go f)ohwhenever the morphisms are composable.

e For every object X there is a morphism 1x € Hom(X, X) with f o1x = fand 1xo g = gforall f, ¢

for which the respective composition exists.

Remark 2.1.2. (a) The unit morphism is uniquely determined, for let 1} be a second one, then
1x = 1x1y = 1%.

(b) Asin the case of maps, the composition changes order, so g o f has to be read as “g after f”.
Examples 2.1.3. (a) SET is the category of sets and maps with the usual composition.
(b) AB is the category of abelian groups and group homomorphisms.

(c) RING is the category of rings with unit element (not necessarily commutative). Morphisms are
unital ring homomorphisms ¢ : R — S with ¢(1r) = 1s.

(d) TOP is the category of topological spaces and continuous maps.

(e) TOP, is the category of pointed spaces, i.e., objects are pairs (X, xy) where X is a topological space
and xg € X a point. A morphism from (X, xo) to (Y, yo) is a continuous map f : X — Y with f(xo) = yo.

(f) Let Cbe a category. Then C°FP is the opposite category in which all arrows are turned artound. The
category C°PP has the same objects as C, but

Homger (X, Y) = Home(Y, X).

(g) A group can be viewed as a category with only one object. This means that for a group G one defines
a category G with only one object X and Homg(X, X) := G. The composition in this category is the
one given by the group structure.

(h) Let (A,>) be a partially ordered set. Then one defines a category with Ob = A, by saying that
Hom(x, y) has exactly one element, if x < y and Hom(x, y) = 0 otherwise.
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(i) The homotopy category [TOP]: The objects are topological spaces and the morphisms are free
homotopy classes [ f] of continuous maps (See definition below).

(j) Let A and Bbe categories. The product category A x B has as object class the class of all pairs (X, Y),
where X € Aand Y € 8. Further one has

Hom s ((4, B), (X, Y)) = Hom(4, X) x Hom(B, Y)

and the composition is given coordinate-wise.

Definition 2.1.4. Two continuous maps f,g : X — Y between topological spaces are called (freely)
homotopic, if there exists a continuous map / : I X X — Y, where I = [0, 1] is the unit interval, such that

h0,x) = f(x), h(1,x) = g(x)
for every x € X. The map & is called a homotopy from f to g.

Examples 2.1.5. e Any map f : X — R is homotopic to the constant map g(x) = 0. A homotopy is
given by
h(s,x) = (1 =) f(x).

e Fork e Zlet f; : S' — S! be defined as fi(z) = z*. then f; and f; are not homotopic, if k # I.

Definition 2.1.6. We like to visualise morphisms by diagrams like this one:

X;Y

8
X

Z

We say, that a diagram is commutative, if, any two ways to get from one node A to another node B,
must coincide. So the above diagram is commutative, if and only if the morphism & € Hom(X, Z) is the

composition of f and g.

Definition 2.1.7. A morphism f : X — Y in a category is called an isomorphism, if there exists a
morphism g: Y — X with
gof=1x and fog=1y.

Examples 2.1.8. (a) The isomorphisms in the category of sets are the bijections.
(b) Isomorphisms in the category of groups are the group isomorpisms.

(c) Isomorphisms in the category TOP are the homeomorphisms.

(d) Anisomorphism in the homotopy category are called homotopy equivalence.

Definition 2.1.9. Let A be a category. A subcategory is a category 8 such that Ob(8) C Ob(A), one has

Homg(X, Y) € Hom#(X,Y)
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for all X,Y € 8B, and the composition and units in B are the ones of A. A subcategory 8 is called a
full subcategory, if for any two X, Y € 8 one has Homg(X, Y) = Hom#(X, Y). Every subclass of Ob(A)
defines exactly one full subcategory.

Example 2.1.10.

The category of finite groups is a full subcategory of the category GRP of all groups.

Definition 2.1.11. A full subcategory ‘A’ C A is called dense, if for every X € A thereis a X’ € A’, such
that X’ is isomorphic to X.

Example 2.1.12. Let K be a field and A the category of all finite-dimensional K-vector spaces and linear
maps. Then, as you learn in Linear Algebra, the full subcategory A’, whose objects are {0}, K, K%, K5, ...
a dense subcategory of A.

* * ¥
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2.2 Epis, Monos and products

Definition 2.2.1. A morphismus f : X — Y is called an epimorphism or epi, if for any two morphisms

a,B : Y — Z the following is true: if in the (non-cummutative) diagram

x—Liy=—27
B

the upper and lower paths from X to X agree, then one has o = . In other words, f is an epi, if the

commutativity of a diagram of the form

implies @ = B. Yet another way to say this is, that f is an epi iff it has the right-cancellation property:

aof=pof = a=f
holds for all morphisms a and § which are composable with f.
Examples 2.2.2. (a) In SET the epis are exactly the surjective maps.

(b) In the category of Hausdorff spaces and continuous maps the epis are exactly the dominant maps,
i.e.,, maps with dense image. (Exercise)

(c) In the category of groups the epis are exactly the surjective group homomorphisms. (Exercise)
(d) In the category RING the inclusion morphism Z — Q is an epi. (Exercise)

Definition 2.2.3. A morphism f : X — Yis called a monomorphism or mono, if for any two morphisms

a,p : V — X the following is true: if in the (non commutative) diagram

v=—x—L .y
g

the upper and the lower path from V to Y agree, then one has a« = . This means, f is a mono, if the

commutativity of any given diagram of the form

>

a
—

=
<
—
—

<
<

—
f

implies a = f.

Examples 2.2.4. (a) A map in SET is mono if and only if in is injective.

(b) A morphism f is mono in C°PP iff f is an epi in C.
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Products and coproducts

Definition 2.2.5. Let X, Y be objects of a category C. A product of X and Y is an object P together with
morphisms p; : P — X and p, : P — Y, such that the following universal property holds: For every
object Z and morphisms p : Z — X and q : Z — Y there is exactly one morphism Z — P, such that the

/\
\/

commutes. This means that the morphisms from Z to X and Y factor over the universal morphisms from
PtoXandY.

diagram

If it exists, the product is uniquely determined up to isomorphy. It is written as P = X X Y. The maps
XxY — Xand X XY — Y are called the projections of the product.

The universal property yields a bijection
Hom(Z, X x Y) = Hom(Z, X) Xx Hom(Z, Y).

Definition 2.2.6. A Coprodukt of X and Y is a product in C°PP.

This means, it is an object K together with morphisms i; : X — Kand 7, : Y — K, such that the following
universal property holds: For every object Z and Morphismen p : X — Z and g : Y — Z there is exactly
one morphism K — Z, such that the diagram

/\
\/

commutes. It if exists, the coproduct is uniquely determined. We writeitas K= X][[YorC=X@aY.

The universal property gives natural bijections:
Hom(X @& Y, Z) = Hom(X, Z) x Hom(Y, Z).

Examples 2.2.7. (a) In the category of sets products and coproducts exist. The product is given by the
cartesian product, the coproduct is the disjoint union.

(b) The category of groups allows for products and coproducts. The product is the cartesian product
and the coproduct is the free product of groups.
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(c) In the category RING of rings with one, the product exists and is given by the cartesian product. The

coproduct is the tensor product over Z.

(d) In the category FIELD of fields neither product, nor coproduct exist. (Take two fields with different
characteristics.)

(e) Using partially ordered sets, i.e., Example 2.1.3, one easily constructs categories with products, but
not with coproducts and vice versa.

* F ¥



Topologie 37

2.3 Pullbacks and pushouts

Definition 2.3.1. A commutative diagramm

<
N— =

|

is called cartesian, or a cartesian square, if for every commutative diagram

<+—0
N—— >

.

there is exactly one arrow from Q to P such that the diagram

commutes. In this case, P is called the pullback of X and Y over Z. A pullback is also called a fiber
product. This property uniquely determines the pullback up to isomorphy. We say that in a category
pullbacks exist, if every diagram of the form

can be extended to a cartesian square. One writes P = X X, Y or, if it is clear, which arrows a and § are

being used, one writes P = X Xz Y.

Reversing all arrows, a Pushout in C is a pullback in C°PP. More precisely, a commutative diagram

|

f
—

b

oq
O+——

—
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is called co-cartesian, if for every commutative diagram

f
—

O+——m
N o

there is exactly one arrow from S to Z, such that the diagram

commutes. In this case, S is called the pushout of B and C over A. A pushout is also called a cofiber
product. If a pushout exists, it is uniquely determined up to isomorphy. One writes S = B &y, C or, if it
is clear, which arrows are being used, one writes S = B @, C.

Examples 2.3.2. (a) In the category of sets the pullback is given by
Xxap Y ={(x,y) € XX Y : a(x) = f(y)}.
The structure maps to X and Y are given by the projections of the cartesian product.

(b) Let there be given a diagram of sets and maps

Then the co-fiber product C in SET is given by the set
C=Xux)/~,
where ~ is the equivalence relation on the disjoint union generated by

f(z) ~ g(2)
forallz € Z.

(c) In the category RING of rings with unit, the pullback is just the same as in SET, but the pushout
gory g p ] p
product is the tensor product.

(d) In the category of groups, the pushout exists and equals the amalgam.
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Lemma 2.3.3. If the diagram

g
—

F
A f

is cartesian and f is mono, then so is g. If the diagram

O

is co-cartesian and if O is epi, then so is ).

39

Proof. Let a, B : Z — F be two morphisms, such that 1 = ga = gB. We have to show that @ = § holds.

Consider the diagram

F
|
f

A——C

—_—

The identity g = gp implies fna = fnp and, since f in injective, we get ' = na = 1B, so the diagram

commtues. As the diagram we started with, is cartesian, there are, for given h and I’ exactly one arrow

from Z to F, making the diagram commute, so weg get & = f5.

The claim for co-cartesian diagrams follows by reversing all arrows, i.e., working in CPP.

* X ¥
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2.4 Functors and natural transformations

Definition 2.4.1. A functor from a category A to a category B is a pair (F, ), where F : Ob(A) — Ob(B)
is a map and ¥ is a family of maps Fxy : Homa(X, Y) — Homg(F(X), F(Y)) such that
o Fxx(1x) = 1rx),

e F(fog)=F(f)oF(g),

where in the second point, we have left out the indices with F.

Examples 2.4.2. (a) The forgetful functor F : AB — SET, which maps a group to its underlying set and
group homomorphisms to the maps os sets.

(b) The homotopy functor F from the category TOP to the homotopy category [TOP]. It maps every
space X to itself and a continuous map f to its homotopy class [f].

(c) Considering groups as categories, functors between them are nothing else but group homomor-

phisms.
Definition 2.4.3. A functor F : C — D°PP is also called a contravariant functor from C to D.

Example 2.4.4. Let K be a field and VECT(K) the category of K-vector spaces and linear maps. The
dualising V = V* = Hom(V, K) is a contravariant functor from VECT(K) to itself.

Definition 2.4.5. A functor F : A — B is an isomorphism of categories, if there is a functor G : 8 — A,
such that
FG=1dg und GF =Idg4.

Definition 2.4.6. A functor F : A — B is called faithful, if for any two X, Y € A, the map
F:Homg(X,Y) —» Homg(F(X), F(Y))

is injective.

The functor F is called full, if for any two X, Y € A the map
F: Homg(X,Y) - Homg(F(X), F(Y))

is surjective.
The functor is called fully faithful, if it is both, full and faithful.
Example 2.4.7. The forgetful functor AB — SET is faithful, but not full.

Lemma 2.4.8. A functor F : A — B is an isomorphism if and only if F is fully faithful and bijective on the object
classes.

Proof. This is clear. O



Topologie 41

Natural transformations

Definition 2.4.9. Let F,G : A — B be functors. A natural transformation ¢ : F — G is a family (tx)xen

of morphisms
tx : F(X) = G(X),

such that for every arrow f : X — Y in A the diagram

F) —2 Fey)

txl lty
6]

cx) 2, 6oy

commutes. One can compose natural transformationst: F - Gands: G — Hand getsst : F — H. A
natural transformation ¢t : F — G is called a natural isomorphism, if there is a natural transformation
s: G — F,suchthatst = Idrand ts = Id¢. If tis a natural isomorphism, then every arrow tx : F(X) — G(X)

is an isomorphism.
Examples 2.4.10. (a) Every group is naturally isomorphic to its opposite group.

Let G be a group. The opposite group G°PP consists of the same set with the composition
a-opp b = ba.

Let F be the functor F : GRP — GRP of the category of groups in itself, which maps every group to

its opposite.

The “naturally” part in the above assertion means that there is a natural isomorphism ¢ : Id = F.

Proof. For every group G the map

tc: G — G°FP,

x> x!

is an isomorphism. If ¢ : G — H is a group homomorphism, then

P(tc(x) = (™) = p() ™" = tu(P(x))-

Therefore t is a natural transformation from Id to F, but also the other way round, from F to Id and
because of

tG0pp tG = IdG
the transformation t is an isomorphism. o

(b) Let K be a field and let F : VECT(K) — VECT(K) be the functor, which sends each vector space V to
its bidual F(V) = V** zuordnet. Then the map

tviV—>V**

v 0y,
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with 0,(@) = a(v) is a natural transformation f : Id — F.

* 3% 3%

42



Topologie 43

2.5 Equivalence of categories

Definition 2.5.1. A functor F : A — Bisan equivalence of categories, if there exists a functor G : 8 — A,
such that
FG=1dg and GF =Id4.

Every isimorphy of categories is an equivalence of categories.

Example 2.5.2. Let K be a field and let A be the category of all finite-dimensional K-vector spaces. Then

F:A— A, V= V”isan equivalence of categories.

Theorem 2.5.3. (a) A functor F : A — B is an equivalence of categories if and only if it is fully faithful and
has dense image.

(Recall that a subcategory A’ C A is dense if every X € A is isomorphic to some X" € A'.)

(b) Two categories A, B are equivalent if and only if there are dense subcategories A" C A and B' C B,

which are isomorphic, A’ = B’.

Proof. (a) Let F be an equivalence of categories with quasi-inverse G : 8 — A and let t : Id#g — GF be
the natural isomorphy. Then for any two X, Y € A the map

Hom(X, Y) %5 Hom(GF(X), GF(Y)) 5 Hom(X, Y)

is the identity, which implies that F is faithful. Since further t;l and tx are isomorphisms, it follows
that G is full. By symmetry in G and F it follows that F is full as well. Let s : Idg — FG be the natural

isomorphy. For Z € 8 the arrow sz : Z — F(G(Z)) is an isomorphism, so F has dense image.

Conversely, let F : A — B be fully faithful with dense image. For every Z € 8B choose an X € A and an
isomorphism vz : Z =7 = F(X), where we assume that Z’ = Z and vz = Idy, if Z lies in the image
already. Then set G(Z) = X. For Z, W € 8 define G : Hom(Z, W) — Hom(G(Z), G(W)) by

Hom(Z, W) "5 Hom(Z = E(X), W = E(Y)) ©2> Hom(X = G(Z), Y = G(W)).

Then G is a functor, quasi-inverse to F.

(b) Let F : A — B be an equivalence with quasi-inverse G : 8 — A. In every isomorphism class [X] of
objects in A choose an object X € im(G), which is possible, as the image is dense by (a). Let A’ be the full
subcategory of these chosen objects. Then A’ is dense in A by construction. Let 8’ = F(A’). We claim
that 8’ is dense B and that F|# is an isomorphism between A’ and &'.

Let Y € B. Then there exists X € A such that F(X) is isomorphic to Y. There exists X’ € A’ such that
X = X’ and thus, as F is fully faithful, we get F(X’) = F(X) = Y, hence ' is dense in 8. For the isomorphy,
first, as any two objects X, Y in A’ are non-isomorphic, it follows that F(X) # F(Y), because, if F(x) is an
isomorphism between F(X) and F(Y), then there exists an inverse F(B). Then F(af) = F(a)F(B) = Idr),
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so af = Idy and the same for S, hence a is an isomorpism. This means that F is a bijection from Ob(A’)
to Ob(#’). It is also bijective on each Hom set, therefore the corresponding inverse maps constitute an

inverse functor.

Now for the converse assume that A’ and B’ exist and that F’ : A’ — B’ is an isomorphism. For each
X € A fix an isomorphism ax : X — X’ for some object X’ € A’ in a way that if X already lies in A’,
then X’ = X and ax = Idx. Set F(X) = F'(X’) for every X € A and for any two X,Y € A and any
T € Hom#(X, Y) let

F(t) = F(ay ot o ay').

Then F is a functor and the same construction on the other side, using F~! yields a quasi-inverse G. O

* X X
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2.6 Additive categories

Definition 2.6.1. An object T of a category C is called terminal object, if for every X € C there is exactly
one arrow X — T. If it exists, it is uniquely determined up to isomorphy.

Examples 2.6.2. (a) In AB the trivial group is terminal.
(b) In TOP the one-point space {xo} is terminal.

Definition 2.6.3. An object ] of C is called initial object, if for every X € C there is exactly one morphism

I — X. If it exists, it is uniquely determined up to isomorphy.
Examples 2.6.4. (a) In AB the trivial group is also initial.

(b) In TOP the empty set is initial. In the category TOPy there is no initial object. In TOP, the one point

space is initial.
(c¢) In RING the ring Z is initial, whereas the Zero-ring is terminal.

Definition 2.6.5. A zero object in a category is an object Xy which is both, initial and terminal. For any
two objects X, Y € C there then is exactly one morphism 0, which factors through the zero object. This

morphism is called the zero morphism.

A zero object is written as 0. A category which contains a zero object is called a pointed category. Let
f : X = Y be a morphism in a pointed category. A kernel for f is a morphism « : K — X such that

e fa=0and

e every morphism g : Z — X with fg = 0 factors in a unique way through «, i.e., there is exactly one

y l \
N
v f

S a

K——X——Y

morphism ¢ : Z — Kwith g = ay.

Example 2.6.6. In AB for a given morphism f : A — B the embedding of the subgroup f7'(0) in A is a

kernel.
Note that if C is pointed, then C°PP is pointed, too.

Definition 2.6.7. Let C be pointed, then cokernel for f : X — Y is a morphism y : Y — C such that

e yf=0and
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e every norphism g : Y — Z with gf = 0 factors in a unique way through vy, i.e., there is exactly one

f y

X—sY——C

morphism ¢ : C = Z with g = ¢y.

Lemma 2.6.8. Let C be a pointed category. A kernel is always a mono and a cokernel is always an epimorphism.

Proof. Letk : K —» X beakernel for f: X = Y. Let @, : Z — K morphisms with ka = k. We have to
show that a = f. We have the commutative diagram

K—>X—>Y

1|7

The arrow F := ka = kf has the property that fF = 0, hence it factors uniquely through k, which means

that @ = B. The second assertion follows by dualizing, since a kernel in C°PP is a cokernel in C. ]
Examples 2.6.9.

e Let F be a field. The category VECT(F) of F-vector spaces and linear maps is pointed, with zero
object being the zero space. Kernels and cokernels do exist and are the usual kernels and cokernels

as in Linear Algebra.

e The category of pointed sets. The objects are pairs (X, xo), where X is a set and xy € X a point.
Morphisms from (X, xo) to (Y, o) are maps f : X — Y with f(xg) = yo. This category has a zero
object: the one-point set {xo}. For a map f : (X,x0) — (Y, o) a kernel exists and is given by the
inclusion map k : f~!(y9) < X. A cokernel also exists and equals the projection onto C = Y/ f(X),
which means that f(X) is collapsed to a point. More precisely, Y/ f(X) equals Y/ ~, where ~ is the
equivalence relation generated by f(x) ~ f(x’) for every two x,x" € X.

Remark 2.6.10. For an object X of a category C let Cx be the class of all arrows f : Z — X with target X.
On Cx we have an equivalence relation, where we say that f : Z — X and g : V — X are equivalent, if
there exists an isomorphism « : V' — Z such that the diagram

commutes. The universal property implies that a kernel is uniquely determined up to this equivalence.
Therefore, it makes sense to speak of the kernel as the equivalence class [k] of one given kernel k. The
same goes for the cokernel.

Definition 2.6.11. An additive category is:

e a pointed category C with
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e an abelian group structure + on Hom¢(X, Y) for every pair (X, Y) of, such that the composition
o : Hom(X, Y) x Hom(Y, Z) - Hom(X, Z)

is bilinear.

e Further we demand, that for any two objects X, Y a product X X Y and a coproduct X @ Y exists.

In an additive category the zero-morphism 0 € Hom(X, Y) always equals the zero in the additive
group Hom(X,Y), because the zero-morphism is the only element of the image of the bilinear map
o : Hom(X, 0) x Hom(0, Y) - Hom(X, Y).

Examples 2.6.12.
e For aring R, the category MOD(R) is additive.

e For a field F the category VECT,,(F) of even dimensional vector spaces of is additive.

* X ¥
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2.7 Abelian categories

Definition 2.7.1. An additive category C is called abelian category, if:

(a) For every morphism the kernel and cokernel exist.

(b) A morphism whose kernel and cokernel vanish, is an isomorphism.

Axiom (b) is equivalent to

(b”) For every Morphism f, the natural map from the Coimage to the image is an isomorphism.

Here the image an coimage are
im(f) = ker(coker(f)), coim(f) = coker(ker(f)).

The definitions of the kernel and of the cokernel both induce the existence of a map g : coim(f) — im(f)
and due to the uniqueness, the two definitions of g agree.

Proof of the equivalence of b and b’.
(b)=(b’): It is easy to see that g has trivial kernel and cokernel. By (b) it is an isomorphism.
(b")=(b): Under these conditions f = g. O

Remark 2.7.2. Let f be amorphism in an abelian category. If ker(f) = 0, the f is the kernel of its cokernel.
If coker(f) = 0, then f is the cokernel of its kernel.
Proof. Let f : X — Y. If ker(f) = O, then f is the cokernel of its kernel and by (b’) f is the kernel of its

cokernel. If coker(f) = 0, then f is the kernel of its cokernel and by (b’) it is the cokernel of its kernel. O

Examples 2.7.3. (a) Let R be a ring and let MOD(R) be the category of R-modules and R-linear maps.

Then MOD(R) is an abelian category, where the sum of two homomorphisms is the pointwise sum.

(b) Let (R)ier be a family of rings and let A be the category, the objects of which are families (M;);e
where M; is an R;-module and a morphism f : (M;) — (V;) is a family f = (f;)ie;, where each f; is an
Ri-module homomorphism M; — N;. Then A is an abelian category.

(c) Anexample of an additive category which is not abelian, is given by the category of even-dimensional
vector spaces over a given field F. It is not abelian, as a linear map of odd rank has no kernel.

Lemma 2.7.4. Let A be an abelian category.

(a) Anarrow f is mono, iff ker(f) = 0. An arrow g is epi, iff coker(g) = 0.

(b) The dual category A°PP is also abelian.
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(c) For two objects X,Y the product X X Y is isomorphic to the coproduct X &Y.

(d) Fiber products and co-fiber products exist.

(e) A morphism f which is epi and mono is an isomorphism.

Proof. (a) If ker(f) = 0, then f is the kernel of its cokernel, so it is mono by Lemma 2.6.8. Conversely, if f
is mono and « a kernel, then f0 = 0 = fa and therefore a = 0. The epi assertion follows similarly.

(b) is easily verified.

(c) Let Z -5 Xand Z £, Y be morphisms. Then write a X § for the morphism Z — X X Y which is
induced by the universal property of the product. The morphisms X Y XxYand Y 5 X x Y induce
amorphism ¢ : X®Y — X X Y by the universal property of the sum. This makes the diagram

Id

N

XY ——XXY

N,

PUx : XXY->X-> XY

X
Y

commutative. Let

and
Py : XXY->Y > XaY.

Let further
Px + Py,

It is easy to see that ¢ is inverse to ¢ and so ¢ is an isomorphism.

(d)Let f: A — Cand g: B — Cbe given. Leta : A X B — C be the composition A x B — A N Cand
similarly §: AXB — B — C. Then K = ker(a — ) is a fiber product. Co-fiber products are fiber products

in the category A°PP, which is abelian, too.

(e) Let f : X — Y be a morphism which is epi and mono. Then by (a), f is the kernel of its cokernel,
which, again by (a) is zero. The identity morphism 1y : Y — Y also is a kernel of Y — 0. By the
uniqueness of a kernel there exist uniquely determined arrows «a, § making the diagrams

XLY XLY
Y Y

It follows a = f and in the usual way it follows that f is an inverse to f. m|
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Definition 2.7.5. For a morphism f in an abelian category we define
im(f) := ker(coker(f)).

A sequence of morphisms

~

is called exact, if

im(f) = ker(g)
holds, that is to say, if im(f) is a kernel of g. A sequence

4i-1 di
o A — A A o

is called exact, if it is exact at every index i.

Remark 2.7.6. Since a kernel is not uniquely determined, the identity im(f) = ker(g) is to be read as
saying that any kernel of any cokernel of f is a kernel for g.

Another way to put it is to say that we have g o f = 0 and hence f factors through ker(g):
K
/ Y@
X Y
f g

Now the sequence is exact at Y is equivalent to saying that « is an epimorphism.

Z

Definition 2.7.7. A functor F : C — D between additive categories is called an additive functor, if for
any two objects X, Y the induced map F : Hom(X, Y) — Hom(F(X), F(Y)) is a group homomorphism.

A functor F : C — D between abelian categories is called an exact functor, if it is additive and maps

exact sequences to exact sequences.

Diagram chase

Remark 2.7.8 (On diagram chase in abelian categories). The proofs of assertions like the five lemma or
the snake lemma depend on diagram chase, where one has to pick elements and chase them along a
diagram. So a priori they are not valid in an arbitrary abelian category. There are two ways to fix this.

Firstly, one can give new proofs which only use arguments valid in abelian categories. This can be done,

but is very tedious.

Secondly, one makes use of Mitchell’'s Embedding Theorem, which says that for a small abelian
category A there exists a ring R (with 1, not neccessarily commutative) and a full faithful and exact
functor F : A — MOD(R).

The functor F yields an equivalence between A and a full subcategory of MOD(R) in such a way that
kernels and cokernels computed in A correspond to the ordinary kernels and cokernels computed in
MOD(R). Such an equivalence is necessarily additive. The theorem thus essentially says that the objects
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of A can be thought of as R-modules, and the morphisms as R-linear maps, with kernels, cokernels,
exact sequences and sums of morphisms being determined as in the case of modules.

* X X
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3 Sheaves

3.1 Presheaves

Definition 3.1.1. Let X be a topological space and let (X) be the category whose objects are the open
sets in X and the morphisms are the inclusion maps U — V whenever U C V.

A presheaf is a contravariant functor

F 1 UX) —> AB.

Remark 3.1.2. Let ¥ be a presheaf on X. To any open set U C X, the presheaf attaches an abelian group

¥ (U) and to any inclusion V C U, a group homomorphism 7 (U) — 7 (V), which is called the restriction

u

and is written as res;

or as s > s|y. The axioms of a functor imply for W c V c U and s € F(U) that

14 U_ ool u_
res,, ores; =res,, and res; =Ids)

or, in the other notation, for s € ¥ (U) one has

(slv)lw =slw, and s|y =s.

Definition 3.1.3. The elements of # (U) are also called sections over U of the sheaf #. The reason for
these notions will become clear later. An element s € ¥ (X) is called a global section.

Examples 3.1.4.

Throughout, we fix an abelian group A and a topological space X.

(a) Let Mu be the presheaf of all maps, i.e., for an open set U let M4(U) be the set of all maps from
s: U — A. Then My is a presheaf with res!(s) = s|y being the restriction of the map s.

(b) By K4 we denote the constant presheaf with value group A. By definition, K4(U) is the set of all
locally-constant maps s : U — A. Then Ky is a presheaf on X, where again the restriction is the
usual restriction of maps.

(c) Fix a point xp € X and set

A ifxgel
SU) = SaxU) =
0 otherwise.
With the restriction

u IdA Xo € Vv,
I'ESV =

0 otherwise
the map S is a presheaf, called the skyscraper presheaf at xo with value group A.

(d) Finally, let Z(U) = A for every open U and set

Idy U=y,
rest =4/

0 otherwise.
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Then these data define a presheaf on X.

Definition 3.1.5. A morphism of presheaves ¢ : ¥ — G is a family of group homomorphisms (¢y; :
F(U) — G(U))ucx open, such that for every inclusion of open sets V C U the diagram

F(U) 2 ()

u u
J/resv lresv
ov

FV)—G(V)
commutes.

Examples 3.1.6.

(a) Let K4 be the constant sheaf on X with value group A. Then any group homomorphism g: A — B
to some abelian group B induces a morphism of presheaves

g1 Ka— Kp

by setting
g«(s)=gos.

(b) For a fixed point xo let S4 be the skyscraper presheaf at xy with value group A. Then, as in the Isat
example, a group homomorphism g : A — B induces a presheaf morphism

8 :Sa — Ss, g+(s) = g(s).

(c) Notation as before. Let fo : X — {0, 1} be a locally-constant map, which means that f~1(0) and f~!(1)
both are open. Then f induces a presheaf morphism ¢ : K4 — K given by

Pr(s)(x) = f(x)s(x).

* ¥ ¥
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3.2 Sheaves
Definition 3.2.1. Let ¥ be a presheaf over X. We call # a sheaf, if two conditions are satisfied.
o (Uniqueness) Let U C X be open and let (U;);e; an open cover of U, so U = |J; U;. Further let
s € ¥ (U) such that sy, = 0 for every i € I. Thens = 0.

o (Existence) Let U C X be open and let (U;)ie; be an open cover of U. For every i € I let there be
given some s; € ¥ (U;), such that for any two i, j € I one has

siluinu; = Sjlunu;,

Then there exists an s € ¥ (U), such that s; = s|y;, for everyi € I.

One can rephrase this as follows: the Uniqueness axiom says that a section is determined by its local
restrictions and the Existence axiom, that compatible local sections can be glued to yield a global section.

Examples 3.2.2.

(a) The presheaf of all maps M, is a sheaf.
(b) The constant presheaf K, is a sheaf.
(c) The skyscraper presheaf S, is a sheaf.

(d) The presheaf Z with Z(U) = A and resi = 0 is not a sheaf if A # 0, since for a sheaf ¥ we have
F(0) = 0 as we shall see below.

(e) Let A be an abelian group, X = R and F(U) = A if U = X, but ¥ (U) = 0 otherwise. Then ¥ is a
presheaf, which satisfies Existence, but not Uniqueness.

(f) Let A # 0 be an abelian group, X = R and let #(U) = 0 is the diameter of U is bigger than 1.
Otherwise, let #(U) = A. The restriction maps are the natural embeddings. Then ¥ is a presheaf
satisfying Uniqueness, but not Existence.

Remark 3.2.3. The sheaf axioms imply, that for every sheaf ¥ one has #(0) = 0. To prove this, let
s € £(0) and let (U;);er be the empty cover, i.e., I = 0. Then for every i € I one has s|y, = 0, since I has no
elements! By the Uniqueness axiom, we get s = 0.

Lemma 3.2.4. A presheaf ¥ is a sheaf iff for every open cover (U;)ier of an open set U C X the sequence
07w -5 [[ray 5 [[ranu)
i ij
is exact. The products run over I and I X I and a(s); = slu;, as well as (s.);; = silunu; — Sjlunu;-

Proof. Injectivity of a is equivalent to the Uniqueness axiom. The assertion f o« =0, so ker§ D im« is
satisfied for every presheaf. Finally, the assertion ker § C im « is equivalent with the Existence axiom. O
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Definition 3.2.5. A sheaf homomorphism is the same as a presheaf homomorphism, only between

sheaves.

The direct sum of two sheaves ¥ and G over X is defined as the sheaf
uw- F)eg).

It is easy to see that this indeed is a sheaf.

Definition 3.2.6. A subsheaf # of a given sheaf ¥ is a sheaf, such that for every open set U the group
H(U) is a subgroup of ¥ (U) and the restriction homomorphism of H and ¥ coincide on these subgroups.

This last condition means that for any two open sets V C U the diagram

H(U)—— F(U)

lreS«H lresr

H(V) —— F (V)
commutes.

Examples 3.2.7. e A presheaf # on R, which to each open set U # 0 attaches the group Z, cannot
be a sheaf, no matter what the restriction maps look like. Assume, it is a sheaf. Let U = (—o0,0)
and V = (0, ), sowie W = U U V. By Existence, there is a € P(W) with a|; = 1 and aly = 0. Like
wise, there is b € P(W) with bl and bly = 1. We get a group homomorphism ¢ : Z? — Z,
by (k1) - ka+1b € P(W) = Z. Let (k,]) € ker(¢p), Then 0 = (ka + Ib)|y = k € P(U) = Z and so
k = 0. Analogously, it follows [ = 0. So ¢ injective. But there is no injective group homomorphism
7? — Z, Contradiction!

(Assume there is an injective group homomorphism ¢ : Z? — Z. Then

o) -

As ¢ is injective, it follows
1\(0 0)(1
Aok}l -

therefore ¢(;) = 0 = ¢(J). But that means that ¢ is identically zero. Contradiction!)

e The sheaf O of holomorphic functions on C is a sheaf of rings.

* ¥ ¥
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3.3 Stalks

Definition 3.3.1. Let (I, <) be a partially ordered set. Then (I, <) is called a directed set, if for any two
a,b € I there exists an upper bound, i.e., an element c € I witha <cand b <c.

Examples 3.3.2. e N is directed.

o Let S be a set and I be the set of all finite subsets E € S. Then I is directed by inclusion, since for
E,F € I the set E U F is finite again, hence it is an upper bound

E,F<EUFE

e Let x € X and X a topological space. Let I be the set of all open neighbourhoods of x with the
reversed inclusion as ordering, so
u<v e UV

Then I is directed, as with U and V the set U N V is an open neighbourhood, too and hence one has
uv<unv.

Definition 3.3.3. A directed system of abelian groups is a pair ((M;)ier, (qbf )i<j), where I is a directed set,
(M;)ier is a family of abelian groups and for i < j the map

¢l M; — M;
is a group homomorphism, such that
¢i=ldu,  ¢jo¢; =0}
ifi<j<k
Examples 3.3.4.

e Fix a prime number p. Let I = IN and M; = Z. Further let cpf : Z — Z be given by x - p/~ix. Then
these data establish a directed system.

The directed set in this case is IN. Therefore the directed system is completely determined by the
maps ¢*1, as all others are iterations of these. In this example, the map ¢/*! is the multiplication

by p on Z. We write this system as a sequence
z5bzbz b

e Let zy € C. Let I be the set of all open neighbourhoods of zy in C with the reversed inclusion as
partial order. For U € I let My be the set of all holomorphic functions f : U — C. For V c U let
¢[; : Mu = My be given by restriction, so ¢/;(f) = flv. This s called the direct system of all germs

of functions in z;.
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Definition 3.3.5. The direct limit of a directed system (M, gb]] ) is defined as

limM; = | |M;] ~
! iel
where the equivalence relation ~ on the disjoint union is defined as follows. Two elements a € M; and
b € M; are equivalent, if there exists an index k > i, j, such that ¢¥(a) = gb’]‘ (b). It is easy to see, that this is
an equivalence relation. The property of I of being directed is needed for transitivity: Leta ~band b ~ ¢
in | Ji; M. Let's say a € M;, b € M; and ¢ € M. Then there exists | > i, j such that ¢i(a) = (p;.(b) and there
is m > j,k such that qb;."(b) = cj);.”(c). Letn > I, m. Then ¢ (a) = qb;?(b) = ¢} (c), so thata ~ c.

Lemma 3.3.6. The rule
[a] + [b] :=[a + D] a,b e M

makes M = lim M; an abelian group with the following universal property: There are group homomorphisms

¢i: M; — M,lwhich form the following commutative diagrams:

such that for every abelian group Z with a family of group homomorphisms 1; : M; — Z, which likewise satisfy
nj o ¢! = nj, there is a uniquely determined group homomorphism  : M — Z, such that for every i € I the

diagram
N f!w
Z
commuites.

Proof. For the group law, one has to show well-defninedness. So leta ~ a’ and b ~ b, say (1)5((51) = Pl(a’)
and ¢L(b) = ¢}(I). Then one has ¢l(a +b) = ¢L(a) + PL(b) = ¢l@) + PL(V') = Pi(@’ + b'), so it follows
(a+Db) ~ (@’ + 1) and therefore [a+b] = [a’ +b'], which establishes well-definedness of addition. The maps
¢; are given by composition of the natural maps M; — | |; M; — |_|; M;/ ~. For the universal property
one defines ¢([a]) = nk(a), if a € M. The well-definedness is straightforward and so is commutativity
of the diagrams. Uniqueness of i follows from the commutativity of the diagrams, for if ¢’ is a second
such map and if [a] € M, say a € M, then one has ¢([a]) = nx(a) = ¢'([a]). O

Examples 3.3.7.

e Assume that every M; is a subgroup of some given group M, one has M; C M; for i < j and the
structure morphisms gbf are given by inclusion. Then the union N of all M; is a subgroup, too and
there is a natural isomorphism

lim M; — N.
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e We consider the first example of 3.3.4
7Z—7Z—7Z—...

We extend this to a commutative diagram

4

Z Z Z Z
qu Id Q Id Q Id Q Id

The union of all images in Q is the Z-module

Z[l/p]z{;%eQ:an,ke]N}.

According to the last example, this direct limit is isomorphic to Z[1/p].

Definition 3.3.8. Let ¥ be a presheaf on the space X and let x € X. Let I be the set of all open
neighbourhoods U C X of x. The reversed inclusion makes I a directed set and the map U — F(U),
together with the restriction maps, forms a directed system. The stalk at x is the group

Fr = im F(U).

Usx

Examples 3.3.9.

e Let A bean abelian group and K the constant sheaf on X with group A. For x € X themap f — f(x)
is an isomorphism K — A. This means that for a constant sheaf all stalks are the same.

o Let A # {0} be an abelian group, x € X and let ¥ be the skyscraper sheaf with F () =A & xe U.
Assume that X is a Hausdorff space. For y # x in X there is an open neighbourhood V with
F (V) = 0, therefore the stalk ¥, at y is 0. The stalk at x is A. This justifies the name skyscraper
sheaf.

Definition 3.3.10. Let U C X be open and x € U. A section s € ¥ (U) induces an element of the stalk
¥+, which we denote by s|, € #,. Note that there is no danger of confusing this with the restriction of

sections, since, even if {x} is an open set, the restriction would be denoted by s}

Lemma 3.3.11. Let F be a sheaf. If a section vanishes on all stalks, it is zero. More precisely, let U C X be open
and s € ¥ (U). If s|, = 0 holds for every x € U, then s = 0.

Proof. The equation s|, = 0 means that there is an open neighbourhood U, c U with s|;, = 0. These Uy

form an open cover of U, on which s vanishes. By the Uniqueness axiom, we get s = 0. m|

Definition 3.3.12. Let¢ : ¥ — Gbe a presheaf homomorphism. Then ¢ induces a group homomorphism
¢y : Fx = G for every x € X. For composable morphisms one has (¢p), = ¢px1p, and Id, = Id.

Proposition 3.3.13. A morphismus of sheaves ¢ : ¥ — G is an isomorphism iff all induced maps on the stalks
by : Fx — Gy are isomorphims.
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Proof. If ¢ is an isomorphism, then there is ¢ : G — ¥ such that ¢ = Id and ¢ = Id. For every x € X

one has Id, = (¢y)y = ¢+« and Id, = PPy, s0 Yy is inverse to ¢,, hence the latter is an isomorphism.

Conversely, let ¢, be an isomorphism for every x. We want so show that ¢ is an isomorphism. It suffices
to show that ¢y7 : F(U) — G(U) is an isomorphism of groups for every open set U C X, since then one
sets Yy = ¢! and one sees, that i is an inverse to ¢. So we show that ¢y is injective. Let s € #(U) with
¢u(s) = 0. Then for every x € U one gets 0 = ¢y(s)ly = Px(slx), which means that s|, = 0 for every x € U
and by Lemma 3.3.11 it follows that s = 0, so ¢ is injective.

For surjectivity let s € G(U). For every x € U the map ¢y : ¥+ — G is surjective, so there is f, € 7,
with ¢«(fx) = sly. So there exists an open neighbourhood U, c U of x such that fx = t:|x for some section
t, € F(U,). This means that the two sections ¢, (tx) and s|induce the same element in the stalk G,.
Hence there is an open neighbourhood U, ¢ U,, such that ¢y, (tclu,) = slu,. The U, form an open cover
of U. We want to show that t, = t, holds on U, N U,. Then the Existence axiom guarantees that all ¢,
come from one section in # (U), which then is a pre-image of s.

For this purpose let z € U, N U,,. Then one has

O, (tly) = s(z) = ¢z(ty|z)

and hence t,|, = t,[,. So there is a neighbourhood V, of z such that t,|y, = t,|v.. The V, form an open
cover of U, N U,, on which we locally have t, —t, = 0. By the Uniqueness axiom this also holds on
U, Nuy.

By the Existence axiom there is a section t € F (U) with t|y, = t, for every x. The sections s and ¢y (t)
coincide in every stalk, so by Lemma 3.3.11 they are equal and so ¢ is surjective. m]

* % %
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3.4 Sheafification

Proposition 3.4.1. Let ¥ be a presheaf. Then there is a sheaf ¥ * and a presheaf morphism 0 : & — F+ with the
property that every presheaf homomorphism ¢ : ¥ — G, where G is a sheaf, factors in a unique way through 6,
so for ¢ there is a uniquely determined presheaf homomorphism vy such that the diagram

F— T

commutes. The pair (F*, 0) is uniquely determined up to isomorphy. The sheaf F* is called the sheafification
of . For every sheaf G one has
Hom(¥,G) = Hom(¥ ", G).

Proof. We construct the sheaf £ as follows. For an open set U C X let ¥ *(U) be the set of all maps s
from U to the disjoint union | |,¢; #« such that

e for every x € U one has s(x) € ¥, and

e for every x € U there is an open neighbourhood V C U and a t € ¥(V), such that for every y € V
one has s(y) = t,.

We show that #* is a sheaf. The restriction res!! is defined as the restriction of maps.

For the Existence Axiom let U = (J,.; U; an open cover and let s; € £ (U;), i € I be given with s; = s; on
U; N Uj, i,j € I. This implies that for every x € X there is a unique s(x) € ¥, with s(x) = s;(x) for every
i € I such that x € U;. By definition, one then has s|;, = s; for every i € [ and thus s € ¥*(U).

The Uniqueness Axiom is clear as the elements of # (U) are maps on U and the restriction is the restriction
of maps.

Finally for the universal property, we first define 0 : ¥ — ¥ * by replacing s in the abstract group # (U)
by the map on U, that sends x € U to s(x) € ¥,. This is a presheaf homomorphism. Nextlet¢ : F — G
be a presheaf homomorphism to a sheaf G. We construct i in the diagram as follows: let s € #*(U) for
an open U C X. By construction, for each x € U there exists an open neighbourhood U, C U and an
element t, € ¥ (U,) such that s(u) = t,|,, holds for every u € U,. For any x, y € U by construction we have
that (fx —t,)|u,nu, lies in the kernel of 6. Hence for given u € U, N U, there exists an open neighbourhood
V c U, N U, such that t,|y = t,|v, hence

(p(tx|uxmuy)|u = ¢(tx|V)|u = ¢(ty|V)|u = ¢(ty|uxmuy)|u-

By Lemma 3.3.11 it follows that
d(tlunu,) = Ptylunu,)

Define g, € G(U,) by gx = ¢(t;). We have an open cover U = | J,¢; Uyx. For x, y € U we have just shown
that Slunu, = gylunu,- AsGisa sheaf, there exists a unique g € G(U) that restricts to the g,. We set /(s)
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to be this g. All we have done is compatible with restrictions, hence 1 is a sheaf homomorphism. The
uniqueness of ¢ above implies the uniqueness of .

Note that for x € X the stalk ¥, is naturally isomorphic to the stalk 7,". If ¥ is a sheaf already, then 6 is
an isomorphism, as follows by the universal property. m|

Definition 3.4.2. Let ¢ : ¥ — G be a presheaf homomorphism. We define the kernel and cokernel as
the presheaves
U - ker ¢y, U + coker ¢y,

together with the ensuing presheaf morphisms

ker(p) — F, G — coker(¢).

Lemma 3.4.3. If ¢ : ¥ — G is a morphism of sheaves, then ker ¢ is a sheaf, but coker ¢ is in general not a sheaf.

Proof. For the Uniqueness axiom let U = | J; U; and let s € ker ¢y with s|;, = 0 for every i € I. Thens =0
since ker ¢y € F(U) and ¥ satisfies the Uniqueness axiom.

For The Existence axiom let s; € ker ¢y, with silunu; = sjlunu, for all i,j € I. Since ¥ satisfies the
Existence axiom, there is an s € F(U) with s|y, = s;. We have to show that s € ker ¢;. We know that

bu(S)lu, = du,(slu,) = du,(si)) = 0 and so Pu(s) = 0 because of the Uniqueness axiom for 7.

We give an examples, in which coker ¢ is not a sheaf. Let X = R/Z and let 0 < ¢ <  and

Ulz(—e,%+e)+Z, lez(%—e,1+e)+Z.

For an open subset U of X let # (U) be the set of locally-constant functions U — R and G(U) the set of
all continuous functions U — R. Let ¢y : F(U) — G(U) be the inclusion map. For —¢ < x < % + ¢
let s1(x) = x and for % —& <x <1+e¢letsy(x) =x. Then sy, s, are elements of G(U;) resp. G(Uz). The
difference s; — s, is locally-constant on Uy N Uy, so one has s; = s, mod ¢u,ny,. But there is no section
s € G(Uy U Uy) = G(X) with s|y, =s; mod ¢y, since any section in G(X) has to take the same value at 0
and 1. O

Definition 3.4.4. We define the sheaf cokernel of a sheaf homomorphism ¢ as the sheafification of the
presheaf cokernel and we write this sheaf cokernel also as coker ¢. Similarly, we define the image sheaf
of a sheaf homomorphism ¢ : ¥ — G as the sheafification of the presheaf U + im ¢; and we write this
sheaf as im(¢).

Proposition 3.4.5. The kernel k : K — F of a sheaf homomorphism ¢ : F — G is a categorical kernel in the
sense of Definition 2.6.5.

This means that it has the following universal property: Let { : H — F be a sheaf homomorphism with ¢ o = 0.
Then there exists a uniquely determined sheaf homomorphism 6 : H — K, such that the diagram

LI

o o A

H
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commutes. The cokernel has the same property with all arrows reversed.

Proof. Let (H, ) as in the proposition. For every open U C X the morphism ¢y o ¢y : H(U) — G(U) the
zero morphism, so ¢y factors through a uniquely determined morphism 6y; : H(U) — K(U). Since 1 is
a sheaf homomorphism, so iy o rest! = res!/ iy and k has the same property, it follows that

kv resg Oy = res‘L} kuBu = ky6y resg .
——
:lPU

As ky is injective, 0 is a sheaf homomorphism. This proves the assertion on the kernel. The proof for the

cokernel is left to the reader. m]

* ¥ ¥
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3.5 Etale-sheaves

Definition 3.5.1. An etale-sheaf over a topological space X is a surjective, continuous map m : F — X,
together with the structure of an abelian group on each fiber F, = 7 }(x), x € X such that

e 7 is a local homeomorphism, i.e., for every point f € F there is an open neighbourhood U, such
that rt(U) is open in X and 7t; is a homeomorphism onto its image.

e The structure maps are continuous.

The last property means the following: Let S be the set of all (f, g) € F X F with ni(f) = n(g), then the
maps
S - E E —- E

(xy) » x+y X B —x

are continuous.

The map 7 is called the projection of the etale-sheaf and for x € X the set Fy = t7(x) is called the
etale-stalk over x.

For an open set U C X we write F|y; for the etale sheaf 77~ (U) U

Examples 3.5.2.

o (The constant etale-sheaf) Let A be an abelian group, let F = X X A and let m : F — X be the
projection onto the first coordinate. We equip A with the discrete topology and F with the product
topology. Then 7 is an etale-sheaf, where all etale-stalks are isomorphic to A.

e (The scyscraper etale-sheaf) Let A # 0 be an abelian group and let xy € X be a closed point, i.e.,
the set {xo} is closed. (In a Hausdorff space every point is closed.) Let F = (X — {xo}) U A and let
7t : F — X be defined by nt(y) = y for y € X — {xo} and m(a) = xo for a € A. Then there is exactly one
topology on F, such that r is a local homeomorphism.

We describe this topology by giving neighbourhood bases for all points. Fora € A C F aneighbour-
hood base is given by all sets of the form {a} U (U — {x¢}), where U C X is an open neighbourhood
of xo. If y € X — {x¢}, then a neighbourhood basis of y is given by all sets of the form U \ {xo}, where
U is an open neighbourhood of y in X.

Remark 3.5.3. Some etale-sheaves are coverings. But in general they’re not , since, for instance, like in
the case of a skyscraper sheaf, the fibre varies with the point x € X.

Remark 3.5.4. In the definition, we insisted that 7@ be continuous. This condition is redundant, as it
already follows from the local homeomorphy.

Remark 3.5.5. For a given etale sheaf i : F — X, the zero section is the map sy : X — F with so(x) = the
zero element of the group F,. This map is continuous.

For this let x € X. Then there exists an open neighbourhood U C F of sy(x), such that m is a home-
omorphism from U to V = n(U). Let ¢ : V — U be the inverse map. Then for every y € V we
have

so(y) = ¢(y) — ().



Topologie 64

This means that the map soly : V — F is the composition of the continuous maps

V >FXxFE
vy (W), o),

followed by

FxXF—FXF,
(a,b) — (a,-b),
followed by the addition. Hence s is continuous.

Definition 3.5.6. Let an etale-sheaf F — X be given. For an open set U C X let 7 (U) be the set of all
local sections of 7, i.e., the set of all continuous maps s : U — F with mos = Idy. Then # (U) is an abelian

group under the pointwise operations.

Proposition 3.5.7. The map U — F (U) is a sheaf: For open sets V C U the restriction res‘L,I FU) - F(V)is
a group homomorphism. For W C V C U one has

u_ 1% U_ U
res;; = Id# ), resy, ores, = resy, .

Let (U,;)ie1 be an open cover of the open set U C X. Then one has

o (Uniqueness) If s € ¥ (U) and one has s|y, = 0 for every i € I, then s = 0.

e (Existence) For every i € I let s; € ¥ (U;) be given, such that for any two i, j € I one has
silunu; = Sjlunu;-
Then ther exists an s € ¥ (U), such that s; = s|y, for everyi € L.

u

v is a restriction of functions, these properties are trivial. O

Proof. Since res

Examples 3.5.8.

e The constant etale-sheaf induces the constant sheaf. This follows, as the sectionss : X — X X A are

exactly the locally constant functions since we equip A with the discrete topology.
e The scyscraper etale-sheaf induces the corresponding skyscraper sheaf.

Definition 3.5.9. Let 7 : F — X and 7 : G — X be etale-sheaves. A morphism of etale-sheaves from

to 7 is a continuous map ¢ : F — G such that

e the diagram

commutes,
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e for every x € X, the map ¢ is a group homomorphism from Fy — G,.

If ¢ : F — Gis an etale-sheaf morphism, then for every open set U C X one gets a group homomorphism
du : F(U) — G(U)
defined by ¢ (s)(x) = ¢(s(x)). Here G is the sheaf attached tro the etale-sheaf G.

* * ¥
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3.6 Equivalence of sheaves and etale-sheaves

Definition 3.6.1. Let ¥ be a sheaf over X. We define the etale-space to ¥ as the disjoint union F = F¢; =
|lvex Fx. We define the projection 7 : F — X by n(f) = x if f € F,. We construct a topology, which turns
7t : F — Xinto an etale-sheaf. For every openset U C X, every sections € ¥ (U) definesamap set : U — F
with 7 o s = Idy, this is the map x - s|,. We equip F with the topology, generated by the sets s¢¢(U).

Lemma 3.6.2. The so defined (r, F) is an etale-sheaf.

Proof. Let S be the set of all s((U), where U C X is open and s € #(U). We show that S is stable under
intersections, i.e., that
ABeS = AnNnBeS.

For this let A = s¢(U) and B = te (V). Let Z be the set of all x € U NV with 5|, = Set(x) = fer(x) = t]x € Fy.
By definition of the stalk F, = ¥, there is an open set W c U N V such that sl = t|w. This means that
sy = t|, for every y € W and therefore Z is open. By definition, one has A N B = s¢(Z) = tet(Z), so this set
lies in § as desired. It follows that the open sets in F are the unions of sets in S.

We note that, as we have seen, the set, where two sections agree, is open. This implies in particular, that
every section s € ¥ (U) defines a continuous map s, since, if A C F is an open set, i.e., A = ;e tiet(Vi),
then

sa@) = | sal vy = {r + sl = til)

i€l i€l
and this set is open.

The projection 7t is continuous, since for an open set U C X, the set 7=!(U) is the union of all se:(W) for
open sets W ¢ U and s € #(W). This is a union of open sets, hence open. If p € F and x = n(p), then
p lies in the stalk 7, so there is an open set W C X and an s € ¥ (W), with p = se¢(x). Then s¢ (W) is an
open neighbourhood of p and 7 : set(W) — W is bijective and continuous with continuous inverse se.

This means that 7 is a local homeomorphism.

The continuity of the structure maps is left as an exercise. So F is an etale-sheaf. m]

In the last proof we have also shown:

Corollary 3.6.3. Let F be a sheaf on X and let s, t two sections. Then the set
u= {x € X :s(x) = t(x)}
is open in X.

Notation. It is convenient, to identify any s € ¥ (U) with its etale map s : U — F. So in future we will
write
S(x) = set(x) = sly € Fx = Fr.

This takes a bit getting used to, but in the long run it is quite fruitful, as one can more easily switch
between the different descriptions of a sheaf.



Topologie 67

Theorem 3.6.4. Let \V be the map, that maps a sheaf F to its etale-sheaf (F, ) and let ® be the map, that
maps an etale-sheaf to the sheaf of its sections.

Any etale-sheaf F is naturally isomorphic to WOF and every sheaf ¥ ist naturally isomorphic to DVF .

For any two etale-sheaves F, G over X the map ® gives an isomorphism of groups
Homyx(E, G) — Homy(®F, ©G).
Also, for any two sheaves F, G, the map V yields a group isomorphism
Homy(F, G) — Homx(VF, VG).
In particular, this means that ® is an equivalence of categories:

{etale—sheaves over X} - {sheaves overX}.

Proof. Let ¥ = ®F be the sheaf of sections of F. Then WOF = W¥ is the set of stalks of #. We define a
map up : WF — F as follows. Let f € WF, then f lies in a stalk ¥, = lim — (U). So there is an open
subset U of x and a section s € ¥ (U) with f = [U,s]. We define ur(f) = s(x). The group homomorphism
ur is injective, since up(f) = 0 implies that there is an open neighbourhood U of x with f = [U, 0], which
implies f = 0. It is surjective, because for f € F there is an open neighbourhood V of f such that rt|y is a
homeomorphism onto its image, the latter we call U. Lets : U — F be the inverse map to 7|y, then s is a

continuous section, so it lies in # (U). It therefore defines an element s of ¥ with ur(s) = s(x) = f.

Conversely, we construct a map vg : PYF — F as follows. Let U € X be open. Then every s € DWF (L)
is a section of the etale-sheaf W¥, i.e., a continuous map s : U — | |,¢; Fx with s(x) € 7 for every x € U.
By the definition of the topology on W¥, any neighbourhood of v = s(x) contains a neighbourhood of
the form (V) for some open neighbourhood V of x and ¢ € ¥ (V). By continuity of S, the set U contains
a neighbourhood V' C V, such that s(V’) C #(V), but that means s|y» = t|y.. In other words, s is locally
given by sections of . By the Existence axiom, s is a section of ¥, i.e., an element of ¥ (U). The map v
sends s to this element. Then v is an isomorphism. The rest of the theorem follows easily. ]

Definition 3.6.5. A sequence of sheaf homomorphisms
f 8
F—o>G—>H
is called exact, if go f = 0 and the induced homomorphism im(f) — ker(g) is an isomorphism of sheaves.

Corollary 3.6.6. A sequence of sheaf homomorphisms

N Y
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is exact iff for every x € X the induced sequence of the stalks
fx 8x
7:x — gx — X
is exact.

Proof. Theorem 3.6.4 implies that a sequence of sheaves is exact iff the coresponding sequence of etale

sheaves is exact. Consider ¥ (U) as set of etale-sections. Then it is clear that

gf =0 & gxfx =0 Yyex.

Soletgf =0. LetF Ly G 2 H the corresponding sequence of etale-sheaves. The stalks of im(f) are

im(f)s = lim f(F (W) = fi(F).
That means that f.:(F) is the etale-sheaf of im(f). Likewise, ker(g:) := {x €G:gulx) = 0} is the etale-sheaf
of ker(g). The induced homomorphism im(f) — ker(g) corresponds to inclusion of the etale-sheaves

and the exactness is the equality of f,(F) and ker(g.:). The claim follows. ]

* ¥ ¥
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3.7 Direct and inverse images

Definition 3.7.1. Let f : X — Y be a continuous map of topological spaces. For a sheaf ¥ over X define
the direct image as the sheaf f.¥ over Y given by

LFU) = F(FHU)).

The definitions easily imply that this indeed is a sheaf.

If ¢ : ¥ — G is a morphism of sheaves over X, then there is an induced morphism f.¢ : ¥ — f.G, for
an open set U C Y given by

fo: fFU) = F(W) 2L G W) = £GWD).

One has f.(p oY) = fup o fo1), so that f. is a functor from the category AB(X) of sheaves of abelian groups
over X to the category AB(Y).

Example 3.7.2. If f : X — Y is a constant map with image yo € Y and let ¥ be a sheaf over X. Then f.F
is the scyscraper sheaf at the point v, with stalk 7 (X).

Definition 3.7.3. Let G be a sheaf over Y. Then one defines the inverse image, i.e., the sheaf f~!G, which
is the sheafification of the presheaf
Ue h_n} Gg(V).
Vo£(U)
If ¢ : F — G is a morphism of sheaves on Y, then let f~1¢ be the morphism from f~!F to f~1G derived
from
. T
lim #(V) — lim G(V).
V£ (W) Vos(l)

Again f! is a functor from AB(Y) to AB(X).

Example 3.7.4. Let f(x) = yo be the constant map. Then f~'G is the constant sheaf with stalk G,

Theorem 3.7.5. Let f : X — Y be a continuous map. Let ¥ be a sheaf over X and G a sheaf over Y. Then
there is a natural bijection
®: Homx(f'G, %) — Homy(G, £.5).

We say that the functor f~! is left-adjoint to f, or that f, is right-adjoint zu f~'.

Here “natural” means that @ is a functor in both arguments, i.e., if ¢ : ¥ — ¥’ is a sheaf homomorphism
over X, then the diagram

Homy(f'G, F) —— Homy(G, £.F)

J/ao J/ﬂao

Homx(f'G, ') —— Homy(G, £.F)
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commutes. Likewise, the corresponding diagram for any sheaf homomorphism g : G — G’ over Y

commutes.

Proof. Since f~'G is the sheafification of the presheaf f~G : U lim%ﬂu) G(V), there is a natural bijection
Homy(f™',¥) = Homx(f"G, ).

therefore it suffices to give a natural bijection ® : Homx(f~G,¥) — Homy(G, £.7).

Leta : f~G — ¥ be a presheaf homomorphism. For an open subset U C X we have a group homomor-
phism
ay : lim G(V) — F(U).

Vof(U)

If V C Y is open, then U = f~}(V) is open in X and we define By : G(V) = F(f1(V)) = £F (V) by
Bv = af(v). Then B is a presheaf homomorphism and we set ®(a) = .

For the converse direction, let f : G — f.¥ be a sheaf homomorphism, i.e., for every open V C Y the map
v :G(V) = LF (V) =F(f'V)

is a group homomorphism, which is compatible with the restriction maps. For an open U C X and
res

V > f(U) one has U c f~1(V) and so one gets a group homomorphism G(V) — F(f"1V) — F(U). By
the universal property of the direct limit, these homomorphisms glue to a homomorphism

ay 2 lim G(V) — F(U).

VofU)

We get an element @ € Homx(f~G, ). Set W(8) = a. Onehas W o ® =Id and @ o ¥ = Id. m]
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3.8 Locally-constant sheaves
Definition 3.8.1. A sheaf ¥ over X is called a locally-constant sheaf, if every x € X has an open
neighbourhood U, such that ¥y is constant.

Example 3.8.2. On the space X = S! it is possible to give a sheaf of abelian groups with each stalk
isomorphic to Z, which is locally-constant, but not constant.

We shall be able to prove this by the end of the section.
Proposition 3.8.3. Let F be a locally-constant sheaf over X. If X is connected, then the corresponding etale-sheaf

n: F — Xis a covering. In particular, paths on X can be lifted to F.

Proof. Let x € X and U an open neighbourhood, on which ¥ is constant, we call U a trivializing neigh-
bourhood of x. By Examples 3.5.2 and 3.5.8 we know that the etale space F|; of i is homeomorphic to
U x M, where M = ¥ is the stalk and we have a commutative diagram

Fly————— UxM

N

where we have written F|y; for the etale sheaf 7~ (U) — U.

Let U, be the set of all y € X such that there exists a bijection ¥, — F,. If y € U, and V is a trivializing
neighbourhood of y, then V C U,, so U, is open and for any other point z € X we either have U, = U, or

U, N U, = 0. With
V= U u,

zeX\U,

we have X = U, UV and both are open and since X is connected we get U, = X and therefore 7t is a
covering. O

Definition 3.8.4. Let I' be a group. A I'-module is an abelian group (M, +) together with an action of I'

on M through group homomorphisms, i.e., for each y € I" one has
y(m+n)=ym+yn

holds for all m,n € M.

Examples 3.8.5.

e If Risaring and I' a subgroup of the unit group R*, then every R-module is naturally a I module.

e Let A be an abelian group and I an arbitrary group. The set A" of all maps f : T — A forms a
I''module with the action

y-f(0) = f(y ).

Definition 3.8.6. From now on let X be a path-connected space, which is locally simply connected.
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Let ¥ be a locally-constant sheaf over X. Let xp € X be a fixed point and let I' = m;(X, x¢) be the
fundamental group. Let [y] € I' and let m € M = #,. Then the path y lifts to a uniquely determined
path vy, : [0,1] = F = F¢ with y,,(0) = m. Write y.m = y,,(1).

Lemma 3.8.7. The rule [ylm = y.m defines an action of I on the group M. Every y € I acts by a group

homomorphism, so M is a I'-module.

Proof. We need to show well-definedness. Let y,7 representatives of the same element of I' and let
h: > - X be a homotopy with fixed ends. Then # lifts to a homotopy with of y,, to 7,,. In particular
one has /1(0,1) = y.m and h(1,1) = =m. Also h(s,1) € Fx, = M for every s € [0,1]. Therefore, s h(s, 1)
is a path M, which connects y.m to t.m. Since M is discrete, this path is constant, so y.m = 7.m and the

action is well-defined.

Finally, for [y], [t] € I we have
N([xlm) = 1tm = p.(tm) = (2.).m = (y.1)"m = [y.1lm = ([y][x])m
Since the trivial path acts by the identity, we get an action.
Finally, we need to show that I acts by group homomorphismes, i.e.,
y.(m+n)=ym+yn.

Let y,, be unique the lift with y,,(0) = m and define y, and Y.+, in the same way. For each ¢ € [0,1]
the points y,,(t) and y,(t) sit in the fibre over the point y(t), hence they can be added. Then the path
Nt Ym(t) + ya(t) is yet another lift of y. But n(0) = m + 1 = 9,,4,(0) and hence 1 and .+, agree by the
uniqueness of lifts. Then

y.(m+n) = vu(1) =n1) = (1) + yu(l) = y.m+ y.n. m]
Definition 3.8.8. Let M be a I'module. Let X be the universal covering of X and set

F=T\(XxM),

where T acts diagonally on XXM, so g(x, m) = (gx, gm). We equip M with the discrete topology, X x M with
the product topology and F with the quotient topology. Define 7 : F — X by n(I'(x,m)) = T'x e T\X = X.
Lemma 3.8.9. 7 : F — X is a locally-constant etale-sheaf.
Proof. Let x € X and let U be a neighbourhood, tivialising the universal covering p : X — X. The
pre-image U = p~'(U) is a disjoint union of open sets, which all are homeomorphic with U and which

are permuted by I'. Fix one such Uy and let ¢ : U — Uj be the inverse map of the projection. Then ¢ is a

homeomorphism and the natural map

UxM S Ty x M > U xM— T\ xM = |y

is a homeomorphism, trivialising the sheaf ¥ . o
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We now have two constructions. Lemma 3.8.7 gives a functor ® form the category of all locally-constant
sheaves to the category of Z[I'l-modules. Conversely, Lemma 3.8.9 yields a functor W from the category
of Z[I'l-modules to the category of locally-constant sheaves.

Theorem 3.8.10. The functors ® and \V are quasi-inverse to each other. For a path-connected and locally
simply connected space X, we have an equivalence of categories:

{locally-constant sheaves} o {F-modules}

where I' = 111(X, x¢) is the fundamental group.

Proof. Let F be a locally-constant etale-sheaf. We construct a natural etale-sheaf isomorphism
7:F — WOF = r\(f( X Fy,)-

Let f € Fand let x = 7t(f). Choose a path 1 in X from xj to x. Then 17 has a uniquely determined lift ¢ to
Fwith (1) = f. Let fo = n7(0) € Fy,. The homotopy class (with fixed ends) of 1 defines an element [1]
of X with p([n]) = x. We define

©(f) = I([n], fo)-

This construction a priori depends on the choice of the path 7, at least modulo homotopy with fixed
ends. Another choice yields, modulo homotopy, a path of the form y.n for some [y] € I'. In this case, fy
is replaced by [y]fo, so T is a well-defined map.

The definition of the inverse map 77! is obvious: An element of T\X X F,, is of the form I'([n], fo)
with [] € X and fy € Fy,. Then 7 lifts in a unique way to a path fj;, with 7;(0) = fy. Then set
©(T([n], fo)) = A, (1). Therefore, 7 is bijective. The continuity of 7 and 7! as well as the compatibility
with addition and inversion is left as an exercise to the reader.

For the converse direction we start with a I'module M and consider ®W(M). This is the fiber over x( of
I'\ X x M, which by definition equals I'(fy X M), hence is isomorphic to M, where f; is an arbitrary element
of the fiber over x. O

* % %
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3.9 The global sections functor

Definition 3.9.1. Let X be a topological space. We consider the functor
H: {sheaves over X} - {abelian groups}
given by
H(F) = F(X).

This is called the global sections functor, or just sections functor. If one wants to emphasize the space,
one also writes H(X, ¥).

Example 3.9.2. As an example we consider a path-connected, locally simply connected space X and a
locally-constant sheaf . This comes from a module M of the fundamental group I' = m1(X) and the
etale-sheaf can be written as I'\(X X M). A global section s € ¥ (X)isamap s : X — I'\(X x M) of the form
s(T'%) = ['(%, as(¥)), with a uniquely determined continuous map 4 : X — M. Since X is connected and M

is discrete, the map a5 is constant. For y € I' one has
[(%,a5) = s(T'%) = s(Ty%) = T(y%,a,) = Iy~ (y%,a5) = T(%,y"a).
Comparing the two ends of this equation yields
as = y.4s,
i.e., a5 lies in the space € M! of T-invariants. Conversely, every a; € M gives a global section, so
HYF) = M' = H(T, M).

We shall come back to this example later.

Lemma 3.9.3. Let0 — F =R G =5 H — 0 be an exact sequence of sheaves. Then the sequence
0 - H(F) L5 H(G) <5 HO(H)
is exact. In general, the map gx will not be surjective.

Proof. Since f has zero kernel, the map ¥ (U) — G(U) is injective for every open U C X, so in particular
for U = X, so fx is injective.

As v fy = 0, for every s € F(X) and every x € X one has gx(fx(s))(x) = gxfx(s(x)) = 0, so gx(fx(s)) =0,
which means that gxfx = 0. So we get im(fx) C ker(gx) and we want to show equality. For this let

s € ker(gx). Then for a given x € X the element s(x) lies in ker(gx) = im(fy) = limim(fy). Therefore, there
Usx
is an open neighbourhood U, of x with s|i;, € f(F (Ux)). For every x fix such a neighbourhood U, and the

(uniquely determined) t, € ¥ (Uy) with f(t,) = s|y,. These U, form an open cover of X. For x, y € X one
has telu.nu, = tylu,nu, since the same is true for s and the t, are uniquely determined. By the Existence
axiom there is t € ¥ (X) with ¢y, = ¢, and by the Uniqueness axiom we infer f(t) = s.

At last we give an example for gx not being surjective: Let X = IR/Z. Let the fundamental group I' = Z
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act on M = Z? in a way that 1.(x, ) = (y,x). Then M! = {(x,x) : x € Z}. Let G be the locally-constant
sheaf T'\(X x M). Further let H be the constant sheaf with stalk Z, which as a locally-constant sheaf is
associated to the trivial action of T on Z. Let ¢ : G — H be the sheaf homomorphism associated to the
I''module homomorphism M — Z, (x,y) — x + y. This is surjective in every stalk, but on the global
sections the group M' — Z has image 2Z # Z. ]

Definition 3.9.4. For sheaf homomorphisms f,g : ¥ — G we define f+ g : F — G by (f + 9(U) =
f(U) + g(U). So Hom(F, G) becomes an abelian group.

Proposition 3.9.5. Let X be a space. The category AB(X) of sheaves of abelian groups over X is an abelian
category.

Proof. Composition is bilinear, since this holds for the category of abelian groups. The zero object is the
zero sheaf. The product of two sheaves ¥, G is isomorphic to the coproduct and both equal the direct
sum U — F(U)® G(U). So AB(X) is additive. Kernels and cokernels exist by Section 3.4. Finally, the last

axiom:

o If ker(f) = 0, then f is the kernel of its cokernel. If coker(f) = 0, then f is the cokernel of its kernel.
A morphism f with ker(f) = 0 = coker(f) is an isomorphism.

is satisfied, since it holds stalkwise. |

* % %
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3.10 Resolutions

Definition 3.10.1. An object P of a category C is called a projective object, if for every epi A -» B and
every arrow P — B ther is an arrow P — A, such that the diagram

commutes. This means that arrows from P can be lifted along epis.

In other words, P is projective iff for every epi A = B the ensuing map given by composition
Hom(P,A) — Hom(P, B)

is surjective.

Examples 3.10.2.

o In the categorie of sets every obect is projective.
o Let R be aring. In the category of R-modules, free modules are projective.

Definition 3.10.3. An object I of C is called an injective object, if it is projective in C°PP, this means if for
every mono A — B and every arrow A — I there exists an arrow B — I, such that the diagram

A% B
I L

commutes.
This means that I is injective, if arrows to I can be extended along monos.

In other words, I is injective, if for every mono A < B the induced map
Hom(B,I) —» Hom(A,I)

is surjective.

Examples 3.10.4.

o In the category of sets and maps, every non-empty set is injective.

o In the category of abelian groups an object, i.e., an abelian group (A, +) is injective iff A is divisible,
which means that for every a € A and every n € IN there is b € A with a = nb (Exercise).

Definition 3.10.5. We say: a category C has enough inectives, if for every object X thereisamono X — I,
where I is injective. The category is said to have enough projectives, if A°PP has enough inejctives, which
means that for every object X there is an epi P - X, where P is projective.
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Example 3.10.6. The category MOD(R) of modules of a given ring R has enough projectives, since every
module is the image of a free module.
Definition 3.10.7. For an abelian group A let

A" =Hom(A,Q/Z)

be the dual group. As the group Q/Z is divisible, it follows that for a free abelian group F the dual F* is
divisible.

Lemma 3.10.8. (a) The canonical map to the bidual,

A N AM,

a0,

with 6,(at) = a(a), is injective.
(b) If M is an R-module for a commutative ring R, then M* be comes an R-module by setting
ra(m) = a(rm).

For an R-module homomorphism f : M — N the dual homomorphism f* : B* — A*, f*(8) = fo fisan
R-module homomorphism. One has f** = f, which means that the diagram

A’H- BM

I

A—)B

commutes.

(c) Thedual of 04 : A — A™ is written as pa : A™ — A*. Then the composition
A* RN pa A
is the identity map.
(d) The map 6 is an R-module homomorphism. If P is a projective R-module, then P* is injective.

Proof. (a) The group Q/Z is divisible, hence injective in the category AB of abelian groups. Hence for

any subgroup H C A ensuing map A* — B is surjective.

We need to show that for any given a # 0 in A there exists a homomorphism 1 : A — Q/Z with n(a) # 0
For this let 2 < n < oo be the order of a. Let
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Then 7 extends to a non-trivial group homomorphism from the subgroup (a) generated by a to Q/Z.
This eta can be extended to all of A and the claimed 7 has been found.

(b) Forr € Rand g € B*, as well asa € A we have

fB)@) = (B)(f(a)) = B(rf(a)) = B(f(ra)) = f*(B(ra)) = (rf"(B)(a),

so f* is an R-module homomorphism. To show commutativity of the diagram, fora € A and € B* we
compute

FU©O)B) = 8a(f(B) = 8a(B o f) = B(F(@)) = S5a)(B)-
(c) For a € A* and a € A we compute
pa(04@)(@) = 64 (@)(84(@) = 6a(@)(@) = a(a).
(d) One has

Ora(a) = a(ra) = (ra)(a) = 6,(ra) = ro(a).

Next let P be projective and assume given an exact diagram

P*

|

0——A—B

Dualize it to the solid arrow diagram:

P

P:(—x-

0+—A «+——0b
Since P is projective, the dotted arrow exists and the outer diagram dualizes to

P>(—

™\

0 Aau— BH

| ]

0——A—B

We show that the arrow ¢ : A — P* in this diagram coincides with the original arrow 7 in the first
diagram. For this, recall that by construction we have ¢ = pp- o 6p- o 1. But by part (c) it follows that
pp+ © 0p- = Id, hence ¢ = 7. It follows that P* is an injective object. m]

Proposition 3.10.9. Let R be a commutative ring, then the category MOD(R) has enough injectives.
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Proof. Let M be an R-module and let
P->M -0

be an exact sequence with P being a projective module. It dualizes to 0 — M™ — P* and as M embeds
into M™, it embeds into P*, which is injective by the lemma. m|

Definition 3.10.10. An injective resolution of an object X of an abelian category is an exact sequence

05 X->DIP oI5 ..

7

in which the objects I, I}, . .. are injective. We write 0 — X — Iy.
Lemma 3.10.11. If the abelian category A has enough injectives, then for every object there is an injective

resolution.

Proof. Let X be an object and X < I° an injection into an injective object. Let M be the cokernel of X — I°
and let M < I' an injection into an injective I!, then the sequence 0 — X — I° — ' is exact. Now
letn>1and I°..., I" already constructed. Let M be the cokernel of "1 > I", ten choose an injection
M < ["* in an injective object. Then the sequence 0 —» X — I° — --- — ["*! js exact. This finishes the

inductive construction of an injective resolution. m]

Remark 3.10.12. A projective resolution of an object X is an exact sequence of the form
v > Pp 5P > P> X—-0,

where all P; are projective objects. If the category has enough projectives, then projective resiolutions
exist for every object.

In the category MOD(R) one can even take free modules, in which case one speaks of a free resolution.

* X ¥
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3.11 Derived functors

Definition 3.11.1. Let A and B be abelian categories. An additive functor F : A — B is called an
exact functor if it translates exact sequences to exact sequences. It is called left-exact, if for every exact

sequence of the form
0-A—>B—->C—-0

the sequence
0 — F(A) - F(B) — F(C)

is exact. Correspondingly, it is called right exact, if for every exact sequence 0 - A — B — C — 0, the
sequence
F(A) - F(B) » F(C) -» 0

is exact.

If F is contravariant, one uses the corresponding notions of A°PP, so F is called left-exact, if for every

exact sequence as above the sequence
0 — F(C) — F(B) — F(A)

is exact.

Example 3.11.2. The global sections functor H? from the category of sheaves over a given space X to the
category of abelian groups is left-exact.

Lemma 3.11.3. For every object A in an abelian category A the functor Hom(A, ) is left-exact and the functor
Hom(e, A) is right-excat. Here we consider Hom(e, A) as a covariant functor A°PP — AB.

An object A is projective, iff Hom(A, e) is exact. A is injective iff Hom(e, A) is exact.

Proof. Let 0 — X = Y £, Z — 0be exact. Then a is the kernel of B and f the cokernel of a. Let
f:A— Xwithao f =0. Since 0 — X is the kernel of «, the morphism f factors through the zero map,
hence is zero. Therefore the map Hom(A, a) is injective. (Hom(A, a) is the functor Hom(4, -) applied
to @). One has Hom(A4, f) o Hom(A, ) = Hom(A,foa) =0, since foa = 0. Let f : A — Y be in the

kernel of Hom(A, f), i.e,, fo f = 0. As a is the kernel of g, the morphism f factors through «, ie.,
f =aoh=Hom(A, a)(h) for some h. Together we get that the sequence

0 —» Hom(A, X) —» Hom(A4, Y) —» Hom(A4, Z)

is exact. The case of Hom(e, A) follows by switching to the opposite category.
The assertions on projective and injective objects are now only reformulations of the definitions. |

Lemma 3.11.4. Given two resolutions: 0 - M — Iyy and 0 — N — Iy, where the second is supposed to be
injective, every morphism ¢ : M — N extends to a morphism a : Iy — Iy of complexes.

If the first resolution is injective as well, then any two such extensions are homotopic, i.e., for two extensions o and
Bof ¢ : M — N, the difference o — f3 is nullhomotopic.
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Proof. We have exact rows:

0—M—— L, —— 1, ,
lﬁb\\ a®
0
0 N go IN gl Ill\l

)
As I{, is mono, one can lift the diagonal morphism M NS Y, to I, this defines a°. Write I} = M,

aswell as I;! = M and a™! = ¢. That means, we have constructed a™! and a°.

For the induction step assume a"? and a""~! are constructed.

It ker(f")

n-2 n—-1 n
IM gt IN I

Consider F : g" o ™' : Itvt — It If f"(x) = 0, then one has x = f"(y) for some y and one gets
F(x) = F(f*'(y)) = §"(g" '(@"2(y))) = 0. This means, that F factors through I};*/ker(f"). Since I}, is

injective, one can lift F to I}, and such a lift is named .

This finishes existence. Now for uniqueness modulo homotopy. Now the I are supposed to be injective,
too. The morphism of complexes a — f extends ¢ = 0. So we have to show that any extension of the zero

map is nullhomotopic. We have a commutative diagram with exact rows

0 M- Mo T p
l() lao lal laz
0 1 2
0 N dn ] a° ] dat ] a2

J ] ]

consisting of injective objects I¥, J*. We construct morphisms P : [F — J*1 such that a* = d’]"lPk + PEHIgh,
We start with P° : [ — N, this is the zero map. Solet..., pk-1 pk already constructed.

k-1 k k+1
k-1 4 k 4 k+1 4
I I I
l ‘A J ok l ak+l
k-1 k k+1
] dk—l ] dk ] d};ﬂ

] J

In particular we assume af = d’]HPk, on in the image of I*"!. That means that a* — d’]“lpk is zero on the
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kernel of d¥, so it factors through the image of d¥.

k-1 k k1
Ik—l 4 Ik 4 Ik+1 4
Pk ak lm(d};) k1
o P
]k—l ]k ]k+1
k-1 k k1
d] d] d] ’

As J¥is injective, af — d’;‘lpk extends to an arrow I**! — J¥, which we call P**!. Then on the one hand we
have af = d’]“lpk + P14k as announced and on the other hand, a**! = d’]‘Pk“, on the image of I¥, so that

the construction can go on. The lemma is proven. O

Definition 3.11.5. Let A be an abelian category with enough injectives and let F : A — B be a left-exact
functor to the abelian category 8. For every object X of A choose an injective resolution 0 — X — Ix
and define

R'E(X) = H¥(F(Ix)).

By Lemma 3.11.4 for every morphism f : X — Y in A there is a morphism of complexes Ix — Iy and
so there exists a morphism RFF(f) : RFF(X) — RFF(Y). By the lemma these morphisms are uniquely
determined. In other words: RPF is a functor from A to the category 8.

Lemma 3.11.6. (a) If one applies a left-exact functor F to a split-exact sequence 0 — A — B — C — 0, then the
resulting sequence 0 — FA — FB — FC — 0 is exact.

(b) Let 0 » I — B — C — 0 be an exact sequence in an abelian category, where I is injective. Then the sequence

splits.

(c) Let 0 = X = Y — Z — 0 be an exact sequence in an abelian category with enough injectives. Then there

exist injective resolutions Ix, Iy, Iz and morphisms between them such that the diagram

0 0 0
0 X Y z 0
0 1 I 1 0
0 I L I 0

is commutative and exact.
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Proof. (a) The splitting of the sequence means that B can be replaced with A @ C, so the sequence
decomposes into two isomorphisms, which are preserved by a left-exact functor.

(b) By injectivity, the identity arrow I — I can be extended to an arrow s : B — I making the diagram

0——I—B

{7

I
commute, i.e., it is a splitting.

(c) Pick IS, and I firstand then set I, = I9 ®I),. Then repeat the same for the sequence of the cokernels. O

Theorem 3.11.7. Let A be an abelian category with enough injectives and let F : A — B be a left-exact

functor to an abelian category B.

(a) For every n > 0 the functor R"F is additive. Up to isomorphism of functors, R"F is independent of the

choices of resolutions.
(b) There is a natural isomorphism of functors F = ROF.

(c) For every exact sequence
0-X->Y—>Z->0

and every n > 0 there is a natural morphism
8" : R"F(Z) — R"™F(X)
such that the sequence
.o+ = R'F(X) = R"F(Y) = R"F(Z) - R™F(X) — ...

is exact.

(d) For every morphism of short exact sequences

X Y Z
X' Y’ z

0

and every n > 0 the diagram
R'F(Z) —Z— R™1F(X)

|,

R'F(Z’) —2 R™IF(X")

commuites.
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(e) IfI1is an injective object, then one has R*"F(I) =0 forn > 1.

Proof. The only non-immediate point is the long exact sequence. For this choose resolutions as in Lemma
3.11.6 part (c). Each sequence 0 — It — I’; - I; — 0 splits by part (b) of the lemma and so the seuence
of complexes 0 — F(Ix) — F(Iy) — F(Iz) — 0 is exact. From here one proceeds as in Theorem 5.4.3 of
AlgTopl, when the long exact sequence for homology was constructed. The connection homomorphisms

is constructed using the snake lemma. ]

* X ¥
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Throughout, let F : A — B be a left exact additive functor between abelian categories and assume that

A has enough injectives.

Definition 3.11.8. An object A of A is called acyclic with respect to F, if for every i > 1 the equation
R'F(A) = 0 holds. Let X € A. An exact sequence

05X->5A 5 Al 5 .

is called acyclic resolution of X, if all A/ are acyclic.
Example 3.11.9. Injective objects are acyclic, and hence injective resolutions are acyclic resolutions.

Lemma 3.11.10. Let
0>A—->B—->C—-0

be an exact sequence in A and assume that A is F-acyclic. Then the sequence
0— F(A) = F(B) = F(C) =0
is exact, too.

Proof. This follows from the long exact cohomology sequence in part (c) of Theorem 3.11.7. |

Theorem 3.11.11. Let ‘A be an abelian category with enough injectives and let F : A — B be a left-exact
functor to an abelian category B. Let 0 — X — A® — ... be an F-acyclic resolution. Then there is a natural
isomorphism R'F(X) — H!(F(A®)). That means that derived functors (and thus sheaf cohomology) can be
computed with arbitrary acyclic resolutions.

Proof. We need a lemma.

Lemma 3.11.12. Let 0 —» Y° — Y' — ... be an exact sequence of F-acyclic objects. Then the sequence
0— F(Y%) — F(Y') — ... is exact.

Proof. As F is left-exact, the sequence
0 — F(Y%) - F(Y!) = F(Y?)

is exact. Let Z/ = coker(Y/™! — YJ). We get a commutative and exact diagram

Yl\ Zl /YZ\ Z2 /y3
NN,

0 Y?
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Applying F we get an exact sequence
0 — F(Y%) - F(Y') -» F(Z') - R'F(Y®) = 0.

It follows that F(Z;) = coker(F(Y?) — F(Y')). The exact sequence 0 — Z! — Y? — Y3 yields an exact

sequence
0 — F(Z') = F(Y?) — F(Y®).

Plugging in the previuous, we see that the sequence
coker(F(Y%) — F(Y')) — F(Y?) — F(Y?)
is exact, too. This amounts to the exactness of
F(Y") - F(Y?) — F(Y?)
i.e., the claimed exactness at F(Y?). This argument can be repeated to give the claim. m|
To prove the theorem choose an injective resolution
0-X—> -1 ...

By Lemma 3.11.4 we get a commutative diagram

0 X A° Al
0 X I° I

where the vertical maps, after enlarging I* if neccessary, can be assumed to be injective. Let (Y7) be the

sequence of cockernels of the vertical maps. We get an exact and commutative diagram

0 0
0 X A° Al
}
0 X I° I
0 Y? Y!
0 0

Each column yields a long exact sequence as in part (c) of Theorem 3.11.7, which for j > Oand k > 1
contains the exact sequence 0 = RFF(I/) — RFF(Y7) — RM'F(A/*1) = 0. Hence we get that Y/ is acyclic,
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too. Further, Lemma 3.11.10 yields, that each sequence
0 — F(A)) - F(I') - F(Y/) - 0

is exact. Therefore, we get an exact sequence of complexes

0 — F(A) - F(I) » F(Y) — 0.
with the corresponding long exact cohomology sequence

H/7'F(Y) —» H'F(A) — H'E(I) —» H'E(Y).

By Lemma 3.11.12 both ends are zero, so the arrow in the middle is an isomorphism, hence

H/F(A) = HIF(I)) = RF(X).

* % %

87
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3.12 Delta functors

Definition 3.12.1. Let A and B be abelian categories. A o-functor form A to B is a sequence of additive
functors T', i = 0,1,2,..., together with a family of morphisms & : T'(C) — T'*!(A) for every exact
sequence 0 » A — B — C — 0 such that

e For every short exact sequence as above, the sequence
0 — T°(A) — T%(B) — T°(C) - TY(A) — ...

oo = TP(A) - TP(B) — TP(C) - TP*L(A) — ...
is exact.

e For every morphism of short exact sequences

I

0 X Y

0

—w
=
N ~2

the 0s make a commutative diagram

TP(C) —2 TP+1(A)

|,

TP(Z) —2s TPH(X).

Definition 3.12.2. A 6-functor T is called a universal 0-functor, if for every other 6-functor S and every
natural transformation f° : T° — S° there is a uniquely determined sequence of natural transformations
fP: TP — SP, such that for each exact sequence 0 - A — B — C — 0 the diagram

o

T (A) v (B) (C) VY A) — -
bk ke
SP(A) SP(B) SP(C) —2 SPHI(A) — - -

commutes.

Lemma 3.12.3. If S and T are universal 6-functors and if T® = S°, then TP = SF for every p > 0.

Proof. Let f° : T° — S° be an isomorphism with inverse g° : S — T, Let f¥ and ¢” the uniquely
determined extensions for p > 1. Then f¥¢” is an extension of f°¢" = Id, commuting with the 6s. Since
such an extension is uniquely determined, it follows f¥g? = Id. The other direction works the same, so
the f7 are isomorphisms. ]

Definition 3.12.4. A functor F : A — B is called erasable, if for every object X € A there is a mono
u : X = [ such that F(u) = 0. In the applications one will even have F(I) = 0, but the definition is a bit

more general.
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Example 3.12.5. Let A, B be abelian categories, F : A — B be additive and left-exact and assume that
A has enough injectives. Then there are the right derived functors RPF for p > 1 and these functors are

erasable, since they vanish on injective objects.

Theorem 3.12.6. Let T be a d-functor, such that each TP, p > 1 is erasable. Then T is universal.

Proof. Let S be another 6-functor and let f: T° — S° be given. We erase a given object A of A with an
object I and we get an exact sequence

00ASTI-5C—0

with T'(u) = 0. By the long exact sequence, the solid arrows form a commutative diagram with exact

TOWS:
(1) —2 T9(C) —2 T(A) 0
lf“ lfé) §f;
591 22, o0y —2s s1(a).

The last zero in the top row comes from T'(u) = 0. It follows 67 = coker(T°(v)). As the second row is
exact, we get 655°(v)ff = 0 and so 6sf°(C)T°(v) = 0. Therefore there is a uniquely determined arrow
f1(A), such that the entire diagram is commutative.

We have to show that f! is a natural transformation of functors, i.e., that for every morphism 7: A — B
in A the diagram
T'(4) % T'(B)

fél lfé

5'(4) =2 51()

commutes. For this let 7: A — B be a morphism in A. Consider the pushout P:

Since u is mono, by Lemma 2.7.4 the arrow B — P is mono as well. Let P < N be a monomorphism,
which erases P. We get a commutative diagram with exact rows:

0 A I C 0
Lol
0 B N Y 0,

Where B — N is the composition B — P — N and Y is the cokernel. The diagram, the commutativity of
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which we want to show, is the right side square in the following cube diagram:

or

TO(C) TY(A)
@) ‘ K(Tj
£ TO(Y) l TX(B)
S%(C) SYA) fi
\ W
()
SO(Y) SY(B).

All side squares of the diagramm commute with the possible exception of the right hand square. But

since O is an epi, this square has to commute, as well.

Next we need to show that f; commutes with the connection morphism 6. Let
0-A—-B—->C—0

be an exact sequence in A. By the same pushout construction construction one gets an erasing monomor-

phism A — I and a commutative diagram with exact rows

0 A B C 0
T
0 A I X 0
Consider the diagram:
T°(0)
lfé]
(e
y | )\
T(X) TH(A)

o N

S9(X) o S'(A).

We want to show that the right hand square commutes. The triangles above and below are commtuative
by the definition of the 6-functor. The left square is commutative, since f° is a natural transformation.

The front square commutes by the definition of f!. Hence the last square commutes as well.

An iteration of this argument with the index pair (1,7 + 1) in stead of (0, 1) gives the theorem. m|

* * ¥
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3.13 Sheaf cohomology

Proposition 3.13.1. Let R be a ring and X a topological space. Then the abelian category MODRg(X) of all sheaves
of R-modules has enough injectives.

Proof. Let ¥ be a sheaf of R-modules over X. For every x € X the stalk ¥ is an R-module, so there
exists an injection ¥, < J, into an injective R-module. Consider the sheaf J : U - [],¢ Jx. This is the
product of the skyscraper sheaves Sy(Jx) for x € X in the category MODg(X) of sheaves of R-modules
over X. So for every sheaf G one has

Hom(G,.J) = [ | Hom(G, S:(J:).

xeX

On the other hand one has Hom(G, S:(J»)) = Hom(Gy, Jx). So there exists a natural injective homomor-
phism & — J given by the maps F; — J,. The functor Hom(e, ) is the direct product over all x € X of
the stalk functor ¥ + ¥, which is exact, followed by Homg(e, J,), which is exact, as J, is injective. That
means that Hom(e, J) is an exact functor, so J is an injective object. O

Definition 3.13.2. The sheaf cohomology of a sheaf ¥ is defined to consist of the right derivatives of
the global sections functor, i.e.,
HNF) = R'H(F).
One also writes this as
HYX, F) = R'H(X, F).

Definition 3.13.3. A sheaf ¥ is called flabby, if for any two open sets V ¢ U C X the restriction

rest) : F(U) — F (V) is surjective. Skyscraper sheaves are examples of flabby sheaves.

Theorem 3.13.4. (a) Injective sheaves are flabby.

(b) If0 - F -5 G L5 3 5 0ds an exact sequence of sheaves and if ¥ is flabby, then for every open set
U c X the sequence
0—-FU) - gl —HU) -0

is exact.

(© Let0 > F -5 G L5 H - 0 be an exact sequence of sheaves and let ¥ and G be flabby. Then H is
flabby.

(d) Flabby sheaves are acyclic with respect to the global sections functor H°.

Proof. (a) Let Z be the constant sheaf with stalk Z. For an open set U C X let Zy = ji(Z|y) be the
sheafification of the presheaf

Z(V) vl

Vi
0 otherwise.
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We show that for every sheaf ¥ there is a natural isomorphism
F(U) = Hom(Zy, F).
Fors € F(U) let ¢s : Zyy — F be defined as follows. Let V C X be open and t € Z;(V). Then

(Ps(t) = ts|lunvy.

The inverse map to s = ¢ is given by ¢ — s, with s, = ¢(1y).

Let 1 be an injective sheaf and let V C U C X be open sets. These induce a mono Zy < Z;; and since 1
is injective, one gets a surjection 7 (U) = Hom(Zy, ) - Hom(Zy, I) = 1(V). So I is flabby.

(b) We have an exact sequence of sheaves 0 — ¥ Ry N H — 0 and we want to show that
0 - FU) - gU) - H(U) — 0is exact. Lets € H(U). Then there is an open cover U = | J;¢; U; and
t; € G(U;) such that sy, = B(t;). One has that (t; — t)lunu; lies in the kernel of B, i.e., in the image of «, so
local pre-images exist. As « is injective, the local pre-images are compatible, so they come from some
fij € F(U; N Uj). As F is flabby, there is a f;; € F(U;) with ﬁ',j|u,mu,- = f, ;. If one replaces t; by t; — a(f;),
one gets tilu,nu; = tjlunu;, $O these extend to a section t € G(U) with S(f) = s.

(c) We have an exact sequence of sheaves 0 — F Ry N H — 0, where now ¥ and G are flabby and
we want to show that H is flabby.

Let V c U C X be open sets. We get a commutative diagram with exact rows (by part (b))

0 F U G HU) —— 0

|

0 F V) G(V) H(V)——0

Using diagram chase, one sees that the last vertical arrow is an epi, too.

(d) We now show that flabby sheaf are acyclic, which is the reason why one considers them in the first
place. Let # be a flabby sheaf. Since # can be embedded in an injective sheaf, we get an exact sequence

0->F 1T ->H—>0,

where 7 is injective. By (a),  is flabby and by (c), H is, too. Since 7 is injective, one has H?(I) = 0 for
p = 1. The long exact cohomology sequence looks like this

0 — HYF) - H(I) - H'(H) -
— H(F) > 0—- H'(H) -
— H*(F) = 0— H*(H) > ...

By (b) the first line is exact when one puts a zero at the end, which means that H(¥) = 0 holds for every
flabby sheaf. Further one has H*(H) = H*1(¥) for k > 1. But since H is flabby, one also has H'(H) = 0
and therefore H>(¥) = 0 and also H*({) = 0 and so on. O
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3.14 Fine sheaves

Definition 3.14.1. Let ¢ : ¥ — G be a sheaf homomorphism. The support of ¢, written supp(¢p) is the
closure of the set of all x € X with ¢, : ¥ — G« # 0, i.e,,

supp(¢) = {x €EX:dy # 0}.

Remark 3.14.2. In books on Algebraic Geometry you will find the definition of the support of a sheaf
¥ and the set of points x, where F; # 0. That means that one doesn’t take the closure of this set. This
is useful for non-Hausdorff spaces, as the closure can simply be too large. Here we use the notion of
support as it is customary in Analysis, as the applications lie in the realm of Analysis.

Definition 3.14.3. A sheaf ¥ is called a fine sheaf, if for every open cover X = | J;;; U; there is a family
(¢i)ier of endomorphisms ¢; : ¥ — F with
(@) supp(¢i) c U; and

(b) the family (¢;) is locally-finite in the sense that for each x € X there exists an open neighbourhood
U, such that U N supp(¢;) = O for all but finitely many i € I,

(©) Lier ¢ = Idl.
Examples 3.14.4.

(a) Let M be asmooth manifold. Then for every cover (U;) there is a partition of unity, i.e., a locally-finite
family u; € C*(M) with supp(u;) C U; and

Zu,‘Zl.

iel

This means that the sheaf C* of germs of smooth functions in fine, and so is the sheaf () of all
smooth p-differential forms, as one can define ¢;(w) = u;w.

(b) Skyscraper sheaves are fine.

Lemma 3.14.5. (a) If 0 — F R G -5 H — 0is an exact sequence of sheaves and if ¥ is fine, then the
sequence of groups 0 — F(X) = G(X) —» H(X) — 0 is exact.

(b) If X is paracompact Hausdorff space, then to every sheaf ¥ there exists a monomorphism F — J, where J
is a product of skyscraper sheaves with injective stalks. The sheaf T is fine and injective.

(c) Let 0 > F — I° - I' — ... be a resolution into sheaves IV which are products of skyscraper sheaves with
injective stalks. If F is fine, then the sequence 0 — F(X) — I°(X) - I{(X) — ... is exact.

Proof. (a) We have to show, that gx is surjective. So let t € H(X). Then there is a cover (U;) of X and
s; € G(U;) such that g(s;) = t|y;,. The difference

S,']' = Si—S]'
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is a section of ker(g) = ¥ on U; N U;. Over U; N U; N Uy one has
Sij + Sjk = Sik-

Let ¢; be a family of endomorphisms ¥ = ker(g) associated to (U;). Since the support of ¢; lies in U},
one can extend ¢;(s;;) to a section in ker(g)(U;) € G(U,). Let

5= ) b
j
Then s; € ker(g)(U;) and over U; N U; one has:
s;—s;= Z Or(six) — Z Pr(sj) = Z Or(sij) = sij.
k k k

Therefore
Si—S; =5j =5

holds on U; N U;. Since g(s’) = 0 and g(s;) = t[u,, the prescription s(x) = (s; — s!)(x) for x € U; defines a
global section s of G with g(s) = t.

(b) Let J be the product of all skyscaper sheaves S,(J;), as constructed in the proof of the existence of
enough injective sheaves, Proposition 3.13.1. Then J is injective. We need to show that it is fine. Since
X is paracompact, it suffices to consider a locally-finite cover (U;)ic;. As J is a product of skyscraper
sheaves and singletons {x}, x € X are closed, there is a family (¢;); of endomorphisms of .J, which in
every point only take the value 0 or Id with the property that supp ®; € U; and }; ¢; = Id. So J is fine.

(c) For every object A in an abelian category, on the set End(A) = Hom(A, A) addition and composition
establish the structure of a ring with unit. The category of cochain complexes for a given category is
again an abelian category. Solet C* = (C?),cz be a complex of sheaves over a space X and let R = End(C*).
Let N C R be the set of nullhomotopic endomorphisms.

N is a two-sided ideal in R.

To show this, let ¢ € R and let n € N. Let P be a homotopy such that n = Pd + dP. Then, as ¢ is a
complex morphism, it commutes with the differentials, so n¢ = ppd + dP¢, so p¢ is a nullhomotopy for
n¢. Likewise, ¢P is a nullhomotopy for ¢n.

Let now F be a fine sheaf and let 0 > & — I° - I — ... be a resolution, where each I” is a product
of skyscraper sheaves with injective stalks. As any endomorphism ¢ : ¥ — ¥ can be extended to a
complex-endomorphism for the resolution by Lemma 3.11.4. This extension can be done stalk-wise,
and so the extension ¢, will satisfy supp(¢,) C supp ¢. The complex-endomorphism (¢.) is uniquely
determined up to homotopy. Therefore we get a ring homomorphism

End(F) — End(I°®)/N.

The sequence 0 — F(X) — I°(X) — I}(X) is exact. So let p > 1 and let s € IP(X) with ds = 0. Since
P~ — [P — [P*1 is exact, there exists a covering (U;)ie; such that for every i € [ there is t; € I'~1(U;) with
slu, = dt;. Let (¢;) be a family of endomorphisms of ¥ underlying the covering (U;) with supp(¢;) C U;
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and ) ;; ¢; = Id. These endomorphisms can be lifted to I* satisfying supp(¢;,) C U; for each i € I and
one hasId = h+Y; ¢;., where h is null-homotopic. Asds = 0 it follows that h(s) = dt for some t € I'"}(X).
We can extend each ¢ ,(t;) and each ¢ ,(dt;) by zero outside Uj; to get

s = h(s) + Z bip(s) = dt + Z Gip(dt) = d [t + Z ¢i,p(ti)]. O
i i Sm—— i

:d¢i,p(tx)

Theorem 3.14.6. Let X be a paracompact Hausdorff space. Then fine sheaves on X are acyclic with respect
to the global sections functor HC.

Proof. Let ¥ be a fine sheaf on X. By (b) and (c) of the lemma there is an injective resolution 0 —» ¥ —
I° > I' - ... such that the sequence 0 — F(X) — I°(X) — I}(X) — ... is exact. The sheaf cohomology
is by definition the cohomology of the complex 0 — I°(X) — I'(X) — ..., which is exact, except at I°(X),
so HY(X,F) =0fork > 1. o

* F ¥
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3.15 Cech Cohomology

In this section, X will denote a paracompact Hausdorff space.

Lemma 3.15.1. (a) Let U C X be open, Z C X closed with Z C U. Then there is an open set V with

ZcvVcVcl
(b) For every locally-finite cover (U;)ier there is a refinement (V;)ier, such that for every i € I one has V;cU,.

Proof. (a) Let A be the closed set A = X \ U. We first consider the case Z = {z}. As X is a Hausdorff space,
for every a € A there is an open neighbourhood B, with z ¢ B,. Then (Ba)aea U {U]} is an open cover of X.
By paracompactness there is a locally-finite refinement (W) ey U {U}, where we have, that for every j € |
there is an a € A with W; C B,. Let V be an open neighbourhood of z, that meets only finitely many Wj,
say Wiy,..., W,. Then

V=V~WiU---UW,)

is an open neighbourhood of z, which satisfies the claim, since z ¢ B, for alla € A and W; C B, for some
a.

Now let Z be arbitrary. By the first part there is, to every z € Z, an open neighbourhood V, with
zeV,cV,cl

Therefore (V).cz U {X \ Z} is an open cover of X. Let (V;)ie1 U {X \ Z} be a locally-finite refinement. As

Ov-U

iel iel

this cover is locally-finite, one has

Let V = ¢ Vi. Then V is open and

ZCVCV=LﬁZcu
i

For (b) let (U,)ics be a locally-finite cover. Let S be the set of all families of open sets (V;);;, where | C I
and V; c U, such that (Vi)ie; U (Uj)ierng is a cover of X. On S we instal the partial order

(Vidieg < Vi)ieg © JCJ, Vi=ViVig.

By Zorn’s lemma there is a maximal element (V;);c;. We claim that | = I. Assume, this is not the case.
Letiyp € I\ ] and let

z=x\|JvivJu

i€] i#ig
ieIN]

Then Z is closed and since the V; and U; form a cover, we get Z C Uj,. By (a) there is an open set V;, ¢ X
with Z c V; C Vio C Uj,. Therefore, | can be enlarged by iy, the family wasn’t maximal, which is a
contradiction and the claim follows. O
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Definition 3.15.2. Let X be a paracompact Hausdorff space. Let U = (U;);ef be an open cover of X. A
tuple (U, ..., Uy) of sets of the cover is called a Cech-k-simplex or in this section just a k-simplex. For
a k-simplex ¢ = (Uy, ..., Uy) we define its support to be the set |o| = Uy N --- N Ug. The i-th side of a
k-simplex o is the k — 1-Simplex

o =U,...U;..., U

Let ¥ be a sheaf over X and let CK({, F) be the set of all maps f, which attach to a k-simplex o an element
of F(lo]). Note that (@) = 0. The elements of C*(U, F) are called k-cochains. Define

d:CYU,F) - C*N (U, F)

k+1

af(@) = Y (-1 f(@)l.
i=0

One has d? = 0, hence one gets a cochain complex, whose cohomology one writes as H (U, 7). 1f ¢ :
¥ — Gis asheaf homomorphism, then one gets a morphism of cochain complexes C*(U, ) — C*(U, G)
and so a morphism I:Ik(ﬂ ,F) — Hk(‘L(, G). Therefore I:Ik((L(, -) is a functor from the categorie of sheaves
over X to the category of abelian groups.

An element f of C°(U, F) maps an element U; to a section s; € F(U;). If df = 0, then

0=df(U;, U;) = f(Uplunu, — fUdlunu;,

and one then has silunu; = sjlunu;, which implies that f(U;) = s|y, for a unique global section s €
¥ (X). Conversely, every global section s yields a map f as above by setting f(U;) = s|y,. One gets an
isomorphism

H(U,7) = H(F,X).

Let V be a refinement of the cover U. Then there is a map p : V — U such that V c u(V) for every
V € V. We call such a map a refinement map If 0 = (Vy,..., Vy) is a k-simplex of the cover V, then
u(e) = (u(Vo),..., u(Vy)) is a k-simplex of the cover Y. This u induces a cochain map ‘uZ :CNU,F) —
CK(V, F) given by

HE(N©) = f((@)l

and yielding a homomorphism
wH U F) - H(V,P).

We need to show that the latter map on cohomology does not depend on the choice of a refinement map.

Lemma 3.15.3. Let T : V — U be another refinement map. Then one has
Tk = Hy-
Proof. We construct a homotopy. Let o = (Vy, ..., Vi_1) be a (k — 1)-simplex Then set

5 = Vo), ..., u(V), TV}, ..., e(Viw)).
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Define P* : CK(U, F) — CE1(V, F) by

k-1
P0) = Y (<1 @l

j=0

We want to show:
" —u* =dP + Pd.

For f e CKU,F)and o = (Vy,..., Vi) we compute:

k
dP(f)(0) = Y (I P(H(Vo, . Vi, Vi)
i=0

= Y (Do), o V), TV, TV, (Vi

j<i
+ YV Vo), g (VD) w (V) TV, TVl
j>i

and
k .
Pd(f)(o) = Y (~1Vdf(@)l
j=0

k
= Y VA @Vo), -, 1V, T(V)), ., T(Vi)lg

j=0
= Y D f@Vo), . gV, V), T(V)), - TVl

i<j

# YV FVo), (V) TV, TV -, (Vi
i>j
k

£ ) F@o(Va), o, iV, V), o (Vi
j=0

k
=Y @0y, 1 V), TV i), - TV

j=0

The first two lines in the last expression equal —dP(f)(0) hence cancel in dP + Pd. We end up with

(dP + Pd)(f)(o)
k
£ ) F@o(Vo), o, Vi), V), o TVl
j=0
k
- Z Fo(Va), ., u(Vi), t(Vis1), -, TVl
j=0
= f(z(Vo), ..., T(Vile = f(@(Vo), - -, t(Vi)ljoy

= (7" = 1")(f)(0)-
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We have shown that the homomorphism of chain complexes pi* — * is chain nullhomotopic and therefore

t. and 7. agree on cohomology. ]

For two open covers U and V we write U < V if V is a refinement of U. This makes the set of all open

covers is a directed set.

There is a little set-theoretic hickup here, since we have defined a cover as a family and we can change
index sets to get new covers. This can be circumvented by allowing only index sets I, which are subsets
of, say P(X).

If U <V, then we have shown that there is a canonical homomorphism Hk(ﬂ, F)— I:Ik((V, F). So the
abelian groups (Hk(ﬂ, F))u form a directed system. We define

FI' (X, ) = limy FT(U, ).
u

* % %
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4 Comparing cohomology theories

4.1 De Rham cohomology

Let X be a smooth manifold and let k € {O,...,dim X} For an open set U C X the set Q(U) of k-
differentialforms is an R-vector space. The map U +— Q(U) form a sheaf QF. For instance Q° is the sheaf

of smooth germs of smooth functions. This contains the constant sheaf KR as a subsheaf.

Theorem 4.1.1. The sequence
0-%Kg -0 Lot L

is a fine resolution of the constant sheaf K. Hence we get

HE(X) = HY (X, Kw).

Proof. From the Analysis 4 lecture we take:

Lemma 4.1.2 (Poincaré Lemma). Let U C R" open and star-shaped and let w be a smooth k-form in U with
k> 1. Ifdw = 0, then there exists n € Q"Y(U) such that w = dn.

As a smooth manifold is locally diffeomorphic to star-shaped open sets in IR", the sequence is exact

locally, which means it is an exact sequence of sheaves. By example 3.14.4 the sheaves QF are fine. O

* ¥ ¥
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4.2 Singular cohomology

Let X be a topological space and R a Z-module, i.e., an abelian group. For an open subset U c X
let C5(U,R) = Hom(Cx(U),R) be the set of all singular cochains with values in R. For V c U let
resg : CX(U,R) — CK(V,R) be the restriction. So P* : U — C(U,R) is a presheaf. The coboundary
operator d : CK(U,R) — C*!(U, R) commutes with restriction, so it defines a presheaf homomorphism
Ck — Ck*1. Let C* be the sheafification of C¥. Then C? is the sheaf of all maps with values in R. It contains

the constant sheaf K as subsheaf.
Lemma 4.2.1. The presheaf P* satisfies the axiom of existence, but in general not the axiom of uniqueness.

In particular, it follows that the canonical map
PX) — CH(X)
is surjective.

Proof. Let U = |J;¢; U; be open sets and let f; € CkU;, R) be given such that fz’|u,nu, = fil unu; holds for all
indices i, j € I. Let E ¢ CK(U, R) be the group generated by all 0 € Ck(U, R) with the property that there
exists an index i € [ with ¢ € U;. We then can define f(0) = fi(0), independent of the index i and this
defines a linear map f : E — R. We have C¥(U) = E & F, where F is the group generated by all remaining

simplices. So for s = sg + sp with sg € E and sr € F we define

f(s) = fse).

Then f € CK(U,R) and we have f|;, = f; for every i € I.

Finally we give an example for the failure of the uniqueness axiom. Suppose X = U U V with open sets
U and V and let E be the abelian group generated by all chains which are contained either in U or in V.
Pick a simplex ¢, which is not contained in U or in V. Define a linear map f : Zoc @ E — Z by f(E) =0
and f(0) = 1. Extend f to a linear map on Ci(X). Then f is locally zero, but not globally. O

Theorem 4.2.2. Let X be a paracompact Hausdorff space and locally contractable. The sequence
0—>7(R—>Coi>Cli>...
is a fine resolution of the constant sheaf Kr. We conclude

Hk

sing

(X,R) = H*(X, Kx).

Proof. For the exactness at C? it suffices to show, that for every x € X there is an open neighbourhood U,
such that the sequence Kr(U) — C°(U, R) — C}(U, R) is exact. For this choose U path-connected and let
a € ker(d), so a : U — R with a(y(0)) — a(y(1)) = 0 for every path y in U. Since U is path-connected ist,
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the map «a is constant, i.e., in Kr(U). The exactness at the other places follows from local contractability,
since contractible sets have trivial singular cohomology.

Next we show that the sheaves C* are fine. For this let (U;) be a locally-finite cover. Choose functions
u; : X — {0,1} with supp u; € U; and ) ; u; = 1. Define an endomorphism ¢; of Ck(U, R) by

$i(f)(0) = ui(o(to)) f(0),

where ¢ : A¥ — U is continuous and ty is a fixed point. These endomorphisms commute with the
restrictions and thus define sheaf endomorphisms of C* with supp ¢; C U; and }; ¢; = Id. So the sheaves
C* are all fine.

For the last assertion we need to show that the canonical map C*(X,R) — C¥(X) is an isomorphism in
cohomology. For a covering U = (U;)ie; of X let Crq/(X) denote the free abelian group generated by
Cik(U;),i € I. Then the canonical map Cyqs — C(X) is an isomorphism in homology, this is shown usinmg
barycentric decomposition. Let C’fu(X, R) = Hom(Cy ¢/(X), R). For U <V, i.e.,, when V is a refinement of
U, there is a canonical map C — Ciqs and thus, dually, C’;J - C’ﬁv and these maps are isomorphisms
in cohomology. Set
CY(X,R) = lim Cy (X, R),
U

where the direct limit runs over all coverings U. The canonical map ¢ : CK(X,R) — CK(X,R) is an
isomorphism in cohomology. Finally, by definition of the sheafification, there is a natural isomorphism
of complexes 7 : C¥(X) = CK(X, R). Then the map 7! o ¢ induces the desired isomorphism

HY, (X, R) = H¥(X CKg). O
Remark 4.2.3. The assertion of the theorem becomes false on non-locally contractible spaces. Let for
instance X be the Hawaiian earring. Then Eda/Kawamura sowed in The singular homology of the Hawaiian
earring. J. London Math. Soc. (2) 62 (2000), no. 1, 305-310., that

1)

In particular, this is not a free group. However, the very definition of Cech cohomology implies

o]

[12/Dz|

SR

Hging(X) =

and we shall see in Section 4.4, that the latter also equals the singular cohomology.

* 3% %
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4.3 Group cohomology

Let I be a group. Let MOD(T') be the abelian category of all I'-modules. For an I'-module M let
M ={meM:ym=mVyeT}

be the group of all I-invariant elements. Then M +— M’ defines a functor H°(T, ) from MOD(T) to the
category MOD(Z) = AB of Z-modules or abelian groups. It is easy to see that this functor is left-exact.
The right-derivatives of this functor are by definition the cohomology groups:

HYT, M) = REHO(T', M).

Let Y = ET be the universal covering of B[ = I'\Y. A I'module M induces alocally-constant sheaf
M =T\(Y x M) over X =T\Y. Let H*(X, M) be the corresponding sheaf cohomoloy.

Theorem 4.3.1. There is a natural isomorphy
HNT, M) = HYX, M).

In particular, when M = R is an abelian group with trivial I-action, then M is the constant sheaf with stalk
R and so Theorem 4.2.2 implies that
HKT,R) = HX_ (BT, R)

sing

in accordance with Definition 1.11.2.

Proof. The functors M +— H¥(, M) form a universal 6-functor on MOD(T'). Let AB(X) be the category
of sheaves of abelian Groups on X. Then ¥ +— H¥(X, ¥) is a universal -functor on AB(X). The sheaf-
functor MOD(I') — AB(X), that to a module M attaches the locally-constant sheaf L, is exact. Therefore
M — H¥(X, L) is a 6-functor on MOD(I'). It remains to show universality. As usual, we do that by
showing erasability of the H* for k > 1. Let M € MOD(T) and let

Iy={a:T > M)
be the abelian group of all maps from I' to M. This becomes a I-module by

g.a(1) = g(a(g "))

The map, which sends m € M to the constant map with value m, is an embedding M < Iy of I-modules.
So it remains to show that
HYX, £;,) =0

fork>1. Letm:Y — X =T\Y be the projection.

Lemma 4.3.2. One has
LIM = 7, Km,
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where Ky is the constant sheaf with stalk M on Y.

Proof. Let y € Y and let U be an open neighbourhood of y such that U N yU = 0 for every y € I' \ {1}.
Further, I); can be identified with Hyer M, where I' acts by permutations and action on the factors at
the same time. We write C'® for the set of all locally-constant maps. Then £;,,(n(U)) by definition is
the set of all continuous sections of the projection F\(FU X IM) - F\(FU). Such a section s is a map
Tu -»r \(FU X I M) sending y € I'U to, say, I'(y, a(y)), where the well-definedness implies that for y € T’

we have

I(y,y'a(y) =Ty, vy alyy) = T(yy, ayy)) = s(ry) = s(y) = Ty, a(y)).

This means that a(yy) = ya(y), and, as Iy gets the discrete topology here, we have that « is locally-
constant. So we get

Ly, (n(U))

1R

[a € CCTU Iy : alyy) = ya(y))

1R

aeCl

Iy, H M] sa(yy)e = yo(y), 1.

yer

IR

a€ H clc(ru,M) : a(yy)e = ya(y),-1.
yeF

H C (yU, M) = m.Ku(r(U)). O

yer

1R

We now show that 71K is acyclic. For this note that the functor m. : AB(Y) — AB(I'\Y) is exact. This is
due to the special properties of the projection 7w : Y — I'\Y, for if ¥ is a sheaf over Y and if yy € Y, then
the stalk of .F over the image point 7t(y,) equals

R*Tn(yo) = H 7:y.

yeY:m(y)=n(yo)
Since a sequence of sheaves is exact iff all stalk sequences are exact, we conclude that 7, is exact.

Further, for every sheaf ¥ on Y one has
HO (. F) = HUF),

where H is the global sections functor (on the left over I'\Y, on the right over Y). We choose a special
injective resolution of Ky by products of skyscraper sheaves with injective stalks

0> Ky—-0I"->I"> ...

The images 7t.(IF) are again products of skyscraper sheaves with injective stalks. Since 7. is exact, the
sequence
0- Ky -l >l —...
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is an injective resolution of 7,%j. It follows that
H"(T\Y, m.Ky) = H{(H(m.1%)) = H(H (")) = H*(Y, Kin)
The right hand side is zero for k > 1, by Theorem 4.2.2 and the contractability of Y. m]

* X ¥
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4.4 Cech-cohomology

In this section let X be a paracompact Hausdorff space.

Theorem 4.4.1. (Hk )k is a universal 6-functor on the category AB(X). It follows

H' (X, F) = H(X, 7).

Proof. For the 6-functorlet0 - & — G — H — 0 be an exact sequence of sheaves and let U be an open
cover of X. then the sequence

0 - CYU,F) - CHU,G) - C"(U,H)
is exact. Let Ek((LI, H) be the image of CX(U, @) in CX(U, H). Then the sequence
0 — CNUF) - CH(U,G) — C (U, H) - 0
is exact. One gets a short exact sequence of cochain complexes
0 C(U,F) - C(U,G) - C (U,H) - 0.
Let V be a refinement of U. A given refinement map p : V — U yields a commutative diagram

0—— C(U,F) — C*(U,G) — C (U, H) —— 0

T

0 —— C*(V,F) —— C*(V,G) — C (V,H) — 0.

This in turn gives a commutative diagram of cohomology groups

o H U H) s U F) —— (U, G) —— H (U, H) ——s ..

l L

i H 'V H) s H V) —— T V6 —— H(V,H) —— ..
Taking the direct limit, one gets a lang exact sequence
—k-1 5 ok vk =
~—->H XH) —->HXF)->HEXG->HXH)-...

—k v
Lemma 4.4.2. There is a natural isomorphism H (X, H) = Hk (X, H), which commutes with the connection
homomorphisms.

Proof. 1t suffices to show that to every given locally-finite cover U and to every given f € CK(U, H) there
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is a refinement O and a refinement map u : O — U, such that u(f) € Ek((), H). So let U = (U;)ic; be an
open cover and let f € Ck(U, H). By Lemma 3.15.1 there exists an open cover V = (V)i with vV, cU;
Foreveryie€ I

As (U) is locally-finite, for every x € X there is an open neighbourhood O, with

O, c V;forsomeie€l,

if O, NV; # 0, then O, C U,.

Ox lies in the intersection of all U; containing x,

if ¢ is a k-simplex of the cover U and if x € |g], (so Oy C |o]), then the restriction f(0)|o, is the image

of a section of G over O,.

The last condition can be fulfilled, since there are only finitely many k-simplices for the cover U, which
contain x. The cover (Oy)xex is our candidate. For every x € X choose some V, € V and U, € U with
O, cV,cV,cU,. We get a refinement map p : O — U. Now let g = (Oy,, . .., Oy, ) be a k-simplex to the
cover O. Then one has O,,NV,, # 0 for0 < i <k, soit follows Oy, C Uy,. Hence Oy, C Uy, N... U, = |u(o)l.
Therefore,

p(f)0) = f(Usxy, - - -, U)ol

= f(Uxp---s uxk)|x0
| S—
€G(O)

lo]

€G (o))

Finally one gets p(f) € Ek(O, H). o

So the long exact sequence is the one demanded in the definition of a 6-functor. The functoriality of the
S-morphism is clear on the level of CX(U, ) and therefore follows for the direct limit.

It follows, that H is a 6-functor. For universality, we show that Hk is erasable for k > 1. By Lemma 3.14.5

and Theorem 3.14.6 it suffices to show the following lemma.

Lemma 4.4.3. If ¥ is fine, one has Hk(X, F) =0 For every k > 1.

Proof. Letk > 1. It suffices to show I:Ik((Ll, ) = 0 for every locally-finite cover U = (U,);e;. Let (¢p;) be an
associate family of Endomorphisms of # with supp ¢; € U; and }; ¢; = 1. We show that the Identity on
C*(U, F) is nullhomotopic. For this we construct maps h, : C*(U, F) — C/"Y(U, F) for every p > 1. Let
feC(U,F)and let o = (Uy,...,U,—1) be a (p — 1)-simplex to the cover U. Then ¢; o f(U;, Uy, ..., U,-1)
has support in U; N Uy N --- N Up—1. Extending by zero, we can view ¢; o f(U;, Uy, ..., U,_1) as a section
onUpN...,NU,1. Define

hy(F)(0) = Z i o f(U;, Uy, ..., Uy, ).
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Then one gets
dohy+hy10d=1d

for p > 1. The Lemma follows. m|

By the lemma H* is erasable for k < 1 and therefore they form a universal 6-functor. m]
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4.5 Leray covers

In this section X continues to be a paracompact Hausdorff space.

Lemma 4.5.1. Let P = [[,cx Sy, be a product of skyscraper sheaves. Then H*(U,P) = 0 for every k > 1 and
every cover U.

Proof. For every open set U C X we have P(U) = ][],y Ax and this isomorphism commutes with the
Cech-differential, hence it suffices to show the claim for a single skyscraper sheaf S = Sy 4. In that
case, letI’ ={iel:xp € U} and X’ = U;ep U;. Then the embedding X’ — X induces isomorphisms on
HY(U, S) for all k as the sheaf vanishes outside X’. Therefore, we can replace X with X’ and likewise
replace I by I’ and henceforth assume that xy € U; for every i € I. Then for a simplex o, every section
s € S(lo]) is uniquely determined by the value s(xg), which can be every element of A. We therefore can
identify CK(U, S) with the set of maps f : I*! — A and the differential is

k+1
dftio, ike1) = ) (<1 flio, i isn).
j=0

This is the coboundary operator to the following chain complex Cy is the free abelian group generated
by I*! and the boundary operator is

k
iy, ..., ix) = Z(—1)k (o3 i)
=0

Let Y be the full simplicial complex on the vertex set I. Mapping (i, ..., %) to the singular simplex
spanned by i, ..., defines a map from Hy(C,) to Hising(Y)- In the same way as the equivalence of
singular and simplicial homology, one shows that this map is an isomorphism. By Proposition 1.3.3 one
concludes H*(U, S) = H’s‘mg(Y, A), but the latter vanishes for k > 1 since the full simplicial complex Y is
contractible. ]
Definition 4.5.2. A cover U of X is called Leray-cover for the sheaf ¥, if for every k-simplex o =
(Uo, ..., Uy) the sheaf F | is acyclic.

Example 4.5.3. Let X be a smooth manifold. By the Poincaré Lemma the constant sheaf R is acyclic on
every openset U C X, which is diffeomorphic with R". Therefore X possesses locally-finite Leray-covers.
If X is compact, there is a finite Leray cover.

Theorem 4.5.4. If U is a Leray cover for the sheaf F, then the natural map
H' U, 7) - H'(XF)

is an isomorphism.

So it suffices to compute Cech cohomology with one Leray cover.
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Proof. Embed ¥ into a sheaf J which is a product of skyscraper sheaves with injective stalks. Then
Jlu is injective for every open set U C X. In particular, U is a Leray cover for J as well. Let G be the
cokernel, so we have an exact sequence

0-F ->9—-6G—-0.
As U is a Leray cover, for every k-simplex the sequence
0 = F(lol) = J(lol) = G(lol) = 0
is exact. We get an exact sequence of Cech complexes
0-C(UF)— C(UTJ)—C(UG) — 0.

This yields a long exact sequence on the cohomology. The same holds for the restrictions to |o| for any
given cochain 0. As ¥, and s are acyclic, the long exact sequence implies that Gl is acyclic, too. So
U is a Leray cover for G, too.

By Lemma 4.5.1 we have H*(U,J) = 0 for k > 1. Together with the homomorphism into the Cech
cohomology, we get the following commutative diagrams with exact rows:

00— UF) — U T — H (UG — H (UF) —— 0

00— HXF) —HXT) — HXG — HXF)—0

Since the first three vertical arrows are isomorphisms, the five lemma implies that the arrow « is an
isomorphism, too.

For k > 1 the long exact sequence gives

0——H UG — T UF) —0

l |

00— HXG§ ——H"XF) —0.

In the first diagram the first three vertical arrows are isomorphisms and so is the third. In the second

diagram we can apply a seesaw principle since know that U is a Leray cover for the sheaf G, too. m]

Application for Cech-cohomology

Cech-cohomology was invented in complex analysis and has many applications there. Here we only
mention the Cousin-problem: Let X ¢ C" be open and let (U;) be an open cover. A function f: X — C
is called holomorphic, if for every z € X and every 1 < j < nthe map w = f(z1,...,2j-1,W,Zjs1,...2Zy) is
holomorphic in a neighbourhood of z;.

A meromorphic function on X is a map f : X — C U {oo}, such that for every z € X there is an open
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neighbourhood U and holomorphic functions h;, h, on U and

h
flu = I
Let O(X) be the set of holomorphic functions on X and M(X) the set of all meromorphic functions.
Further let 0*(X) be the set of holomorphic functions without zero.

Let there be given an open cover (U;)ie; of X. Let f; € M(U;) be meromorphic functions with % €
o*(U;nUj) foralli,jel

Question: is there f € M(X) such that % € O*(U;) for every i?

(This means that the global function f has the same zeros and poles as the f;.)

Theorem 4.5.5. If H (U,0) = 0and each U, is simply connected, then each Cousin problem to the covering
U has a solution.

Proof. Itis easy to see that there exists a so called weak solution, i.e., a continuous function ¢ € C(X \ P),

defined outside the set P poles, such that ¢/ f; extends continuously to a continuous, zero-free function.

Then ¢ = ¢; f; on U;, where the function ¢; has no zeros. Note that the exponential functionexp : C — C*
is the universal covering of C*. Therefore the continuous function ¢ : U; — C*, factors throup exp, i.e.,
there exists a function ¢; € C(U;) with ¢; = e? ie., Y= e?i fion U;. On U; N U; one therefore has

PP = ]J;l € OX(U,- N LI]) (%)

]

This implies ¢;; = ¢; — ¢; € O(U; N U;). The family s = (¢; ;)i jer is a cocycle, i.e., lies in ZY(U,0), as the
following computation shows. Let ¢ = (Uy, U;, Uy) be a 2-simplex, then on Uy N U; N U, we have

ds(o) = s(Uy N Uz) — s(Up N Uz) + s(Up N U4)
=¢1— P2 —(Po— P2) + Po — 1 = 0.

As H'(U,0) = 0, this cocycle is a coboundary. Thus there exist holomorphic functions g; € O(U;) with

Gij=Pi=Pj=8i =g
on U; N Uj. By (+) we get eSi78! = fi/f;, so
eSifi=edif;

holds on U; N U;. Hence there exists a global meromorphic function f € M(S) with f = e$if; on U;,
whence the claim. O
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