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1 Singular cohomology

1.1 Cohomology of chain complexes

Definition 1.1.1. A cochain complex is a sequence of homomorphisms of abelian groups

· · · → Ak−1 dk−1

−→ Ak dk

−→ Ak+1
→ . . .

such that dk+1dk = 0 for all k ∈ Z. The map dk is called the coboundary operator or the differential of the
complex. A cochain map ϕ• : A• → B• is a family of group homomorphisms ϕk : Ak

→ Bk such that the
diagram

Ak
dk

A //

ϕk

��

Ak+1

ϕk+1

��

Bk
dk

B // Bk+1

commutes for every k ∈ Z.

So, a cochain complex is just the same as a chain complex with the numbering reversed. That seems
silly, but below we give a connection between chain an cochain complexes which makes the distinction
useful.

Definition 1.1.2. Let
· · · → Ak−1 dk−1

−→ Ak dk

−→ Ak+1
→ . . .

denote a cochain complex. Then its cohomology is defined as

Hk(A•) = ker(dk)/ im(dk−1).

One writes Zk = ker(dk)), Bk = im(dk−1), so that Hk = Zk/Bk. Elements of Zk are called cocycles and
elements of Bk are coboundaries.

Definition 1.1.3. (From chains to cochains) Let · · · → Cn+1
∂
−→ Cn

∂
−→ Cn−1 → . . . be a chain complex of

abelian groups. For a given abelian group R let Cn(R) = Hom(Cn,R) be the dual group. (The group R will
later be a ring, which is why we call it R.) Let d : Cn

→ Cn+1 be the operator dual to ∂, so dϕ( f ) = ϕ(∂ f )

for ϕ ∈ Cn(R). Then · · · → Cn−1 d
−→ Cn d

−→ Cn+1
→ is a chain complex. The cohomology group with

coefficients in R is by definition
Hk(C,R) B Hk

(
Hom(C•,R)

)
.

Definition 1.1.4. Let R be an abelian group and X a topological space. The set of singular cochains with
coefficient in R is defined as

Cn(X,R) = Hom(Cn(X),R).

The corresponding chomology group is called the singular cohomology

Hk(X,R)

of X.
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Definition 1.1.5. Let A be an abelian group. An exact sequence of the form

· · · → F2 → F1 → F0 → A→ 0

with free abelian groups F j is called a free resolution of A. Then

F ≡ . . . F1 → F0 → 0

is a chain complex of free abelian groups. The cohomology Hp(F,R) is defined as above. Note that F is
the “cut-off” complex. One also writes this as F• → A. For instance, one has

H0(F,R) = ker(Hom(F0,R)→ Hom(F1,R))

= Hom(F0/F1,R) = Hom(A,R).

This means that H0(F,R) does not depend on the choice of the resolution.

Lemma 1.1.6.

(a) Let F,F′ be free resolutions of the abelian groups A,A′. Then every group homomorphism α : A→ A′ can be
extended to a chain map F→ F′, such that there is a commutative diagram

. . . // F2
f2
//

α2

��

F1
f1
//

α1

��

F0
f0
//

α0

��

A //

α

��

0

. . . // F′2
f ′2 // F′1

f ′1 // F′0
f ′0 // A′ // 0.

Any two such extensions of α are chain-homotopic.

(b) For any two free resolutions F,F′ of A there are canonical isomorphisms

Hp(F′,R) � Hp(F,R) = Hp
(

Hom(F•,R)
)
.

Proof. Since F0 is free, the homomorphism α◦ f0 : F0 → A can be lifted to F′0, this defines α0. Now assume
that αn−1 is already defined. The homomorphism αn−1 ◦ fn : Fn → F′n−1 satisfies f ′n−1 ◦ (αn−1 ◦ fn) = 0,
which means that the image lies in the kernel of f ′n−1, which equals the image of f ′n. Since Fn is free, this
homomorphism can be lifted to αn : Fn → F′n.

In order to show that two given extensions of α are chain-homotopic, it suffices to show that in the case
α = 0 any extension is nullhomotopic.

So let α = 0 and let αn be any extension. We are looking for group homomorphisms Pn : Fn → F′n+1 such
that

αn = f ′n+1Pn + Pn−1 fn.

Set P−1 : A → F′0 to be zero. The relation we need, is α0 = f ′1P0. Such a P0 exists, since the image of α0

lies in the kernel of f ′0 , i.e., in the image of f ′1 and F0 is free.

Inductively, let Pn−1 already be defined. We are looking for some Pn such that αn − Pn−1 fn = f ′n+1Pn. To
show that such a map exists, it suffices to show that the image of αn −Pn−1 fn lies in the image of f ′n+1, i.e.,
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in the kernel of f ′n. Because of αn−1 = f ′nPn−1 + Pn−2 fn−1 one has

f ′n(αn − Pn−1 fn) = f ′nαn − ( f ′nPn−1) fn

= f ′nαn − (αn−1 − Pn−2 fn−1) fn

= f ′nαn − αn−1 fn = 0.

So Pn exists and therefore part (a) is proven.

Part (b) is now easy. Since chain-homotopic maps give the same map on the homology, every ho-
momorphism α : A → A′ induces an uniquely determined homomorphism on the homology. For two
different resolutions F,F′ of the same group A we apply this to α = Id : A→ A and we get uniquely deter-
mined homomorphisms on the homology, ϕ : H(F)→ H(F′) and by the same token,ψ : H(F′)→ H(F). By
uniqueness,ϕ◦ψmust coincide with the identity and the same forψ◦ϕ, to the two are isomorphisms. □

It follows, that up to canonical isomorphy, the groups Hk(F,R) only depend on A and R, not on the
resolution. We call this group

Extk(A,R).

Lemma 1.1.7. For a given abelian group A there is an exact sequence

0→ F1 → F0 → A→ 0,

with free groups F0,F1. So any abelian group has a free resolution of length 2.

Proof. Let S be any set of generators of A. Let F0 be the free abelian group with generator set S′ of the
same cardinality as S. Any bijection f : S′ → S extends to a surjective group homomorphism f : F0 → A.
Let F1 be the kernel of f . As F1 is a subgroup of a free abelian group, it is a free abelian group itself
(Lang, Algebra). Therefore the sequence F1 → F0 → A satisfies the claim. □

The lemma implies that for abelian groups A,B one has Extk(A,B) = 0 for k ≥ 2. Further we have
calculated, that

Ext0(A,B) = Hom(A,B).

So the only interesting group is Ext1(A,B).

* * *
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1.2 Triviality of Ext

Definition 1.2.1. An abelian group B is called divisible, if for every b ∈ B and every n ∈ N there exists
x ∈ B with nx = b. For example Q and Q/Z are divisible, Z is not, nor is and non-trivial finite group.

Lemma 1.2.2. Lat A,A′,B,B′ be abelian groups.

(a) One has

Ext1(A ⊕ A′,B) � Ext1(A,B) ⊕ Ext1(A′,B),

Ext1(A,B ⊕ B′) � Ext1(A,B) ⊕ Ext1(A,B′)

(b) If A is free or if B is divisible, one has
Ext1(A,B) = 0.

(c) Ext1(Z/nZ,B) � B/nB.

Proof. (a) The first follows from the fact that the direct sum of free resolutions of A and A′ is a free
resolution of A ⊕ A′. The second follows from Hom(F,B ⊕ B′) � Hom(F,B) ⊕ Hom(F,B′) applied to
members F of a free resolution of A.

(b) The case of A being free is clear, as 0 → A → A → 0 is a free resolution. Now let B be divisible and
let 0 → A1 → A0 → A → 0 be a free resolution. We need to show that the induced homomorphism
Hom(A0,B)→ Hom(A1,B) is surjective. So let ϕ : A1 → B be a group homomorphism. We need to show
that it can be extended to A0. Let S be the set of all pairs (H, ψ), where H ⊂ A0 is a subgroup containing
A1 and ψ : H→ B is an extension of ϕ. We order S by

(H, ψ) ≤ (H′, ψ′) ⇔ H ⊂ H′, ψ′|H = ψ.

Zorn’s lemma shows that there exists a maximal element (H, ψ). We claim that H = A0. Assume
otherwise and let a0 ∈ A0 ∖H. If there exists n ∈N such that na0 ∈ H, then pick b0 ∈ B with nb0 = ψ(na0)
and set ψ̃(a0) = b0. Then ψ̃ extends ψ to the group generated by H and a0, so ψ is not maximal, a
contradiction. If no such n exists, set ψ̃(a0) = 0 and then as well ψ̃ extends ψ.

(c) comes from the resolution 0→ Z n
−→ Z→ Z/nZ→ 0. □

Lemma 1.2.3. Let
0→ A α

−→ B
β
−→ C→ 0

be an exact sequence of abelian groups. Then the following are equivalent:

(a) There exists a group homomorphism s : C→ B with βs = IdC.

0 // A α // B
β
// C //

s

`` 0
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(b) There is a group homomorphism t : B→ A with tα = IdA.

0 // A α // B
β
//

t

`` C // 0

(c) There is an isomorphism ψ : B→ A ⊕ C such that the diagram

B

""
ψ

��

0 // A

""

<<

C // 0

A ⊕ C
p2

<<

commutes.

Definition 1.2.4. If these equivalent conditions are satisfied, we say that the sequence 0 → A → B →
C→ 0 is a split exact sequence.

Proof. (c)⇒ (a) and (c)⇒ (b) are clear.

(a)⇒ (c): Let s : C→ B with βs = IdC. For b ∈ B one has b − sβ(b) ∈ imα, since imα = ker β and

β(b − sβ(b)) = β(b) − βsβ(b) = β(b) − β(b) = 0.

So one can define ψ : B→ A ⊕ C by

ψ(b) = α−1(b − sβ(b)) ⊕ β(b).

For a ∈ A one has ψ(α(a)) = α−1α(a) ⊕ 0 = a ⊕ 0. For b ∈ B one has p2ψ(b) = β(b). Hence the diagram
commutes.

(b)⇒ (c): Let t : B→ A be given with tα = IdA. Define

ψ(b) = t(b) ⊕ β(b).

The commutativity of the diagram is clear. □

Lemma 1.2.5. (a) Let 0 → A α
−→ B

β
−→ F → 0 be an exact sequence of abelian groups. If F is free, then the

sequence splits.

(b) Let 0→ A α
−→ B

β
−→ C→ 0 be an exact sequence of abelian groups. Then the dual sequence

0→ C∗
β∗

−→ B∗ α∗
−→ A∗

is exact. If the first sequence splits, then α∗ is also surjective. In general, α∗ is not always surjective.
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Proof. (a) Let F be free with generating set X. For each x ∈ X, pick any element b = s(x) ∈ B with β(b) = x.
The map s : X→ B extends to a group homomorphism s : F→ B with β ◦ s = IdF.

(b) Let f : C→ R in C∗ with β∗( f ) = 0, i.e., f ◦ β = 0, so f vanishes on the image of β. Since β is surjective,
we get f = 0 and so β∗ is injective.

One has λ∗β∗ = (βα)∗ = 0∗ = 0.

Let f ∈ B∗ with α∗( f ) = 0, i.e., f ◦ α = 0, so f vanishes on the image of α, which is the kernel of β. That
means that f factors through B/ker β � C, therefore there exists g : C→ R with f = g ◦ β = β∗(g).

If the first sequence splits, say B � B1 ⊕ B2, then this sequence splits into two isomorphisms A �
−→ B1

and B2
�
−→ C, which dualise to isomorphisms of the dual groups.

For the addendum consider the following counterexample. Let R = Z and n ∈N. Since Hom(Z/nZ,Z) =
0, the exact sequence

0→ Z n
−→ Z→ Z/nZ→ 0

dualises to

0→ 0→ Z n
−→ Z. □

One can show that Ext1(A,B) is in natural bijection with the set of all isomorphism classes of exact
sequences

0→ A→ C→ B→ 0.

The trivial group element stands for the class of splitting sequences.

* * *
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1.3 The Universal Coefficient Theorem

Theorem 1.3.1 (Universal Coefficient Theorem for cohomology). For a given chain complex C of free
abelian groups and an abelian group R there is a canonical split exact sequence

0→ Ext1(Hn−1(C),R)→ Hn(C,R) h
−→ Hom(Hn(C),R)→ 0.

Here n ≥ 0, where we formally set H−1(C) = 0. This sequence is functorial in C, i.e., any chain map f : C→ D
induces a commutative diagram

0 // Ext1(Hn−1(C),R) // Hn(C,R) h // Hom(Hn(C),R) // 0

0 // Ext1(Hn−1(D),R) //

f ∗

OO

Hn(D,R) h //

f ∗

OO

Hom(Hn(D),R) //

f ∗

OO

0

Proof. We define a homomorphism

h : Hn(C,R)→ Hom(Hn(C),R)

as follows: Let [ϕ] ∈ Hn(C,R), so ϕ : Cn → R with ϕ ◦ ∂ = dϕ = 0. This means that ϕ(Bn) = 0, where
Bn = im(∂n+1). So the restriction of ϕ to Zn = ker ∂n induces a homomorphism ϕ : Zn/Bn → R, i.e., an
element of Hom(Hn(C),R). We set h([ϕ]) = ϕ. For the well-definedness let ψ = ϕ+ dα = ϕ+ α ◦ ∂ and let
z ∈ Zn. Then α ◦ ∂(z) = α( ∂(z)︸︷︷︸

0

) = 0, so we get ψ = ϕ.

Lemma 1.3.2. The group homomorphism h is surjective. The sequence

0→ ker h→ Hn(C,R) h
−→ Hom(Hn(C),R)→ 0

splits.

Proof. Since Bn−1 is a subgroup of the free group Cn−1, the group Bn−1 is free abelian. Hence the sequence

0→ Zn → Cn
∂
−→ Bn−1 → 0

splits. Therefore there is a projection p : Cn → Zn with p|Zn = Id. Let η ∈ Hom(Hn(C),R), so η : Zn/Bn → R.
Define η̂ = η ◦ p : Cn → R. One has dη̂ = η̂ ◦ ∂ = η ◦ p ◦ ∂ = η ◦ ∂ = 0, since p ≡ Id on Zn ⊃ Bn and η is zero
on Bn. This means that η̂ defines a cohomology class [η̂] with h([η̂]) = η (by construction of h), which
implies that h is surjective and the sequence of the lemma is split by the map η 7→ [η̂]. □
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We consider a commutative diagram with split exact rows

0 // Zn+1 //

0
��

Cn+1
∂ //

∂
��

Bn //

0
��

0

0 // Zn // Cn
∂ // Bn−1 // 0

As the rows are split, the dual diagram has exact rows as well:

0 Z∗n+1
oo C∗n+1

oo B∗n
doo 0oo

0 Z∗noo

0

OO

C∗noo

d

OO

B∗n−1
oo

0

OO

0oo

Here A∗ = Hom(A,R). This means that we get an exact sequence of cochain complexes 0← Z∗ ← C∗ ←
B∗ ← 0. As the complexes Z and B have zero boundary maps, the corresponding long exact sequence of
cohomology groups has the form

· · · ← B∗n ← Z∗n ← Hn(C,R)← B∗n−1 ← Z∗n−1 ← . . .

The connection homomorphism δ : Z∗n → B∗n in this sequence is the dual map of the inclusion in : Bn →

Zn, since one gets δ(z) by picking a pre-image of z ∈ Z∗n in C∗n, then applies d and takes the pre-image in
B∗n. In this first step, the homomorphism z : Zn → R is extended to Cn, in the second, it is composed with
∂ and in the third this extension is undone again by restriction to Bn. So in the end, z is only restricted to
Bn. Hence one has δ = i∗n. One gets the exact sequence

· · · ← B∗n

i∗n
←− Z∗n ← Hn(C,R)← B∗n−1

i∗n−1

←− Z∗n−1 ← . . .

which gives the short exact sequence

0← ker(i∗n)← Hn(C,R)← coker(i∗n−1)← 0.

Elements of ker(i∗n) are homomorphisms Zn → R, which vanish on Bn, i.e., the homomorphisms Bn/Zn →

R. In other words: ker(i∗n) = Hom(Hn(C),R). The map Hn(C,R) → ker(i∗n) = Hom(Hn(C),R) equals the
map h. So there is a canonical isomorphism ker h � coker i∗n−1. The sequence

0→ Bn−1
in−1
−→ Zn−1 → Hn−1(C)→ 0

is a free resolution of Hn−1(C), so there is a canonical isomorphism ker h � coker i∗n−1 � Ext1(Hn−1(C),R).
The theorem is proven, except for the functoriality. For this, one looks at the construction of the
sequence, i.e., the map h, which comes about by interpreting a cohomology class as a homomorphism
on homology. One finds that a chain map f would map this construction for the complex D to the
corresponding construction for C and thus induce the same map, i.e., the diagram is commutative. □

Proposition 1.3.3. Let ϕ : C• → D• be a morphism of chain complexes, which induces isomorphisms in the



Topologie 10

homology groups ϕ∗ : Hk(C•)
�
−→ Hk(D•). Then the corresponding pullback maps on cohomology

ϕ∗ : Hk(D,R)→ Hk(C,R)

are isomorphisms, too.

In particular, it follows that singular cohomology of a simplicial complex can also be computed using the simplicial
chain complex.

Proof. This is clear from the functoriality statement in the Universal Coefficient Theorem and the five
lemma. □

Let X,Y be topological spaces. For a continuous map f : X → Y, the chain map f# : Cn(X) → Cn(Y)
dualises to a cochain map

f # : Cn(Y)→ Cn(X),

which induces a map f ∗ : Hn(Y,R)→ Hn(X,R) on the cohomology groups.

Proposition 1.3.4. Let f , g : X→ Y be continuous maps. If f and g are homotopic, then one has f ∗ = g∗.

Consequently, if A is a deformation retract of X, the inclusion A ↪→ X induces isomorphisms Hn(X,R) � Hn(A,R).

Proof. If f and g are homotopic, then the induced maps on homology coincide. The universal coefficient
theorem yields the following diagram with exact rows:

0 // Ext1(Hn−1(C),R) // Hn(C,R) h // Hom(Hn(C),R) // 0

0 // Ext1(Hn−1(D),R) //

0

OO

Hn(D,R) h //

f ∗−g∗

OO

Hom(Hn(D),R) //

0

OO

0

The zeros to the left and right come from the fact that f and g induce the same map on homology. This
implies that f ∗ − g∗ = 0 in the middle, too. □

* * *
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1.4 The sequence of a pair

Lemma 1.4.1. Let (X,A) be a pair of spaces. The exact sequence

0→ Cn(A) i
−→ Cn(X)

j
−→ Cn(X,A)→ 0

splits. Consequently, Cn(X,A) is a free abelian group and the Universal Coefficient Theorem applies to the chain
complex C•(X,A).

Proof. Let F be the free abelian group generated by all singular simplices, whose image does not lie in A.
Then Cn(X) = Cn(A) ⊕ F and the projection to the first summand yields a splitting. □

Definition 1.4.2. As the group R will be fixed throughout, we occasionally leave it off the notation.
We define Cn(X) = Cn(X)∗ = HomR(Cn(X),R) as well as Cn(X,A) = Cn(X,A)∗ and dualise to get a exact
sequence

0→ Cn(X,A)
j∗
−→ Cn(X) i∗

−→ Cn(A)→ 0.

The relative coboundary map d : Cn(X,A)→ Cn+1(X,A) is defined by restriction of d : Cn(X)→ Cn+1(X)
and gives the relative cohomology Hn(X,A) = Zn(X,A)/Bn(X,A).

Proposition 1.4.3. There is an exact sequence

0→ H0(X,A)→ . . .

· · · → Hk(X,A)
j∗
−→ Hk(X) i∗

−→ Hk(A) δ
−→ Hk+1(X,A)→ . . .

Proof. In the sequence

0→ Cn(X,A)
j∗
−→ Cn(X) i∗

−→ Cn(A)→ 0,

the maps j∗ and i∗ are cochain maps, i.e., i∗d = di∗ and j∗d = dj∗, since i and j are chain maps. Therefore,
the claim follows from Theorem 5.4.3 of AlgTop1. □

Theorem 1.4.4 (Excision in cohomology).

(a) If A,Z ⊂ X are subsets with Z ⊂ Å, then the inclusion i : (X∖Z,A∖Z) ↪→ (X,A) induces isomorphisms

Hk(X,A) �
−→ Hk(X ∖ Z,A ∖ Z).

(b) If X is path-connected and A ⊂ X regularly closed, then there is an exact sequence

0→ R→ H0(A) δ
−→ H1(X/A)→ . . .

· · · → Hk(X/A) π∗
−→ Hk(X) i∗

−→ Hk(A) δ
−→ Hk+1(X/A)→ . . .

where i : A ↪→ X is the inclusion and π : X→ X/A is the projection.
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Proof. (a) The inclusion induces a chain map i# : Cn = Cn(X∖Z,A∖Z)→ C′n = Cn(X,A). By the Universal
Coeffient Theorem this yields a commutative diagram with exact rows:

0 // Ext1(Hn−1(C),R) // Hn(C,R) h // Hom(Hn(C),R) // 0

0 // Ext1(Hn−1(C′),R) //

α

OO

Hn(C′,R) h //

i∗

OO

Hom(Hn(C′),R) //

β

OO

0

In this diagram, the maps α and β are induced by maps i∗ : Hn(C) → Hn(C′), which by Theorem 5.8.1
from AlgTop1 are isomorphisms. Therefore, α and β are isomorphisms, too. By the five lemma, the map
i∗ then is an isomorphism.

The proof of (b) is analogous to the proof of the exact pair-sequence in homology. □

Proposition 1.4.5. (a) Let X be path-connected and x0 ∈ X a point. Then one has

Hk(X, x0) � Hk(X), k ≥ 1

H0(X, x0) = 0.

(b) Let A ⊂ X be a deformation retract of X. For every k one has

Hk(X,A) = 0.

(c) Let A ⊂ X be regularly closed. Then the quotient map q : (X,A)→ (X/A,A/A) induces isomorphisms

q∗ : Hn(X/A,A/A) �
−→ Hn(X,A).

Proof. Analogous to the corresponding proofs in homology. □

* * *
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1.5 The Mayer-Vietoris Sequence

Theorem 1.5.1. Let A,B be subsets with X = Å ∪ B̊. Then there is an exact sequence

0→ H0(X)
ψ
−→ H0(A) ⊕H0(B)→ . . .

· · · → Hk(X)
ψ
−→ Hk(A) ⊕Hk(B)

ϕ
−→ Hk(A ∩ B) δ

−→ Hk+1(X)→ . . .

Proof. We write Ck(A+B) for Ck(A)+Ck(B) ⊂ Cp(X). As Ck(A+B) is free, Lemma 1.2.5 says that the exact
sequence of chain complexes

0→ Ck(A ∩ B)→ Ck(A) ⊕ Ck(B)→ Ck(A + B)→ 0

dualises to an exact sequence of cochain complexes

0→ Ck(A + B,R)
ψ
−→ Ck(A,R) ⊕ Ck(B,R)

ϕ
−→ Ck(A ∩ B,R)→ 0.

This induces a long exact sequence on cohomology, which coincides with the one in the theorem, except
for the term Hk(X), which is replaced by the cohomology of the complex Ck = Ck(A + B). Let D be the
complex Dk = Ck(X). The inclusion i : Ck(A+B) ↪→ Ck(X) induces a dual map i# : Ck(X)→ Ck(A+B). Let
i∗ and i∗ be the induced maps on the (co-)homology. The map i∗ is an isomorphism by Lemma 5.12.1 of
AlgTop1. The Universal Coefficient Theorem yields a commutative diagram with exact rows

0 // Ext1(Hn−1(C),R) // Hn(C,R) h // Hom(Hn(C),R) // 0

0 // Ext1(Hn−1(D),R) //

α

OO

Hn(D,R) h //

i∗

OO

Hom(Hn(D),R) //

β

OO

0

The maps α and β are isomorphisms, hence so is i∗. □

It is not hard to see that there also is a relative version:

Theorem 1.5.2. Let A,B be subsets with X = Å ∪ B̊ and let K ⊂ Å and L ⊂ B̊ be closed sets. Then there is
an exact sequence

0→ H0(X,X ∖ (K ∪ L))
ψ
−→ H0(A,A ∖ K) ⊕H0(B,B ∖ L)→ . . .

· · · → Hk(X,X ∖ (K ∪ L))
ψ
−→ Hk(A,A ∖ K) ⊕Hk(B,B ∖ L)

ϕ
−→ Hk(A ∩ B, (A ∩ B) ∖ (K ∩ L)) δ

−→ Hk+1(X,X ∖ (K ∪ L))→ . . .

* * *
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1.6 The Cup-product

Definition 1.6.1. From now on, the coefficient group R shall carry an extra structure of a commutative
ring with unit, like for instanceZ,Z/nZ oderQ. So maps to R can not only be added, but also multiplied.
For two cochains α ∈ Ck(X,R) and β ∈ Cl(X,R) we define the cup-product α ⌣ β ∈ Ck+l(X,R) by

(α ⌣ β)(σ) = α(σ|[v0,...,vk])β(σ|[vk ,...,vk+l]),

where σ : [v0, . . . , vk+l] → X is a singular simplex and the product on the right takes place in R. The
product extends to a bilinear map from Ck(X,R) × Cl(X,R) to Ck+l(X,R).

Lemma 1.6.2. (a) The cup-product is associative and distributive, i.e., for α ∈ Ck(X,R), β ∈ Cl(X,R) and
γ ∈ Cr(X,R) one has

(α ⌣ β) ⌣ γ = α ⌣ (β ⌣ γ),

α ⌣ (β + γ) = α ⌣ β + α ⌣ γ,

(β + γ) ⌣ α = β ⌣ α + γ ⌣ α.

The cup product makes C• =
⊕

k Ck(X,R) a generally noncommutative ring.

(b) The set C0(X,R) = Map(X,R) forms a subring. The constant map 1 : x 7→ 1 is a unit of the ring C•. It
satisfies d1 = 0.

(c) For α ∈ Ck(X,R) and β ∈ Cl(X,R) one has

d(α ⌣ β) = dα ⌣ β + (−1)kα ⌣ dβ.

Proof. (a) follows from associativity of multiplication in the ring R.

(b) The first assertion is clear by definition. As for the second, let σ : [v0, v1]→ X be a simplex. Then

d1(σ) = 1(∂σ) = 1
(
σ(v1) − σ(v0)

)
= 0.
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(c) Let σ : [v0, . . . , vk+l+1]→ X be a singular k + l + 1 simplex in X. Then one has

d(α ⌣ β)(σ) =
k+l+1∑

j=0

(−1) j(α ⌣ β)(σ|[v0,...v̂ j...,vk+l+1])

=

k∑
j=0

(−1) jα(σ|[v0,...v̂ j...,vk+1])β(σ|[vk+1,...,vk+l+1])

+

k+l+1∑
j=k+1

(−1) jα(σ[v0,...,vk])β(σ|[vk,...v̂ j...,vk+l+1])

=

k+1∑
j=0

(−1) jα(σ|[v0,...v̂ j...,vk+1])β(σ|[vk+1,...,vk+l+1])

+

k+l+1∑
j=k

(−1) jα(σ[v0,...,vk])β(σ|[vk ,...v̂ j...,vk+l+1])

= dα ⌣ β(σ) + (−1)kα ⌣ dβ(σ). □

Definition 1.6.3. The lemma implies
Zk ⌣ Zl

⊂ Zk+l

and
Zk ⌣ Bl, Bk ⌣ Zl

⊂ Bk+l.

Since Hl = Zl/Bl, the cup-product yields an associative and distributive multiplication

Hk(X,R) ×Hl(X,R) → Hk+l(X,R),

which turns

H∗(X,R) =
∞⊕

k=0

Hk(X,R)

into a ring. This ring is called the cohomology ring of X with coefficients in R. This is a (non-commutative)
ring with unit. The unit is induced by the unit 1 in C•(X,R).

Proposition 1.6.4. Let f : X→ Y be continuous, Then the maps

f # : C•(Y,R)→ C•(X,R),

f ∗ : H•(Y,R)→ H•(X,R)

are unital ring homomorphisms.

Proof. This follows from

f #(α ⌣ β)(σ) = (α ⌣ β)( f ◦ σ)

= α(( f ◦ σ)|[v0,...,vk])β(( f ◦ σ)|[vk ,...,vk+l])

= f #(α)(σ|[v0,...,vk]) f #(β)(σ|[vk ,...,vk+l])

= f #α ⌣ f #β(σ). □



Topologie 16

* * *
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1.7 Graded algebras

Definition 1.7.1. An R-algebra is a (not neccessarily commutative) ring A, which at the same time is an
R-module, such that the multiplication map A × A→ A is R-bilinear. This means that one has

r(ab) = (ra)b = a(rb)

for r ∈ R and a, b ∈ A.

Examples 1.7.2. (a) The set of n × n matrices, A =Mn(R), is an R-algebra with matrix multiplication.

(b) The polynomial ring A = R[X] is a commutative R-algebra with unit.

(c) Every ring is a Z-algebra.

Definition 1.7.3. An algebra homomorphism is a map ϕ : A → B between R-algebras, which is an
R-module homomorphism and a ring homomorphism.

Examples 1.7.4. (a) Let α ∈ R, then ϕα : R[X]→ R, given by f (X) 7→ f (α) is an algebra homomorphism.

(b) If S is an invertible matrix in Mn(R), then A 7→ SAS−1 is an algebra homomorphism from Mn(R) to
itself.

Definition 1.7.5. An R-algebra A is called a graded algebra, if there are R-submodules An for n = 0, 1, . . . ,
such that A =

⊕
∞

n=0 An with
AnAm ⊂ An+m.

An element a ∈ An is called homogeneous. An arbitrary element of A is a sum of homogeneous elements.
Let for instance a = a0 + · · · + an with a j ∈ A j. If an , 0, then we say that s has degree n,

deg(a) = n.

.

Examples 1.7.6. (a) The polynomial ring A = R[x] is graded with An = R · xn

(b) The cohomology ring A = H∗(X,R) is graded by An = Hn(X,A).

Definition 1.7.7. A graded algebra A is called graded-commutative, if for a ∈ Ak and b ∈ Al one has

ab = (−1)klba.

Theorem 1.7.8. The cohomology ring of a space X is graded-commutative. So for α ∈ Hk(X,R) and
β ∈ Hl(X,R). one has

α ⌣ β = (−1)klβ ⌣ α.

Proof. For an n-simplex σ : [v0, . . . , vn] → X let σ be the n-simplex σ : [vn, . . . , v0] → X with the reversed
order of vertices. Recall that the notation [v0, . . . , vn] stands for the convex hull of the points v0, . . . , vn ∈
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RN, together with the affine isomorphism [e0, . . . , en] → [v0, . . . , vn] given by e j 7→ v j, where e0, . . . , en

is the standard basis of Rn. Therefore, [vn, . . . , v0] is the same convex hull, together with [e0, . . . , vn] →
[vn, . . . , v0] mapping e j 7→ vn− j.

Therefore one has σ(vi) = σ(vn−i). The reversal of order is a composition of n+ (n−1)+ · · ·+1 = n(n+1)/2
transpositions of neighboured vertices. Let εn = (−1)n(n+1)/2. Define a linear map ρ : Cn(X) → Cn(X) by
ρ(σ) = εnσ.

We claim that ρ is a chain map, which is chain-homotopic to the identity. This implies the theorem, since

(ρ∗ϕ ⌣ ρ∗ψ)(σ) = ϕ(εkσ|vk ,...,v0])ψ(εl|[vk+l,...,vk])

ρ∗(ψ ⌣ ϕ)(σ) = εk+lψ(σ|[vk+l,...,vk])ϕ(σ|[vk,...,v0])

implies εkεl(ρ∗ϕ ⌣ ρ∗ψ) = εk+lρ∗(ψ ⌣ ϕ), as R is commutative. One has

εk+l = (−1)
(k+l)(k+l+1)

2 = (−1)
k2+2k+l2+k+l

2 = (−1)kl+ k(k+1)+l(l+1)
2 = (−1)klεkεl.

Since ρ∗ = Id on the cohomology, we get ϕ ⌣ ψ = (−1)klψ ⌣ ϕ.

We need to show ∂ρ = ρ∂ holds. For this let σ be an n-simplex. We compute

∂ρ(σ) = εn

∑
i

(−1)iσ|[vn,...v̂n−i...,v0]

ρ∂(σ) = ρ

∑
i

(−1)iσ|[v0,...v̂i...,vn]


= εn−1

∑
i

(−1)n−iσ|[vn,...v̂n−i...,v0].

One has εn = (−1)
n(n+1)

2 = (−1)
n(n−1)

2 +n = εn−1(−1)n. This implies, that ρ is a chain map.

We now construct a chain-homotopy to the identity. Let ∆ be an n-simplex. As in the construction of the
prism-operator we divide I × ∆ ⊂ RN+1 into (n + 1) simplices as follows. If{

0
}
× ∆ = [v0, . . . , vn] and{

1
}
× ∆ = [w0, . . . ,wn],

Then I × ∆ is the union of the simplices

[v0, . . . , vi,wi, . . . ,wn], i = 0, . . . ,n.

Let π : I × ∆→ ∆ be the projection. We define P : Cn(X)→ Cn+1(X) by

P(σ) =
n∑

i=0

(−1)iεn−i(σ ◦ π)|[v0,...,vi,wn,...,wi].
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We want to show ∂P + P∂ = ρ − Id. For this we compute

∂P(σ) = ∂

∑
i

(−1)iεn−iσ ◦ π|[v0,...,vi,wn,...,wi]


=

∑
j≤i

(−1)i+ jεn−iσ ◦ π|[v0,...v̂ j...,vi,wn...,wi]

+
∑
j≥i

(−1)n− j+1εn−iσπ|[v0,...,vi,wn,...ŵ j...,wi].

The terms with i = j yield

εnσ ◦ π|[wn,...,w0]︸            ︷︷            ︸
i=0

+
∑
i>0

εn−iσ ◦ π|[v0,...,vi−1,wn,...,wi]

+
∑
i<n

(−1)n+i+1εn−iσ ◦ π|[v0,...,vi,wn,...,wi+1] − σ ◦ π|[v0,...,vn].

Replacing i in the second sum by i − 1, using (−1)n+iεn−i+1 = −εn−i, one sees that these two sums cancel
each other. The remaining terms give ρ(σ) − σ. It remains to show that the terms with i , j give −P∂.
The definition yields

P∂(σ) =
∑
i< j

(−1)i+ jεn−i−1σ ◦ π|[vo,...,vi,wn,...ŵ j...,wi]

+
∑
i> j

(−1)i+ j−1εn−iσ ◦ π|[v0,...v̂ j...,vi,wn,...,wi]

By εn−i = (−1)n−iεn−i−1 the claim follows. □

* * *
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1.8 The Künneth formula

Definition 1.8.1. The tensor produkt of two abelian groups A,B is the group with generators a ⊗ b for
a ∈ A and b ∈ B and relations

(a + a′) ⊗ b = a ⊗ b + a′ ⊗ b,

a ⊗ (b + b′) = a ⊗ b + a ⊗ b′.

Examples 1.8.2. (a) For every abelian group one has Z ⊗ A � A.

(b) Q ⊗ (Z/nZ) = 0.

Definition 1.8.3. If R is a commutative ring with unit and if M,N are R-modules, then the R-module
M ⊗R N is defined as the quotient M ⊗N modulo the subgroup generated by all elements of the form

rm ⊗ n −m ⊗ rn, r ∈ R.

The group M ⊗R N becomes an R-module by

r(m ⊗ n) := rm ⊗ n.

Examples 1.8.4. (a) For every R-Modul M one has R ⊗R M �M.

(b) If R = Q(
√

2), then R ⊗R R � R, but R ⊗Q R is a 4-dimensional Q-vector space.

(c) If V,W are vector spaces over a field F with bases v1, . . . , vn and w1, . . . ,wn, then a basis for the vector
space V ⊗W is given by

(vi ⊗ w j) 1≤i≤n
1≤ j≤m

.

In particular, one has
dim

(
V ⊗W

)
=

(
dim V

)(
dim W

)
.

Definition 1.8.5. If A,B are algebras over R, then A ⊗ B becomes an R-algebra with product

(a ⊗ b)(a′ ⊗ b′) = aa′ ⊗ bb′.

Example 1.8.6. With this product the matrix algebra Mm(R) ⊗ Mn(R) is isomorphic to Mmn(R). An
isomorphism Mm(R) ⊗Mn(R) → Mmn(R) is given as follows: let A = (ai j) ∈ Mm(R) and B ∈ Mn(R). Then
one maps A ⊗ B to the matrix 

a1,1B . . . a1,mB
...

...

am,1B . . . am,mB

 ∈Mmn(R).

Definition 1.8.7. If the algebras A and B are graded, then there is a second product, the graded product,
defined by

(a ⊗ b)(a′ ⊗ b′) = (−1)deg(b) deg(a′)aa′ ⊗ bb′,

where the elements b and a′ are homogeneous. For arbitrary elements this product is extended bilinearly.
The ensuing algebra is called the graded tensor-product algebra.
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The external cup-product is defined as a map

Hk(X,R) ×Hl(Y,R) ×
−→ Hk+l(X × Y,R)

by (a, b) 7→ a× b = p∗1(a) ⌣ p∗2(b), here p1 and p2 are the coordinate projections of X×Y. The same formula
defines the relative version

Hk(X,A,R) ×Hl(Y,B,R) ×
−→ Hk+l(X × Y,A × B,R).

The external product is R-bilinear, hence it defines an R-linear map

ψ : H∗(X,R) ⊗R H∗(Y,R) → H∗(X × Y,R).

Theorem 1.8.8. (a) Let X and Y be topological spaces. Equip H∗(X,R)⊗R H∗(Y,R) with the structure of the
graded tensor-product algebra, then the external cup-product is an algebra homomorphism.

(b) If X is a CW-complex and Hk(Y,R) is a finitely generated free R-module for every k ≥ 0, then the external
cup-product is an isomorphism. For every n one has

Hn(X × Y,R) �
⊕
k+l=n

Hk(X,R) ⊗R Hl(Y,R).

Proof. (a) Let a, a′ ∈ H∗(X,R) and b, b′ ∈ H∗(Y,R) be homogeneous elements. Then one has

ψ
(
(a ⊗ b)(a′ ⊗ b′)

)
= (−1)deg(b) deg(a′)ψ(aa′ ⊗ bb′)

= (−1)deg(b) deg(a′)p∗1(aa′) ⌣ p2(bb′)

= (−1)deg(b) deg(a′)p∗1(a) ⌣ p∗1(a′) ⌣ p∗2(b) ⌣ p∗2(b′)

= p∗1(a) ⌣ p∗2(b) ⌣ p∗1(a′) ⌣ p∗2(b′)

= ψ(a ⊗ b)ψ(a′ ⊗ b′).

Therefore, ψ is an algebra homomorphism.

(b) We fix Y and write ψX for the algebra-homomorphism given by the external cup product. We write

Uk(X) =
⊕
i+ j=k

Hi(X,R) ⊗R H j(Y,R),

and
Vk(X) = Hk(X × Y,R).

note that since each H j(Y,R) is finitely generated and free, we get Uk(
⊔
ν Zν) =

∏
ν Uk(Zν) for any family

(Zν) of spaces. We show by induction on n, that ψXn : Uk(Xn) → Vk(Xn) is an isomorphism. For n = 0
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this is clear as ψpt : Uk(pt)→ Vk(pt) is an isomorphism. Now let n ≥ 1 and write

Xn/Xn−1 �
⊔
α

eα
/⊔

α

∂eα,

where eα � Dn, and the interiors are the cells of dimension n. As every eα is contractible, one gets

Uk

⊔
α

eα

 �∏
α

Uk(eα) �
∏
α

Uk(pt) � Vk

⊔
α

eα

 .
By induction, we can assume that ψ induces isomorphisms

Uk

⊔
α

∂eα

 � Vk

⊔
α

∂eα

 .
The exact sequence of the pair (

⊔
α eα,

⊔
α ∂eα) together with the five-lemma implies that ψ gives isomor-

phisms Uk(Xn/Xn−1) � Vk(Xn/Xn−1). The exact sequence of the pair (Xn,Xn−1) and the five lemma give
that ψ : Uk(Xn) � Vk(Xn) for all k,n. The fact that X is the union of the Xn induces Uk(X) � lim

←−
n

Uk(Xn)

and the same for Vk. The map ψ, being given by the external cup product, is compatible with these
projective limits and so ψ is an isomorphism on Vk(X) as it is so on Vk(Xn). □

Example 1.8.9. Let Rn/Zn � Tn be the n=dimensional torus. Let α be a generator of the free R-module
H1(T,R) and let α j = p∗j(α) ∈ H1(Tn,R), where p j : Tn

→ T is the projection onto the j-th factor. We claim
that Hk(Tn,R) is the free R-module generated by all elements αi1 ⌣ . . . ⌣ αik , where 1 ≤ i1 < · · · < ip ≤ n.

In particular it follows Hk(Tn,R) � RN with N =

 n
k

. This indeed follows from the Künneth formula

and an induction on n.

* * *
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1.9 Orientations

Lemma 1.9.1. Let n ∈N and let M be an n-dimensional manifold and x ∈M. Then

Hk

(
M,M ∖ {x}

)
�

Z k = n,

0 otherwise.

Proof. The point x has an open neighbourhood U � Rn and by excision we get Hk(M,M ∖ {x}) �
Hk(Rn,Rn ∖ {0}). We first consider the case n ≥ 2. Note thatRn ∖ {0} is homotopy equivalent to Sn−1. The
long exact sequence of relative Homology states

· · · → Hk

(
Rn ∖ {0}

)
→ Hk

(
Rn

)
→ Hk

(
Rn,Rn ∖ {0}

) δ
−→ Hk−1

(
Rn ∖ {0}

)
→ . . .

· · · → H1

(
Rn

)
︸  ︷︷  ︸

0

→ H1

(
Rn,Rn ∖ {0}

)
→

H0

(
Rn ∖ {0}

)
︸         ︷︷         ︸

Z

�
−→ H0

(
Rn

)
︸  ︷︷  ︸
Z

→ H0

(
Rn,Rn ∖ {0}

)
→ 0,

from which the claim can be read off. In the case n = 1 we have H1

(
R ∖ {0}

)
� Z2 and the map to H0(R)

is surjective, hence the claim follows in this case, too. □

Definition 1.9.2. Let M be an n-dimensional manifold. For a subset A ⊂M we write

Ac =M ∖ A

and call this set the complement of A.

Lemma 1.9.3. Let B ⊂ A ⊂ X and suppose that B is a deformation retract of A. Then the inclusion α : Ck(B) ↪→
Ck(A) induces a chain map β : Ck(X,B)→ Ck(X,A) and the latter induces an isomorphism

Hk(X,B) �
−→ Hk(X,A)

for every k.

Proof. We get a commutative diagram with exact rows

0 // Ck(B) //

α

��

Ck(X) //

=

��

Ck(X,B) //

β

��

0

0 // Ck(A) // Ck(X) // Ck(X,A) // 0
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The commutativity of this diagram implies that these give commutative diagrams on homology

. . . // Hk(B) //

α∗

��

Hk(X) //

=

��

Hk(X,B) //

β∗

��

Hk−1(B)

α∗

��

// . . .

. . . // Hk(A) // Hk(X) // Hk(X,A) // Hk−1(A) // . . .

As α∗ is an isomorphism, the five-lemma implies that β∗ is, too. □

Definition 1.9.4. A local orientation at the point x ∈ M is the choice of a generator of the group
Hn(M,M ∖ {x}) = Hn(M, {x}c).

Given a choice of a local orientation at every point x. For any two x, y in a chart U one chooses a ball B
in U � Rn which contains x and y, then Bc is a deformation retract of {x}c as well as {y}c and so there are
canonical isomorphisms

Hn(M, {x}c) � Hn(M,Bc) � Hn(M, {y}c).

If these isomorphisms map the orientation at x to the one at y, then the choice of local orientations is
called compatible.

An orientation is a compatible choice of local orientations. An orientation does not necessarily exist. If
it does, we call the manifold M orientable. If M is orientable and connected, there are exactly 2 different
orientations.

Proposition 1.9.5. Let M be a manifold. There exists an orientable covering M̂→M of degree 2.

In particular, if M is connected and the fundamental group Γ has no subgroup of index 2, then M is orientable.

Proof. Let
M̂ =

{
τx : x ∈M

}
be the set of all local orientations of points x ∈ M. The covering map p : M̂→ M ist τx 7→ x. For a point
τx ∈ M̂ and a chart (U, ϕ) around the point x ∈ M, let V be the set of all τy, y ∈ U such that τx and τy

induce the same element in Hn(M,Uc). By the uniqueness of τy the map τy 7→ ϕ(y) is a chart on V, which
makes M̂ a covering manifold of M. This manifold is orientable, since τx ∈ M̂ can also be viewed as an
orientation in Hn

(
V,V ∖ {τx}

)
.

The addendum follows as a 2-sheeted connected covering is the quotient of the universal covering M̃ by
a subgroup of Γ of index 2. □

* * *
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1.10 Poincaré duality

Definition 1.10.1. Let R be an abelian group. Let

Ck(X,R) = Ck(X) ⊗ R.

Then ∂⊗ Id makes this a chain complex and we define its homology to be the homology with coefficients
in R,

Hk(X,R) = Hk

(
C•(X,R)

)
.

Definition 1.10.2. Let p : Ω → X be a continuous map. A section to p is a continuous map s : X → Ω
such that p(s(x)) = x for every x ∈ X.

If a section exists, p must be surjective.

Examples 1.10.3.

• The projection p : Rn+k
→ Rn has a natural section given by the embedding s : Rn ↪→ Rn+k.

• The map p : T → T, z 7→ z2 does not have a section, as that would entail the existence of a
continuous square root.

Definition 1.10.4. Let M be an n-dimensional manifold and let MZ denote the disjoint union of all
Hn(M, {x}c) as x runs through M. Then, as M̂ ⊂MZ, which consists of generators only, the set MZ carries
a natural topology, making the map MZ →M a covering of infinite degree.

Lemma 1.10.5. Let M be a manifold of dimension n and let A ⊂M be a compact subset.

(a) If x 7→ αx is a section of the covering space MZ → M, then there exists a uniquely determined class
αA ∈ Hn(M,Ac), whose image in Hn(M, {x}c) is αx for every x ∈ A.

Note that this does not claim the existence of a section, but only the “globalisation” of a given section.

(b) Hk(M,Ac) = 0 for all k > n.

Proof. (1) We observe that if the lemma holds for compact sets A,B and A ∩ B, then it holds for A ∪ B.
First we consider the case k ≥ n. The relative Mayer-Vietoris sequence gives:

0→ Hk

(
M, (A ∪ B)c

) ϕ
−→ Hk

(
M,Ac

)
⊕Hk

(
M,Bc

)
ψ
−→ Hk

(
M, (A ∩ B)c

)
.

The zero upfront comes from the assumption that Hk+1

(
M, (A ∩ B)c

)
= 0. One has ϕ(α) = (α, α) and

ψ(α, β) = α − β. For k > n, the middle term is zero by assumption, so then we have Hk

(
M, (A ∪ B)c

)
= 0.

This proves (b).

For (a) let x → αx be a section. The hypotheses gives unique classes αA ∈ Hn(M,Ac), αB ∈ Hn(M,Bc)
and αA∩B ∈ Hn

(
M, (A ∩ B)c

)
having image αx for all x in A,B,A ∩ B respectively. By uniqueness, the

images of αA and αB in Hn

(
M, (A ∩ B)c

)
both equal to αA∩B. The exactness of the sequence implies that
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(αA, αB) = ϕ(αA∪B) for a uniquely determined αA∪B ∈ Hn(M, (A ∪ B)c). This then means that αA∪B has
image αx at every x ∈ A ∪ B as required. This finishes the proof of (1).

(2) We now reduce to the case M = Rn. The compact set A can be written as a union A1 ∪ · · · ∪Am, where
each Ak is contained in a chart U � Rn. We repeatedly apply part 1) to reduce the claim to the single A j

or intersections of those. By excision, we then can replace M by Rn.

(3) Let M = Rn and A a finite union of convex compact sets A1, . . . ,Am, then, as before, we reduce to the
case m = 1. When A is convex, then {x}c deformation retracts to Ac for every x ∈ A.

(4) Let now A ⊂ Rn be an arbitrary compact set. Let α ∈ Hk(Rn,Ac) be represented by a relative cycle
z and let C ⊂ Ac be the union of the images of the singular simplices in ∂z. Since C is compact, it has
a positive distance δ from A. We cover A by finitely many closed balls which do not meet C. Let K
be the union of these balls, then z defines an element αK in Hk(Rn,Kc), mapping to α ∈ Hk(Rn,Ac). If
k > n, then Hk(Rn,Kc) = 0, so αK = 0, hence α = 0 and so Hk(Rn,Ac) = 0. If k = n and αx is zero in
Hn(Rn, {x}c) for all x ∈ A, then the same is true for all x ∈ K, as K is a union of closed balls B meeting A and
Hn(Rn,Bc)→ Hn(Rn, {x}c) is an isomorphism for x ∈ B. Then by 3), αK = 0, and so is α. This finishes the
uniqueness in (a). The existence is clear, as we can choose αA to be the image of αB for any ball B ⊃ A. □

Theorem 1.10.6. Let M be a connected compact connected manifold of dimension n.

(a) If M is orientable, the map Hn(M)→ Hn(M, {x}c) � Z is an isomorphism for every x ∈M.

(b) If M is non-orientable, the group Hn(M) is zero.

(c) Hk(M) = 0 for k > n.

Proof. In Lemma 1.10.5, we can choose A = M. Part (c) of the theorem is immediate by part (b) of
the lemma. Finally, let Γ(M) be the set of sections of MZ → M. Then Γ(M) is a Z-module. There
is a map Hn(M) → Γ(M) sending a class α to the section x 7→ αx = the image of α under the map
Hn(M)→ Hn(M, {x}c). By part (a) of the lemma, this homomorphism is an isomorphism, soΓ(M) � Hn(M).
We claim that for a given x0 ∈M the evaluation map

δx0 : Γ(M)→ Hn(M, {x0}
c) � Z

s 7→ s(x0)

is an isomorphism. For injectivity, let s ∈ Γ(M) with s(x0) = 0. Choose an orientation, i.e., a compatible
isomorphism ϕx : Hn(M, {x}c) � Z. Let k ∈ Z and let Mk ⊂ M be the set of all x ∈ M with ϕx(s(x)) = k.
Let x ∈ Mk. By compatibility, we have U ⊂ Mk for any chart U around x. Therefore, Mk is open. Its
complement Mc

k =
⋃

l,k Ml is open, too. As M is connected and M0 , ∅, we get M = M0, so s = 0 and δx0

is injective.

For surjectivity, note that orientability of M implies that δx0 (Γ(M)) contains a generator of Hn(M, {x0}) � Z.
The theorem is proven. □



Topologie 27

Definition 1.10.7. If M is compact, connected and orientable, the theorem implies that there is a class
ω ∈ Hn(M) such that ω induces a generator of Hn(M, {x}c) for one, and hence every, x ∈M. Such a class ω
is called a fundamental class. It is uniquely determined up to sign.

Definition 1.10.8. For a ring R, a space X and indices k ≥ l we define an R-bilinear pairing

⌢ : Ck(X,R) × Cl(X,R)→ Ck−l(X,R)

(σ, α) 7→ α
(
σ|[v0,...,vl]

)
σ|[vl,...,vk]

Lemma 1.10.9. One has
∂(σ ⌢ α) = (−1)l

(
∂σ ⌢ α − σ ⌢ dα

)
Therefore the product of a cycle and a cocycle is a cycle, so the cap product induces a bilinear map

Hk(X,R) ×Hl(X,R)→ Hk−l(X,R).

Proof. By degree reasons, both sides are zero if k = l. So we assume k ≥ l + 1. Setting σ j = σ[v0,...̂v j...,vk] we
compute

∂σ ⌢ α =
k∑

j=0

(−1) jσ j ⌢ α

=

l∑
j=0

(−1) jα
(
σ|[v0,...̂v j...,vl+1]

)
σ|[vl+1,...,vk]

+

k∑
j=l+1

(−1) jα
(
σ|[v0,...,vl]

)
σ[vl,...̂v j...,vk],

σ ⌢ dα =
l+1∑
j=0

(−1) jα
(
σ|[v0,...̂v j...,vl+1]

)
σ|[vl+1,...,vk],

∂
(
σ ⌢ α

)
=

k∑
j=l

(−1) j−lα
(
σ|v0,...,vl]

)
σ|[vl,...̂v j...,vk].

This implies the claim. □

Theorem 1.10.10. Let M be a compact connected orientable manifold and let ω ∈ Hn(M) be a fundamental
class. Then the map

D : Hk(M)→ Hn−k(M),

α 7→ ω ⌢ α

is an isomorphism for every k.

Proof. The proof is involved and shall not be given here, as this lecture has other goals. At this point, it is
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sufficient to understand, how the structure of manifold and the notion of orientation go into the duality
theorem. The details of the proof are technical and one learns little from them. □

* * *
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1.11 De Rham and group cohomology

Definition 1.11.1. Let M be a smooth manifold and let Ωk(M) be the real vector space of smooth k-
differential forms. The exterior differential dk : Ωk

→ Ωk+1 satisfies dk+1dk = 0, so one can define the de
Rham Cohomology of M as

Hk
dR(M) := ker(dk)/ im(dk−1).

Let σ : ∆k
→M be a smooth map. Then a k-differential form ω can be integrated over the image of σ, we

denote this as ∫
σ
ω.

We get a bilinear map
Ck(M) ×Ωk(M)→ R,

which a priori is only defined for smooth elements on Ck(X), but can be extended by approximation.
Then Stoke’s Theorem says ∫

σ
dω =

∫
∂σ
ω.

This implies that the above pairing yields a bilinear pairing

Hk(M) ×Hk
dR(M)→ R.

One can show that, if M is orientable, this pairing induces an isomorphism

Hk
dR(M) � Hk(M)∗.

Where the right hand side denotes the real vector space of all group homomorphisms from Hn(M) to
(R,+).

The deRham cohomology gives rise to Lie-algebra cohomology, which is connected to group cohomology
of Lie groups. For complex manifolds one can decompose the exterior differential into “holomorphic”
and “anti-holomorphic” parts, which gives rise to the Dolbeault cohomology.

Group cohomology

Definition 1.11.2. For a group Γ, one defines the group cohomology as the cohomology of its classifying
space

Hk(Γ,R) = Hk(BΓ,R).

This looks a bit roundabout, but there is a host of purely algebraic definitions of group cohomology.
I recommend the book by Brown Cohomology of groups for a taster. The group cohomology of Galois
groups plays an important role in number theory.

Later we shall define group cohomology from a different viewpoint and also with more general coeffi-
cients, meaning that we shall replace the group R with a Γ-module.

* * *
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* * *
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2 Categories and functors

2.1 Categories

Definition 2.1.1. A category is a triple (Ob,Hom, ◦) where Ob is a class, the elements of which are called
objects of the category. Hom is a family of sets (Hom(X,Y))X,Y∈Ob. The elements of Hom(X,Y) are called
morphisms from X to Y. Finally, ◦ is a family of maps: for any three objects X,Y,Z:

Hom(X,Y) ×Hom(Y,Z)→ Hom(X,Z)

( f , g) 7→ g ◦ f ,

such that

• g ◦ ( f ◦ h) = (g ◦ f ) ◦ h whenever the morphisms are composable.

• For every object X there is a morphism 1X ∈ Hom(X,X) with f ◦ 1X = f and 1X ◦ g = g for all f , g
for which the respective composition exists.

Remark 2.1.2. (a) The unit morphism is uniquely determined, for let 1′X be a second one, then

1X = 1X1′X = 1′X.

(b) As in the case of maps, the composition changes order, so g ◦ f has to be read as “g after f ”.

Examples 2.1.3. (a) SET is the category of sets and maps with the usual composition.

(b) AB is the category of abelian groups and group homomorphisms.

(c) RING is the category of rings with unit element (not necessarily commutative). Morphisms are
unital ring homomorphisms ϕ : R→ S with ϕ(1R) = 1S.

(d) TOP is the category of topological spaces and continuous maps.

(e) TOP∗ is the category of pointed spaces, i.e., objects are pairs (X, x0) where X is a topological space
and x0 ∈ X a point. A morphism from (X, x0) to (Y, y0) is a continuous map f : X→ Y with f (x0) = y0.

(f) Let C be a category. Then Copp is the opposite category in which all arrows are turned artound. The
category Copp has the same objects as C, but

HomCopp (X,Y) = HomC(Y,X).

(g) A group can be viewed as a category with only one object. This means that for a group G one defines
a category G with only one object X and HomG(X,X) := G. The composition in this category is the
one given by the group structure.

(h) Let (A,≥) be a partially ordered set. Then one defines a category with Ob = A, by saying that
Hom(x, y) has exactly one element, if x ≤ y and Hom(x, y) = ∅ otherwise.
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(i) The homotopy category [TOP]: The objects are topological spaces and the morphisms are free
homotopy classes [ f ] of continuous maps (See definition below).

(j) LetA andB be categories. The product categoryA×B has as object class the class of all pairs (X,Y),
where X ∈ A and Y ∈ B. Further one has

HomA×B
(
(A,B), (X,Y)

)
= Hom(A,X) ×Hom(B,Y)

and the composition is given coordinate-wise.

Definition 2.1.4. Two continuous maps f , g : X → Y between topological spaces are called (freely)
homotopic, if there exists a continuous map h : I × X→ Y, where I = [0, 1] is the unit interval, such that

h(0, x) = f (x), h(1, x) = g(x)

for every x ∈ X. The map h is called a homotopy from f to g.

Examples 2.1.5. • Any map f : X → R is homotopic to the constant map g(x) = 0. A homotopy is
given by

h(s, x) = (1 − s) f (x).

• For k ∈ Z let fk : S1
→ S1 be defined as fk(z) = zk. then fk and fl are not homotopic, if k , l.

Definition 2.1.6. We like to visualise morphisms by diagrams like this one:

X
f
//

h
��

Y

g
��

Z

We say, that a diagram is commutative, if, any two ways to get from one node A to another node B,
must coincide. So the above diagram is commutative, if and only if the morphism h ∈ Hom(X,Z) is the
composition of f and g.

Definition 2.1.7. A morphism f : X → Y in a category is called an isomorphism, if there exists a
morphism g : Y→ X with

g ◦ f = 1X and f ◦ g = 1Y.

Examples 2.1.8. (a) The isomorphisms in the category of sets are the bijections.

(b) Isomorphisms in the category of groups are the group isomorpisms.

(c) Isomorphisms in the category TOP are the homeomorphisms.

(d) An isomorphism in the homotopy category are called homotopy equivalence.

Definition 2.1.9. LetA be a category. A subcategory is a category B such that Ob(B) ⊂ Ob(A), one has

HomB(X,Y) ⊂ HomA(X,Y)
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for all X,Y ∈ B, and the composition and units in B are the ones of A. A subcategory B is called a
full subcategory, if for any two X,Y ∈ B one has HomB(X,Y) = HomA(X,Y). Every subclass of Ob(A)
defines exactly one full subcategory.

Example 2.1.10.

The category of finite groups is a full subcategory of the category GRP of all groups.

Definition 2.1.11. A full subcategoryA′ ⊂ A is called dense, if for every X ∈ A there is a X′ ∈ A′, such
that X′ is isomorphic to X.

Example 2.1.12. Let K be a field andA the category of all finite-dimensional K-vector spaces and linear
maps. Then, as you learn in Linear Algebra, the full subcategoryA′, whose objects are {0},K,K2,K3, . . .

a dense subcategory ofA.

* * *
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2.2 Epis, Monos and products

Definition 2.2.1. A morphismus f : X → Y is called an epimorphism or epi, if for any two morphisms
α, β : Y→ Z the following is true: if in the (non-cummutative) diagram

X
f
// Y

α //

β
// Z

the upper and lower paths from X to X agree, then one has α = β. In other words, f is an epi, if the
commutativity of a diagram of the form

X
f
//

f
��

Y

α

��

Y
β
// Z

implies α = β. Yet another way to say this is, that f is an epi iff it has the right-cancellation property:

α ◦ f = β ◦ f ⇒ α = β

holds for all morphisms α and β which are composable with f .

Examples 2.2.2. (a) In SET the epis are exactly the surjective maps.

(b) In the category of Hausdorff spaces and continuous maps the epis are exactly the dominant maps,
i.e., maps with dense image. (Exercise)

(c) In the category of groups the epis are exactly the surjective group homomorphisms. (Exercise)

(d) In the category RING the inclusion morphism Z→ Q is an epi. (Exercise)

Definition 2.2.3. A morphism f : X→ Y is called a monomorphism or mono, if for any two morphisms
α, β : V → X the following is true: if in the (non commutative) diagram

V
α //

β
// X

f
// Y

the upper and the lower path from V to Y agree, then one has α = β. This means, f is a mono, if the
commutativity of any given diagram of the form

V α //

β

��

X

f
��

X
f
// Y

implies α = β.

Examples 2.2.4. (a) A map in SET is mono if and only if in is injective.

(b) A morphism f is mono in Copp iff f is an epi in C.
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Products and coproducts

Definition 2.2.5. Let X,Y be objects of a category C. A product of X and Y is an object P together with
morphisms p1 : P → X and p2 : P → Y, such that the following universal property holds: For every
object Z and morphisms p : Z → X and q : Z → Y there is exactly one morphism Z → P, such that the
diagram

P

�� ��

X Y

Z

__ ??∃!

OO

commutes. This means that the morphisms from Z to X and Y factor over the universal morphisms from
P to X and Y.

If it exists, the product is uniquely determined up to isomorphy. It is written as P = X × Y. The maps
X × Y→ X and X × Y→ Y are called the projections of the product.

The universal property yields a bijection

Hom(Z,X × Y) � Hom(Z,X) ×Hom(Z,Y).

Definition 2.2.6. A Coprodukt of X and Y is a product in Copp.

This means, it is an object K together with morphisms i1 : X→ K and i2 : Y→ K, such that the following
universal property holds: For every object Z and Morphismen p : X → Z and q : Y → Z there is exactly
one morphism K→ Z, such that the diagram

K

∃!

��

X

��

??

Y

__

��

Z

commutes. It if exists, the coproduct is uniquely determined. We write it as K = X
∐

Y or C = X ⊕ Y.
The universal property gives natural bijections:

Hom(X ⊕ Y,Z) � Hom(X,Z) ×Hom(Y,Z).

Examples 2.2.7. (a) In the category of sets products and coproducts exist. The product is given by the
cartesian product , the coproduct is the disjoint union.

(b) The category of groups allows for products and coproducts. The product is the cartesian product
and the coproduct is the free product of groups.
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(c) In the category RING of rings with one, the product exists and is given by the cartesian product. The
coproduct is the tensor product over Z.

(d) In the category FIELD of fields neither product, nor coproduct exist. (Take two fields with different
characteristics.)

(e) Using partially ordered sets, i.e., Example 2.1.3, one easily constructs categories with products, but
not with coproducts and vice versa.

* * *
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2.3 Pullbacks and pushouts

Definition 2.3.1. A commutative diagramm

P //

��

X

α

��

Y
β
// Z

is called cartesian, or a cartesian square, if for every commutative diagram

Q //

��

X

α

��

Y
β
// Z

there is exactly one arrow from Q to P such that the diagram

Q

��

��

''P //

��

X

α

��

Y
β
// Z

commutes. In this case, P is called the pullback of X and Y over Z. A pullback is also called a fiber
product. This property uniquely determines the pullback up to isomorphy. We say that in a category
pullbacks exist, if every diagram of the form

X

α

��

Y
β
// Z

can be extended to a cartesian square. One writes P = X ×α,β Y or, if it is clear, which arrows α and β are
being used, one writes P = X ×Z Y.

Reversing all arrows, a Pushout in C is a pullback in Copp. More precisely, a commutative diagram

A
f
//

g
��

B

��

C // S
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is called co-cartesian, if for every commutative diagram

A
f
//

g
��

B

��

C // Z

there is exactly one arrow from S to Z, such that the diagram

A
f
//

g
��

B

��

��

C //

''

S

��

Z

commutes. In this case, S is called the pushout of B and C over A. A pushout is also called a cofiber
product. If a pushout exists, it is uniquely determined up to isomorphy. One writes S = B ⊕ f ,g C or, if it
is clear, which arrows are being used, one writes S = B ⊕A C.

Examples 2.3.2. (a) In the category of sets the pullback is given by

X ×α,β Y =
{
(x, y) ∈ X × Y : α(x) = β(y)

}
.

The structure maps to X and Y are given by the projections of the cartesian product.

(b) Let there be given a diagram of sets and maps

Z
f
//

g
��

Y

X

Then the co-fiber product C in SET is given by the set

C = (X ⊔ Y) / ∼,

where ∼ is the equivalence relation on the disjoint union generated by

f (z) ∼ g(z)

for all z ∈ Z.

(c) In the category RING of rings with unit, the pullback is just the same as in SET, but the pushout
product is the tensor product.

(d) In the category of groups, the pushout exists and equals the amalgam.
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Lemma 2.3.3. If the diagram

F
g
//

��

B

��

A
f
// C

is cartesian and f is mono, then so is g. If the diagram

C δ //

��

A

��

B
γ
// P

is co-cartesian and if δ is epi, then so is γ.

Proof. Let α, β : Z → F be two morphisms, such that h = gα = gβ. We have to show that α = β holds.
Consider the diagram

Z
β

��α
''

h′

""

h

��

F
g
//

η

��

B

��

A
f
// C

The identity gα = gβ implies fηα = fηβ and, since f in injective, we get h′ = ηα = ηβ, so the diagram
commtues. As the diagram we started with, is cartesian, there are, for given h and h′ exactly one arrow
from Z to F, making the diagram commute, so weg get α = β.

The claim for co-cartesian diagrams follows by reversing all arrows, i.e., working in Copp. □

* * *
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2.4 Functors and natural transformations

Definition 2.4.1. A functor from a category A to a category B is a pair (F,F ), where F : Ob(A)→ Ob(B)
is a map and F is a family of maps FX,Y : HomA(X,Y)→ HomB(F(X),F(Y)) such that

• FX,X(1X) = 1F(X),

• F( f ◦ g) = F( f ) ◦ F(g),

where in the second point, we have left out the indices with F.

Examples 2.4.2. (a) The forgetful functor F : AB→ SET, which maps a group to its underlying set and
group homomorphisms to the maps os sets.

(b) The homotopy functor F from the category TOP to the homotopy category [TOP]. It maps every
space X to itself and a continuous map f to its homotopy class [ f ].

(c) Considering groups as categories, functors between them are nothing else but group homomor-
phisms.

Definition 2.4.3. A functor F : C → Dopp is also called a contravariant functor from C toD.

Example 2.4.4. Let K be a field and VECT(K) the category of K-vector spaces and linear maps. The
dualising V 7→ V∗ = Hom(V,K) is a contravariant functor from VECT(K) to itself.

Definition 2.4.5. A functor F : A→ B is an isomorphism of categories, if there is a functor G : B → A,
such that

FG = IdB und GF = IdA.

Definition 2.4.6. A functor F : A→ B is called faithful, if for any two X,Y ∈ A, the map

F : HomA(X,Y)→ HomB(F(X),F(Y))

is injective.

The functor F is called full, if for any two X,Y ∈ A the map

F : HomA(X,Y)→ HomB(F(X),F(Y))

is surjective.

The functor is called fully faithful, if it is both, full and faithful.

Example 2.4.7. The forgetful functor AB→ SET is faithful, but not full.

Lemma 2.4.8. A functor F : A→ B is an isomorphism if and only if F is fully faithful and bijective on the object
classes.

Proof. This is clear. □
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Natural transformations

Definition 2.4.9. Let F,G : A → B be functors. A natural transformation t : F → G is a family (tX)X∈A

of morphisms
tX : F(X)→ G(X),

such that for every arrow f : X→ Y inA the diagram

F(X)
F( f )
//

tX

��

F(Y)

tY

��

G(X)
G( f )
// G(Y)

commutes. One can compose natural transformations t : F → G and s : G → H and gets st : F → H. A
natural transformation t : F → G is called a natural isomorphism, if there is a natural transformation
s : G→ F, such that st = IdF and ts = IdG. If t is a natural isomorphism, then every arrow tX : F(X)→ G(X)
is an isomorphism.

Examples 2.4.10. (a) Every group is naturally isomorphic to its opposite group.

Let G be a group. The opposite group Gopp consists of the same set with the composition

a ·opp b = ba.

Let F be the functor F : GRP → GRP of the category of groups in itself, which maps every group to
its opposite.

The “naturally” part in the above assertion means that there is a natural isomorphism t : Id �
−→ F.

Proof. For every group G the map

tG : G→ Gopp,

x 7→ x−1

is an isomorphism. If ϕ : G→ H is a group homomorphism, then

ϕ(tG(x)) = ϕ(x−1) = ϕ(x)−1 = tH(ϕ(x)).

Therefore t is a natural transformation from Id to F, but also the other way round, from F to Id and
because of

tGopp tG = IdG

the transformation t is an isomorphism. □

(b) Let K be a field and let F : VECT(K)→ VECT(K) be the functor, which sends each vector space V to
its bidual F(V) = V∗∗ zuordnet. Then the map

tV : V → V∗∗

v 7→ δv,
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with δv(α) = α(v) is a natural transformation t : Id→ F.

* * *
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2.5 Equivalence of categories

Definition 2.5.1. A functor F : A→ B is an equivalence of categories, if there exists a functor G : B → A,
such that

FG � IdB and GF � IdA.

Every isimorphy of categories is an equivalence of categories.

Example 2.5.2. Let K be a field and letA be the category of all finite-dimensional K-vector spaces. Then
F : A→A, V 7→ V∗∗ is an equivalence of categories.

Theorem 2.5.3. (a) A functor F : A→ B is an equivalence of categories if and only if it is fully faithful and
has dense image.

(Recall that a subcategoryA′ ⊂ A is dense if every X ∈ A is isomorphic to some X′ ∈ A′.)

(b) Two categories A,B are equivalent if and only if there are dense subcategories A′ ⊂ A and B′ ⊂ B,
which are isomorphic,A′ � B′.

Proof. (a) Let F be an equivalence of categories with quasi-inverse G : B → A and let t : IdA → GF be
the natural isomorphy. Then for any two X,Y ∈ A the map

Hom(X,Y) GF
−→ Hom(GF(X),GF(Y))

tY◦·◦t−1
X

−→ Hom(X,Y)

is the identity, which implies that F is faithful. Since further t−1
Y and tX are isomorphisms, it follows

that G is full. By symmetry in G and F it follows that F is full as well. Let s : IdB → FG be the natural
isomorphy. For Z ∈ B the arrow sZ : Z→ F(G(Z)) is an isomorphism, so F has dense image.

Conversely, let F : A → B be fully faithful with dense image. For every Z ∈ B choose an X ∈ A and an
isomorphism νZ : Z �

−→ Z′ = F(X), where we assume that Z′ = Z and νZ = IdZ, if Z lies in the image
already. Then set G(Z) = X. For Z,W ∈ B define G : Hom(Z,W)→ Hom(G(Z),G(W)) by

Hom(Z,W)
νW◦·◦ν−1

Z
−→ Hom(Z′ = F(X),W′ = F(Y)) F−1

−→ Hom(X = G(Z),Y = G(W)).

Then G is a functor, quasi-inverse to F.

(b) Let F : A → B be an equivalence with quasi-inverse G : B → A. In every isomorphism class [X] of
objects inA choose an object X ∈ im(G), which is possible, as the image is dense by (a). LetA′ be the full
subcategory of these chosen objects. Then A′ is dense in A by construction. Let B′ = F(A′). We claim
that B′ is dense B and that F|A′ is an isomorphism betweenA′ and B′.

Let Y ∈ B. Then there exists X ∈ A such that F(X) is isomorphic to Y. There exists X′ ∈ A′ such that
X � X′ and thus, as F is fully faithful, we get F(X′) � F(X) � Y, henceB′ is dense inB. For the isomorphy,
first, as any two objects X,Y inA′ are non-isomorphic, it follows that F(X) � F(Y), because, if F(α) is an
isomorphism between F(X) and F(Y), then there exists an inverse F(β). Then F(αβ) = F(α)F(β) = IdF(Y),
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so αβ = IdY and the same for βα, hence α is an isomorpism. This means that F is a bijection from Ob(A′)
to Ob(B′). It is also bijective on each Hom set, therefore the corresponding inverse maps constitute an
inverse functor.

Now for the converse assume that A′ and B′ exist and that F′ : A′ → B′ is an isomorphism. For each
X ∈ A fix an isomorphism αX : X → X′ for some object X′ ∈ A′ in a way that if X already lies in A′,
then X′ = X and αX = IdX. Set F(X) = F′(X′) for every X ∈ A and for any two X,Y ∈ A and any
τ ∈ HomA(X,Y) let

F(τ) = F′(αY ◦ τ ◦ α
−1
X ).

Then F is a functor and the same construction on the other side, using F−1 yields a quasi-inverse G. □

* * *



Topologie 45

2.6 Additive categories

Definition 2.6.1. An object T of a category C is called terminal object, if for every X ∈ C there is exactly
one arrow X→ T. If it exists, it is uniquely determined up to isomorphy.

Examples 2.6.2. (a) In AB the trivial group is terminal.

(b) In TOP the one-point space
{
x0

}
is terminal.

Definition 2.6.3. An object I of C is called initial object, if for every X ∈ C there is exactly one morphism
I→ X. If it exists, it is uniquely determined up to isomorphy.

Examples 2.6.4. (a) In AB the trivial group is also initial.

(b) In TOP the empty set is initial. In the category TOP,∅ there is no initial object. In TOP∗ the one point
space is initial.

(c) In RING the ring Z is initial, whereas the Zero-ring is terminal.

Definition 2.6.5. A zero object in a category is an object X0 which is both, initial and terminal. For any
two objects X,Y ∈ C there then is exactly one morphism 0, which factors through the zero object. This
morphism is called the zero morphism.

X 0 //

  

Y

X0

??

A zero object is written as 0. A category which contains a zero object is called a pointed category. Let
f : X→ Y be a morphism in a pointed category. A kernel for f is a morphism α : K→ X such that

• fα = 0 and

• every morphism g : Z→ X with f g = 0 factors in a unique way through α, i.e., there is exactly one
morphism ψ : Z→ K with g = αψ.

Z

g
��

∃!ψ

��

0

��

K α // X
f
// Y

Example 2.6.6. In AB for a given morphism f : A → B the embedding of the subgroup f−1(0) in A is a
kernel.

Note that if C is pointed, then Copp is pointed, too.

Definition 2.6.7. Let C be pointed, then cokernel for f : X→ Y is a morphism γ : Y→ C such that

• γ f = 0 and
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• every norphism g : Y→ Z with g f = 0 factors in a unique way through γ, i.e., there is exactly one
morphism ϕ : C→ Z with g = ϕγ.

Z

X

0
??

f
// Y

g

OO

γ
// C

∃!ϕ
__

Lemma 2.6.8. Let C be a pointed category. A kernel is always a mono and a cokernel is always an epimorphism.

Proof. Let k : K → X be a kernel for f : X → Y. Let α, β : Z → K morphisms with kα = kβ. We have to
show that α = β. We have the commutative diagram

K k // X
f
// Y

Z

α

OO

β

OO

F

??

The arrow F := kα = kβ has the property that f F = 0, hence it factors uniquely through k, which means
that α = β. The second assertion follows by dualizing, since a kernel in Copp is a cokernel in C. □

Examples 2.6.9.

• Let F be a field. The category VECT(F) of F-vector spaces and linear maps is pointed, with zero
object being the zero space. Kernels and cokernels do exist and are the usual kernels and cokernels
as in Linear Algebra.

• The category of pointed sets. The objects are pairs (X, x0), where X is a set and x0 ∈ X a point.
Morphisms from (X, x0) to (Y, y0) are maps f : X → Y with f (x0) = y0. This category has a zero
object: the one-point set {x0}. For a map f : (X, x0) → (Y, y0) a kernel exists and is given by the
inclusion map k : f−1(y0) ↪→ X. A cokernel also exists and equals the projection onto C = Y/ f (X),
which means that f (X) is collapsed to a point. More precisely, Y/ f (X) equals Y/ ∼, where ∼ is the
equivalence relation generated by f (x) ∼ f (x′) for every two x, x′ ∈ X.

Remark 2.6.10. For an object X of a category C let CX be the class of all arrows f : Z→ X with target X.
On CX we have an equivalence relation, where we say that f : Z → X and g : V → X are equivalent, if
there exists an isomorphism α : V → Z such that the diagram

Z
f
// X

V
g

??

α

OO

commutes. The universal property implies that a kernel is uniquely determined up to this equivalence.
Therefore, it makes sense to speak of the kernel as the equivalence class [k] of one given kernel k. The
same goes for the cokernel.

Definition 2.6.11. An additive category is:

• a pointed category Cwith
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• an abelian group structure + on HomC(X,Y) for every pair (X,Y) of, such that the composition

◦ : Hom(X,Y) ×Hom(Y,Z)→ Hom(X,Z)

is bilinear.

• Further we demand, that for any two objects X,Y a product X × Y and a coproduct X ⊕ Y exists.

In an additive category the zero-morphism 0 ∈ Hom(X,Y) always equals the zero in the additive
group Hom(X,Y), because the zero-morphism is the only element of the image of the bilinear map
◦ : Hom(X, 0) ×Hom(0,Y)→ Hom(X,Y).

Examples 2.6.12.

• For a ring R, the category MOD(R) is additive.

• For a field F the category VECTev(F) of even dimensional vector spaces of is additive.

* * *



Topologie 48

2.7 Abelian categories

Definition 2.7.1. An additive category C is called abelian category, if:

(a) For every morphism the kernel and cokernel exist.

(b) A morphism whose kernel and cokernel vanish, is an isomorphism.

Axiom (b) is equivalent to

(b’) For every Morphism f , the natural map from the Coimage to the image is an isomorphism.

Here the image an coimage are

im( f ) = ker(coker( f )), coim( f ) = coker(ker( f )).

The definitions of the kernel and of the cokernel both induce the existence of a map g : coim( f )→ im( f )
and due to the uniqueness, the two definitions of g agree.

Proof of the equivalence of b and b’.
(b)⇒(b’): It is easy to see that g has trivial kernel and cokernel. By (b) it is an isomorphism.
(b’)⇒(b): Under these conditions f = g. □

Remark 2.7.2. Let f be a morphism in an abelian category. If ker( f ) = 0, the f is the kernel of its cokernel.
If coker( f ) = 0, then f is the cokernel of its kernel.

Proof. Let f : X → Y. If ker( f ) = 0, then f is the cokernel of its kernel and by (b’) f is the kernel of its
cokernel. If coker( f ) = 0, then f is the kernel of its cokernel and by (b’) it is the cokernel of its kernel. □

Examples 2.7.3. (a) Let R be a ring and let MOD(R) be the category of R-modules and R-linear maps.
Then MOD(R) is an abelian category, where the sum of two homomorphisms is the pointwise sum.

(b) Let (Ri)i∈I be a family of rings and let A be the category, the objects of which are families (Mi)i∈I

where Mi is an Ri-module and a morphism f : (Mi)→ (Ni) is a family f = ( fi)i∈I, where each fi is an
Ri-module homomorphism Mi → Ni. ThenA is an abelian category.

(c) An example of an additive category which is not abelian, is given by the category of even-dimensional
vector spaces over a given field F. It is not abelian, as a linear map of odd rank has no kernel.

Lemma 2.7.4. LetA be an abelian category.

(a) An arrow f is mono, iff ker( f ) = 0. An arrow g is epi, iff coker(g) = 0.

(b) The dual categoryAopp is also abelian.
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(c) For two objects X,Y the product X × Y is isomorphic to the coproduct X ⊕ Y.

(d) Fiber products and co-fiber products exist.

(e) A morphism f which is epi and mono is an isomorphism.

Proof. (a) If ker( f ) = 0, then f is the kernel of its cokernel, so it is mono by Lemma 2.6.8. Conversely, if f
is mono and α a kernel, then f 0 = 0 = fα and therefore α = 0. The epi assertion follows similarly.

(b) is easily verified.

(c) Let Z α
−→ X and Z

β
−→ Y be morphisms. Then write α × β for the morphism Z → X × Y which is

induced by the universal property of the product. The morphisms X 1×0
−→ X × Y and Y 0×1

−→ X × Y induce
a morphism ϕ : X ⊕ Y→ X × Y by the universal property of the sum. This makes the diagram

X

""

Id // X

X ⊕ Y
ϕ
// X × Y

<<

""
Y Id //

<<

Y

commutative. Let
ψX : X × Y→ X→ X ⊕ Y

and
ψY : X × Y→ Y→ X ⊕ Y.

Let further
ψ : ψX + ψY.

It is easy to see that ψ is inverse to ϕ and so ϕ is an isomorphism.

(d) Let f : A → C and g : B → C be given. Let α : A × B → C be the composition A × B → A
f
−→ C and

similarly β : A×B→ B→ C. Then K = ker(α− β) is a fiber product. Co-fiber products are fiber products
in the categoryAopp, which is abelian, too.

(e) Let f : X → Y be a morphism which is epi and mono. Then by (a), f is the kernel of its cokernel,
which, again by (a) is zero. The identity morphism 1Y : Y → Y also is a kernel of Y → 0. By the
uniqueness of a kernel there exist uniquely determined arrows α, β making the diagrams

X
f
//

α

��

Y

Y
1Y

?? X
f
// Y

Y
1Y

??

β

OO

It follows α = f and in the usual way it follows that β is an inverse to f . □
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Definition 2.7.5. For a morphism f in an abelian category we define

im( f ) := ker(coker( f )).

A sequence of morphisms

X
f
−→ Y

g
−→ Z

is called exact, if
im( f ) = ker(g)

holds, that is to say, if im( f ) is a kernel of g. A sequence

· · · → Ai−1
di−1

−→ Ai
di

−→ Ai+1 → . . .

is called exact, if it is exact at every index i.

Remark 2.7.6. Since a kernel is not uniquely determined, the identity im( f ) = ker(g) is to be read as
saying that any kernel of any cokernel of f is a kernel for g.

Another way to put it is to say that we have g ◦ f = 0 and hence f factors through ker(g):

K
ker(g)

��

X
f

//

α

??

Y g
// Z

Now the sequence is exact at Y is equivalent to saying that α is an epimorphism.

Definition 2.7.7. A functor F : C → D between additive categories is called an additive functor, if for
any two objects X,Y the induced map F : Hom(X,Y)→ Hom(F(X),F(Y)) is a group homomorphism.

A functor F : C → D between abelian categories is called an exact functor, if it is additive and maps
exact sequences to exact sequences.

Diagram chase

Remark 2.7.8 (On diagram chase in abelian categories). The proofs of assertions like the five lemma or
the snake lemma depend on diagram chase, where one has to pick elements and chase them along a
diagram. So a priori they are not valid in an arbitrary abelian category. There are two ways to fix this.

Firstly, one can give new proofs which only use arguments valid in abelian categories. This can be done,
but is very tedious.

Secondly, one makes use of Mitchell’s Embedding Theorem, which says that for a small abelian
category A there exists a ring R (with 1, not neccessarily commutative) and a full faithful and exact
functor F : A→MOD(R).

The functor F yields an equivalence between A and a full subcategory of MOD(R) in such a way that
kernels and cokernels computed in A correspond to the ordinary kernels and cokernels computed in
MOD(R). Such an equivalence is necessarily additive. The theorem thus essentially says that the objects
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of A can be thought of as R-modules, and the morphisms as R-linear maps, with kernels, cokernels,
exact sequences and sums of morphisms being determined as in the case of modules.

* * *
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3 Sheaves

3.1 Presheaves

Definition 3.1.1. Let X be a topological space and letU(X) be the category whose objects are the open
sets in X and the morphisms are the inclusion maps U→ V whenever U ⊂ V.

A presheaf is a contravariant functor
F :U(X)→ AB .

Remark 3.1.2. Let F be a presheaf on X. To any open set U ⊂ X, the presheaf attaches an abelian group
F (U) and to any inclusion V ⊂ U, a group homomorphismF (U)→ F (V), which is called the restriction
and is written as resU

V or as s 7→ s|V. The axioms of a functor imply for W ⊂ V ⊂ U and s ∈ F (U) that

resV
W ◦ resU

V = resU
W and resU

U = IdF (U)

or, in the other notation, for s ∈ F (U) one has

(s|V)|W = s|W , and s|U = s.

Definition 3.1.3. The elements of F (U) are also called sections over U of the sheaf F . The reason for
these notions will become clear later. An element s ∈ F (X) is called a global section.

Examples 3.1.4.

Throughout, we fix an abelian group A and a topological space X.

(a) Let MA be the presheaf of all maps, i.e., for an open set U let MA(U) be the set of all maps from
s : U→ A. ThenMA is a presheaf with resU

V (s) = s|V being the restriction of the map s.

(b) By KA we denote the constant presheaf with value group A. By definition, KA(U) is the set of all
locally-constant maps s : U → A. Then KA is a presheaf on X, where again the restriction is the
usual restriction of maps.

(c) Fix a point x0 ∈ X and set

S(U) = SA,x0 (U) =

A if x0 ∈ U

0 otherwise.

With the restriction

resU
V =

IdA x0 ∈ V,

0 otherwise

the map S is a presheaf, called the skyscraper presheaf at x0 with value group A.

(d) Finally, letZ(U) = A for every open U and set

resU
V =

IdA U = V,

0 otherwise.



Topologie 53

Then these data define a presheaf on X.

Definition 3.1.5. A morphism of presheaves ϕ : F → G is a family of group homomorphisms (ϕU :
F (U)→ G(U))U⊂X open, such that for every inclusion of open sets V ⊂ U the diagram

F (U)
ϕU
//

resU
V

��

G(U)

resU
V

��

F (V)
ϕV
// G(V)

commutes.

Examples 3.1.6.

(a) Let KA be the constant sheaf on X with value group A. Then any group homomorphism g : A→ B
to some abelian group B induces a morphism of presheaves

g∗ : KA → KB

by setting
g∗(s) = g ◦ s.

(b) For a fixed point x0 let SA be the skyscraper presheaf at x0 with value group A. Then, as in the lsat
example, a group homomorphism g : A→ B induces a presheaf morphism

g∗ : SA → SB, g∗(s) = g(s).

(c) Notation as before. Let f0 : X→ {0, 1} be a locally-constant map, which means that f−1(0) and f−1(1)
both are open. Then f induces a presheaf morphism ϕ f : KA → KA given by

ϕ f (s)(x) = f (x)s(x).

* * *
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3.2 Sheaves

Definition 3.2.1. Let F be a presheaf over X. We call F a sheaf, if two conditions are satisfied.

• (Uniqueness) Let U ⊂ X be open and let (Ui)i∈I an open cover of U, so U =
⋃

i∈I Ui. Further let
s ∈ F (U) such that s|Ui = 0 for every i ∈ I. Then s = 0.

• (Existence) Let U ⊂ X be open and let (Ui)i∈I be an open cover of U. For every i ∈ I let there be
given some si ∈ F (Ui), such that for any two i, j ∈ I one has

si|Ui∩U j = s j|Ui∩U j ,

Then there exists an s ∈ F (U), such that si = s|Ui for every i ∈ I.

One can rephrase this as follows: the Uniqueness axiom says that a section is determined by its local
restrictions and the Existence axiom, that compatible local sections can be glued to yield a global section.

Examples 3.2.2.

(a) The presheaf of all mapsMA is a sheaf.

(b) The constant presheafKA is a sheaf.

(c) The skyscraper presheaf SA,x0 is a sheaf.

(d) The presheaf Z with Z(U) = A and resU
V = 0 is not a sheaf if A , 0, since for a sheaf F we have

F (∅) = 0 as we shall see below.

(e) Let A be an abelian group, X = R and F (U) = A if U = X, but F (U) = 0 otherwise. Then F is a
presheaf, which satisfies Existence, but not Uniqueness.

(f) Let A , 0 be an abelian group, X = R and let F (U) = 0 is the diameter of U is bigger than 1.
Otherwise, let F (U) = A. The restriction maps are the natural embeddings. Then F is a presheaf
satisfying Uniqueness, but not Existence.

Remark 3.2.3. The sheaf axioms imply, that for every sheaf F one has F (∅) = 0. To prove this, let
s ∈ F (∅) and let (Ui)i∈I be the empty cover, i.e., I = ∅. Then for every i ∈ I one has s|Ui = 0, since I has no
elements! By the Uniqueness axiom, we get s = 0.

Lemma 3.2.4. A presheaf F is a sheaf iff for every open cover (Ui)i∈I of an open set U ⊂ X the sequence

0→ F (U) α
−→

∏
i

F (Ui)
β
−→

∏
i, j

F (Ui ∩U j)

is exact. The products run over I and I × I and α(s)i = s|Ui , as well as β(s∗)i, j = si|Ui∩U j − s j|Ui∩U j .

Proof. Injectivity of α is equivalent to the Uniqueness axiom. The assertion β ◦ α = 0, so ker β ⊃ imα is
satisfied for every presheaf. Finally, the assertion ker β ⊂ imα is equivalent with the Existence axiom. □
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Definition 3.2.5. A sheaf homomorphism is the same as a presheaf homomorphism, only between
sheaves.

The direct sum of two sheaves F and G over X is defined as the sheaf

U 7→ F (U) ⊕ G(U).

It is easy to see that this indeed is a sheaf.

Definition 3.2.6. A subsheafH of a given sheaf F is a sheaf, such that for every open set U the group
H(U) is a subgroup ofF (U) and the restriction homomorphism ofH andF coincide on these subgroups.

This last condition means that for any two open sets V ⊂ U the diagram

H(U) �
�

//

resH
��

F (U)

resF
��

H(V) �
�

// F (V)

commutes.

Examples 3.2.7. • A presheaf P on R, which to each open set U , ∅ attaches the group Z, cannot
be a sheaf, no matter what the restriction maps look like. Assume, it is a sheaf. Let U = (−∞, 0)
and V = (0,∞), sowie W = U ∪ V. By Existence, there is a ∈ P(W) with a|U = 1 and a|V = 0. Like
wise, there is b ∈ P(W) with b|U=0 and b|V = 1. We get a group homomorphism ϕ : Z2

→ Z,
by (k, l) 7→ ka + lb ∈ P(W) = Z. Let (k, l) ∈ ker(ϕ), Then 0 = (ka + lb)|U = k ∈ P(U) � Z and so
k = 0. Analogously, it follows l = 0. So ϕ injective. But there is no injective group homomorphism
Z2
→ Z, Contradiction!

(Assume there is an injective group homomorphism ϕ : Z2
→ Z. Then

ϕ

(
ϕ

(
1
0

)(
0
1

)
− ϕ

(
0
1

)(
1
0

))
= ϕ

(
1
0

)
ϕ

(
0
1

)
− ϕ

(
1
0

)
ϕ

(
0
1

)
= 0.

As ϕ is injective, it follows

ϕ

(
1
0

)(
0
1

)
− ϕ

(
0
1

)(
1
0

)
= 0,

therefore ϕ
(1

0
)
= 0 = ϕ

(0
1
)
. But that means that ϕ is identically zero. Contradiction!)

• The sheaf O of holomorphic functions on C is a sheaf of rings.

* * *
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3.3 Stalks

Definition 3.3.1. Let (I,≤) be a partially ordered set. Then (I,≤) is called a directed set, if for any two
a, b ∈ I there exists an upper bound, i.e., an element c ∈ I with a ≤ c and b ≤ c.

Examples 3.3.2. • N is directed.

• Let S be a set and I be the set of all finite subsets E ⊂ S. Then I is directed by inclusion, since for
E,F ∈ I the set E ∪ F is finite again, hence it is an upper bound

E,F ≤ E ∪ F.

• Let x ∈ X and X a topological space. Let I be the set of all open neighbourhoods of x with the
reversed inclusion as ordering, so

U ≤ V ⇔ U ⊃ V.

Then I is directed, as with U and V the set U∩V is an open neighbourhood, too and hence one has

U,V ≤ U ∩ V.

Definition 3.3.3. A directed system of abelian groups is a pair ((Mi)i∈I, (ϕ
j
i )i≤ j), where I is a directed set,

(Mi)i∈I is a family of abelian groups and for i ≤ j the map

ϕ j
i : Mi →M j

is a group homomorphism, such that

ϕi
i = IdMi , ϕk

j ◦ ϕ
j
i = ϕ

k
i

if i ≤ j ≤ k.

Examples 3.3.4.

• Fix a prime number p. Let I = N and Mi = Z. Further let ϕ j
i : Z→ Z be given by x 7→ p j−ix. Then

these data establish a directed system.

The directed set in this case isN. Therefore the directed system is completely determined by the
maps ϕi+1

i , as all others are iterations of these. In this example, the map ϕi+1
i is the multiplication

by p on Z. We write this system as a sequence

Z
p
−→ Z

p
−→ Z

p
−→ . . .

• Let z0 ∈ C. Let I be the set of all open neighbourhoods of z0 in C with the reversed inclusion as
partial order. For U ∈ I let MU be the set of all holomorphic functions f : U → C. For V ⊂ U let
ϕV

U : MU →MV be given by restriction, so ϕV
U( f ) = f |V. This is called the direct system of all germs

of functions in z0.
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Definition 3.3.5. The direct limit of a directed system (Mi, ϕ
j
i ) is defined as

lim
−→

i
Mi =

⊔
i∈I

Mi

/
∼

where the equivalence relation ∼ on the disjoint union is defined as follows. Two elements a ∈ Mi and
b ∈ M j are equivalent, if there exists an index k ≥ i, j, such that ϕk

i (a) = ϕk
j(b). It is easy to see, that this is

an equivalence relation. The property of I of being directed is needed for transitivity: Let a ∼ b and b ∼ c
in

⊔
i∈I Mi. Let’s say a ∈ Mi, b ∈ M j and c ∈ Mk. Then there exists l ≥ i, j such that ϕl

i(a) = ϕl
j(b) and there

is m ≥ j, k such that ϕm
j (b) = ϕm

j (c). Let n ≥ l,m. Then ϕn
i (a) = ϕn

j (b) = ϕn
k (c), so that a ∼ c.

Lemma 3.3.6. The rule
[a] + [b] := [a + b] a, b ∈Mk

makes M = lim
→

i

Mi an abelian group with the following universal property: There are group homomorphisms

ϕi : Mi →M, which form the following commutative diagrams:

M j
ϕ j
// M

Mi

ϕ
j
i

OO

ϕi

>>

i ≤ j

such that for every abelian group Z with a family of group homomorphisms ηi : Mi → Z, which likewise satisfy
η j ◦ ϕ

j
i = ηi, there is a uniquely determined group homomorphism ψ : M → Z, such that for every i ∈ I the

diagram

Mi
ϕi
//

ηi
  

M

∃!ψ
��

Z

commutes.

Proof. For the group law, one has to show well-defninedness. So let a ∼ a′ and b ∼ b′, say ϕl
k(a) = ϕl

i(a
′)

and ϕl
k(b) = ϕl

i(b
′). Then one has ϕl

k(a + b) = ϕl
k(a) + ϕl

k(b) = ϕl
i(a
′) + ϕl

i(b
′) = ϕl

i(a
′ + b′), so it follows

(a+b) ∼ (a′+b′) and therefore [a+b] = [a′+b′], which establishes well-definedness of addition. The maps
ϕi are given by composition of the natural maps Mi →

⊔
i Mi →

⊔
i Mi/ ∼. For the universal property

one defines ψ([a]) = ηk(a), if a ∈ Mk. The well-definedness is straightforward and so is commutativity
of the diagrams. Uniqueness of ψ follows from the commutativity of the diagrams, for if ψ′ is a second
such map and if [a] ∈M, say a ∈Mk, then one has ψ([a]) = ηk(a) = ψ′([a]). □

Examples 3.3.7.

• Assume that every Mi is a subgroup of some given group M, one has Mi ⊂ M j for i ≤ j and the
structure morphisms ϕ j

i are given by inclusion. Then the union N of all Mi is a subgroup, too and
there is a natural isomorphism

lim
→

i

Mi
�
−→ N.
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• We consider the first example of 3.3.4

Z
p
−→ Z

p
−→ Z→ . . .

We extend this to a commutative diagram

Z
p
//

1
��

Z
p
//

1
p

��

Z
p
//

1
p2

��

Z
p
//

1
p3

��

. . .

Q
Id // Q

Id // Q
Id // Q

Id // . . .

The union of all images in Q is the Z-module

Z[1/p] =
{

a
pk
∈ Q : a ∈ Z, k ∈N

}
.

According to the last example, this direct limit is isomorphic to Z[1/p].

Definition 3.3.8. Let F be a presheaf on the space X and let x ∈ X. Let I be the set of all open
neighbourhoods U ⊂ X of x. The reversed inclusion makes I a directed set and the map U 7→ F (U),
together with the restriction maps, forms a directed system. The stalk at x is the group

Fx = lim
−→
U∋x
F (U).

Examples 3.3.9.

• Let A be an abelian group andK the constant sheaf on X with group A. For x ∈ X the map f 7→ f (x)
is an isomorphismKx → A. This means that for a constant sheaf all stalks are the same.

• Let A , {0} be an abelian group, x ∈ X and let F be the skyscraper sheaf with F (U) = A ⇔ x ∈ U.
Assume that X is a Hausdorff space. For y , x in X there is an open neighbourhood V with
F (V) = 0, therefore the stalk Fy at y is 0. The stalk at x is A. This justifies the name skyscraper
sheaf.

Definition 3.3.10. Let U ⊂ X be open and x ∈ U. A section s ∈ F (U) induces an element of the stalk
Fx, which we denote by s|x ∈ Fx. Note that there is no danger of confusing this with the restriction of
sections, since, even if {x} is an open set, the restriction would be denoted by s|{x}.

Lemma 3.3.11. Let F be a sheaf. If a section vanishes on all stalks, it is zero. More precisely, let U ⊂ X be open
and s ∈ F (U). If s|x = 0 holds for every x ∈ U, then s = 0.

Proof. The equation s|x = 0 means that there is an open neighbourhood Ux ⊂ U with s|Ux = 0. These Ux

form an open cover of U, on which s vanishes. By the Uniqueness axiom, we get s = 0. □

Definition 3.3.12. Letϕ : F → Gbe a presheaf homomorphism. Thenϕ induces a group homomorphism
ϕx : Fx → Gx for every x ∈ X. For composable morphisms one has (ϕψ)x = ϕxψx and Idx = Id.

Proposition 3.3.13. A morphismus of sheaves ϕ : F → G is an isomorphism iff all induced maps on the stalks
ϕx : Fx → Gx are isomorphims.
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Proof. If ϕ is an isomorphism, then there is ψ : G → F such that ψϕ = Id and ϕψ = Id. For every x ∈ X
one has Idx = (ϕψ)x = ϕxψx and Idx = ψxϕx, so ψx is inverse to ϕx, hence the latter is an isomorphism.

Conversely, let ϕx be an isomorphism for every x. We want so show that ϕ is an isomorphism. It suffices
to show that ϕU : F (U) → G(U) is an isomorphism of groups for every open set U ⊂ X, since then one
sets ψU = ϕ−1

U and one sees, that ψ is an inverse to ϕ. So we show that ϕU is injective. Let s ∈ F (U) with
ϕU(s) = 0. Then for every x ∈ U one gets 0 = ϕU(s)|x = ϕx(s|x), which means that s|x = 0 for every x ∈ U
and by Lemma 3.3.11 it follows that s = 0, so ϕ is injective.

For surjectivity let s ∈ G(U). For every x ∈ U the map ϕx : Fx → Gx is surjective, so there is fx ∈ Fx

with ϕx( fx) = s|x. So there exists an open neighbourhood Ũx ⊂ U of x such that fx = tx|x for some section
tx ∈ F (Ũx). This means that the two sections ϕŨx

(tx) and s|Ũx
induce the same element in the stalk Gx.

Hence there is an open neighbourhood Ux ⊂ Ũx, such that ϕUx (tx|Ux ) = s|Ux . The Ux form an open cover
of U. We want to show that tx = ty holds on Ux ∩ Uy. Then the Existence axiom guarantees that all tx

come from one section in F (U), which then is a pre-image of s.

For this purpose let z ∈ Ux ∩Uy. Then one has

ϕz(tx|z) = s(z) = ϕz(ty|z)

and hence tx|z = ty|z. So there is a neighbourhood Vz of z such that tx|Vz = ty|Vz . The Vz form an open
cover of Ux ∩ Uy, on which we locally have tx − ty = 0. By the Uniqueness axiom this also holds on
Ux ∩Uy.

By the Existence axiom there is a section t ∈ F (U) with t|Ux = tx for every x. The sections s and ϕU(t)
coincide in every stalk, so by Lemma 3.3.11 they are equal and so ϕU is surjective. □

* * *
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3.4 Sheafification

Proposition 3.4.1. Let F be a presheaf. Then there is a sheaf F + and a presheaf morphism θ : F → F + with the
property that every presheaf homomorphism ϕ : F → G, where G is a sheaf, factors in a unique way through θ,
so for ϕ there is a uniquely determined presheaf homomorphism ψ such that the diagram

F
θ //

ϕ
  

F
+

∃! ψ
��

G

commutes. The pair (F +, θ) is uniquely determined up to isomorphy. The sheaf F + is called the sheafification
of F . For every sheaf G one has

Hom(F ,G) � Hom(F +,G).

Proof. We construct the sheaf F + as follows. For an open set U ⊂ X let F +(U) be the set of all maps s
from U to the disjoint union

⊔
x∈U Fx such that

• for every x ∈ U one has s(x) ∈ Fx and

• for every x ∈ U there is an open neighbourhood V ⊂ U and a t ∈ F (V), such that for every y ∈ V
one has s(y) = ty.

We show that F + is a sheaf. The restriction resU
V is defined as the restriction of maps.

For the Existence Axiom let U =
⋃

i∈I Ui an open cover and let si ∈ F
+(Ui), i ∈ I be given with si = s j on

Ui ∩ U j, i, j ∈ I. This implies that for every x ∈ X there is a unique s(x) ∈ Fx with s(x) = si(x) for every
i ∈ I such that x ∈ Ui. By definition, one then has s|Ui = si for every i ∈ I and thus s ∈ F +(U).

The Uniqueness Axiom is clear as the elements ofF (U) are maps on U and the restriction is the restriction
of maps.

Finally for the universal property, we first define θ : F → F + by replacing s in the abstract group F (U)
by the map on U, that sends x ∈ U to s(x) ∈ Fx. This is a presheaf homomorphism. Next let ϕ : F → G
be a presheaf homomorphism to a sheaf G. We construct ψ in the diagram as follows: let s ∈ F +(U) for
an open U ⊂ X. By construction, for each x ∈ U there exists an open neighbourhood Ux ⊂ U and an
element tx ∈ F (Ux) such that s(u) = tx|u holds for every u ∈ Ux. For any x, y ∈ U by construction we have
that (tx− ty)|Ux∩Uy lies in the kernel of θ. Hence for given u ∈ Ux∩Uy there exists an open neighbourhood
V ⊂ Ux ∩Uy such that tx|V = ty|V, hence

ϕ(tx|Ux∩Uy )|u = ϕ(tx|V)|u = ϕ(ty|V)|u = ϕ(ty|Ux∩Uy )|u.

By Lemma 3.3.11 it follows that
ϕ(tx|Ux∩Uy ) = ϕ(ty|Ux∩Uy )

Define gx ∈ G(Ux) by gx = ϕ(tx). We have an open cover U =
⋃

x∈U Ux. For x, y ∈ U we have just shown
that gx|Ux∩Uy = gy|Ux∩Uy . As G is a sheaf, there exists a unique g ∈ G(U) that restricts to the gx. We set ψ(s)
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to be this g. All we have done is compatible with restrictions, hence ψ is a sheaf homomorphism. The
uniqueness of g above implies the uniqueness of ψ.

Note that for x ∈ X the stalk Fx is naturally isomorphic to the stalk F +x . If F is a sheaf already, then θ is
an isomorphism, as follows by the universal property. □

Definition 3.4.2. Let ϕ : F → G be a presheaf homomorphism. We define the kernel and cokernel as
the presheaves

U 7→ kerϕU, U 7→ cokerϕU,

together with the ensuing presheaf morphisms

ker(ϕ) → F , G → coker(ϕ).

Lemma 3.4.3. If ϕ : F → G is a morphism of sheaves, then kerϕ is a sheaf, but cokerϕ is in general not a sheaf.

Proof. For the Uniqueness axiom let U =
⋃

i Ui and let s ∈ kerϕU with s|Ui = 0 for every i ∈ I. Then s = 0
since kerϕU ⊂ F (U) and F satisfies the Uniqueness axiom.

For The Existence axiom let si ∈ kerϕUi with si|Ui∩U j = s j|Ui∩U j for all i, j ∈ I. Since F satisfies the
Existence axiom, there is an s ∈ F (U) with s|Ui = si. We have to show that s ∈ kerϕU. We know that
ϕU(s)|Ui = ϕUi (s|Ui ) = ϕUi (si) = 0 and so ϕU(s) = 0 because of the Uniqueness axiom for F .

We give an examples, in which cokerϕ is not a sheaf. Let X = R/Z and let 0 < ε < 1
4 and

U1 =
(
−ε,

1
2
+ ε

)
+Z, U2 =

(1
2
− ε, 1 + ε

)
+Z.

For an open subset U of X let F (U) be the set of locally-constant functions U → R and G(U) the set of
all continuous functions U → R. Let ϕU : F (U) ↪→ G(U) be the inclusion map. For −ε < x < 1

2 + ε

let s1(x) = x and for 1
2 − ε < x < 1 + ε let s2(x) = x. Then s1, s2 are elements of G(U1) resp. G(U2). The

difference s1 − s2 is locally-constant on U1 ∩ U2, so one has s1 ≡ s2 mod ϕU1∩U2 . But there is no section
s ∈ G(U1 ∪U2) = G(X) with s|Ui ≡ si mod ϕUi , since any section in G(X) has to take the same value at 0
and 1. □

Definition 3.4.4. We define the sheaf cokernel of a sheaf homomorphism ϕ as the sheafification of the
presheaf cokernel and we write this sheaf cokernel also as cokerϕ. Similarly, we define the image sheaf
of a sheaf homomorphism ϕ : F → G as the sheafification of the presheaf U 7→ imϕU and we write this
sheaf as im(ϕ).

Proposition 3.4.5. The kernel k : K → F of a sheaf homomorphism ϕ : F → G is a categorical kernel in the
sense of Definition 2.6.5.

This means that it has the following universal property: Letψ : H → F be a sheaf homomorphism with ϕ◦ψ = 0.
Then there exists a uniquely determined sheaf homomorphism θ : H → K , such that the diagram

K
k // F

ϕ
// G

H

∃!θ

__

ψ

OO

0

??
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commutes. The cokernel has the same property with all arrows reversed.

Proof. Let (H , ψ) as in the proposition. For every open U ⊂ X the morphism ϕU ◦ψU : H(U)→ G(U) the
zero morphism, so ψU factors through a uniquely determined morphism θU : H(U)→ K (U). Since ψ is
a sheaf homomorphism, so ψV ◦ resU

V = resU
V ψU and k has the same property, it follows that

kV resU
V θU = resU

V kUθU︸︷︷︸
=ψU

= kVθV resU
V .

As kV is injective, θ is a sheaf homomorphism. This proves the assertion on the kernel. The proof for the
cokernel is left to the reader. □

* * *
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3.5 Etale-sheaves

Definition 3.5.1. An etale-sheaf over a topological space X is a surjective, continuous map π : F → X,
together with the structure of an abelian group on each fiber Fx = π−1(x), x ∈ X such that

• π is a local homeomorphism, i.e., for every point f ∈ F there is an open neighbourhood U, such
that π(U) is open in X and π|U is a homeomorphism onto its image.

• The structure maps are continuous.

The last property means the following: Let S be the set of all ( f , g) ∈ F × F with π( f ) = π(g), then the
maps

S → E E → E
(x, y) 7→ x + y x 7→ −x

are continuous.

The map π is called the projection of the etale-sheaf and for x ∈ X the set Fx = π−1(x) is called the
etale-stalk over x.

For an open set U ⊂ X we write F|U for the etale sheaf π−1(U) π
−→ U.

Examples 3.5.2.

• (The constant etale-sheaf) Let A be an abelian group, let F = X × A and let π : F → X be the
projection onto the first coordinate. We equip A with the discrete topology and F with the product
topology. Then π is an etale-sheaf, where all etale-stalks are isomorphic to A.

• (The scyscraper etale-sheaf) Let A , 0 be an abelian group and let x0 ∈ X be a closed point, i.e.,
the set {x0} is closed. (In a Hausdorff space every point is closed.) Let F = (X − {x0}) ⊔ A and let
π : F→ X be defined by π(y) = y for y ∈ X − {x0} and π(a) = x0 for a ∈ A. Then there is exactly one
topology on F, such that π is a local homeomorphism.

We describe this topology by giving neighbourhood bases for all points. For a ∈ A ⊂ F a neighbour-
hood base is given by all sets of the form {a} ∪ (U − {x0}), where U ⊂ X is an open neighbourhood
of x0. If y ∈ X− {x0}, then a neighbourhood basis of y is given by all sets of the form U∖ {x0}, where
U is an open neighbourhood of y in X.

Remark 3.5.3. Some etale-sheaves are coverings. But in general they’re not , since, for instance, like in
the case of a skyscraper sheaf, the fibre varies with the point x ∈ X.

Remark 3.5.4. In the definition, we insisted that π be continuous. This condition is redundant, as it
already follows from the local homeomorphy.

Remark 3.5.5. For a given etale sheaf π : F→ X, the zero section is the map s0 : X → F with s0(x) = the
zero element of the group Fx. This map is continuous.

For this let x ∈ X. Then there exists an open neighbourhood U ⊂ F of s0(x), such that π is a home-
omorphism from U to V = π(U). Let ϕ : V → U be the inverse map. Then for every y ∈ V we
have

s0(y) = ϕ(y) − ϕ(y).
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This means that the map s0|V : V → F is the composition of the continuous maps

V → F × F,

y 7→ (ϕ(y), ϕ(y)),

followed by

F × F→ F × F,

(a, b) 7→ (a,−b),

followed by the addition. Hence s0 is continuous.

Definition 3.5.6. Let an etale-sheaf F π
−→ X be given. For an open set U ⊂ X let F (U) be the set of all

local sections of π, i.e., the set of all continuous maps s : U→ F with π◦ s = IdU. Then F (U) is an abelian
group under the pointwise operations.

Proposition 3.5.7. The map U 7→ F (U) is a sheaf: For open sets V ⊂ U the restriction resU
V : F (U)→ F (V) is

a group homomorphism. For W ⊂ V ⊂ U one has

resU
U = IdF (U), resV

W ◦ resU
V = resU

W .

Let (Ui)i∈I be an open cover of the open set U ⊂ X. Then one has

• (Uniqueness) If s ∈ F (U) and one has s|Ui = 0 for every i ∈ I, then s = 0.

• (Existence) For every i ∈ I let si ∈ F (Ui) be given, such that for any two i, j ∈ I one has

si|Ui∩U j = s j|Ui∩U j .

Then ther exists an s ∈ F (U), such that si = s|Ui for every i ∈ I.

Proof. Since resU
V is a restriction of functions, these properties are trivial. □

Examples 3.5.8.

• The constant etale-sheaf induces the constant sheaf. This follows, as the sections s : X→ X ×A are
exactly the locally constant functions since we equip A with the discrete topology.

• The scyscraper etale-sheaf induces the corresponding skyscraper sheaf.

Definition 3.5.9. Let π : F → X and τ : G → X be etale-sheaves. A morphism of etale-sheaves from π

to τ is a continuous map ϕ : F→ G such that

• the diagram

F

π
��

ϕ
// G

τ
��

X

commutes,
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• for every x ∈ X, the map ϕ is a group homomorphism from Fx → Gx.

If ϕ : F→ G is an etale-sheaf morphism, then for every open set U ⊂ X one gets a group homomorphism

ϕU : F (U)→ G(U)

defined by ϕU(s)(x) = ϕ(s(x)). Here G is the sheaf attached tro the etale-sheaf G.

* * *
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3.6 Equivalence of sheaves and etale-sheaves

Definition 3.6.1. Let F be a sheaf over X. We define the etale-space to F as the disjoint union F = Fet =⊔
x∈X Fx. We define the projection π : F→ X by π( f ) = x if f ∈ Fx. We construct a topology, which turns

π : F→ X into an etale-sheaf. For every open set U ⊂ X, every section s ∈ F (U) defines a map set : U→ F
with π ◦ s = IdU, this is the map x 7→ s|x. We equip F with the topology, generated by the sets set(U).

Lemma 3.6.2. The so defined (π,F) is an etale-sheaf.

Proof. Let S be the set of all set(U), where U ⊂ X is open and s ∈ F (U). We show that S is stable under
intersections, i.e., that

A,B ∈ S ⇒ A ∩ B ∈ S.

For this let A = set(U) and B = tet(V). Let Z be the set of all x ∈ U ∩ V with s|x = set(x) = tet(x) = t|x ∈ Fx.
By definition of the stalk Fx = Fx there is an open set W ⊂ U ∩ V such that s|W = t|W . This means that
s|y = t|y for every y ∈W and therefore Z is open. By definition, one has A∩ B = set(Z) = tet(Z), so this set
lies in S as desired. It follows that the open sets in F are the unions of sets in S.

We note that, as we have seen, the set, where two sections agree, is open. This implies in particular, that
every section s ∈ F (U) defines a continuous map set, since, if A ⊂ F is an open set, i.e., A =

⋃
i∈I ti,et(Vi),

then
s−1

et (A) =
⋃
i∈I

s−1
et (ti(Vi)) =

⋃
i∈I

{
x : s|x = ti|x

}
and this set is open.

The projection π is continuous, since for an open set U ⊂ X, the set π−1(U) is the union of all set(W) for
open sets W ⊂ U and s ∈ F (W). This is a union of open sets, hence open. If p ∈ F and x = π(p), then
p lies in the stalk Fx, so there is an open set W ⊂ X and an s ∈ F (W), with p = set(x). Then set(W) is an
open neighbourhood of p and π : set(W) → W is bijective and continuous with continuous inverse set.
This means that π is a local homeomorphism.

The continuity of the structure maps is left as an exercise. So F is an etale-sheaf. □

In the last proof we have also shown:

Corollary 3.6.3. Let F be a sheaf on X and let s, t two sections. Then the set

U =
{
x ∈ X : s(x) = t(x)

}
is open in X.

Notation. It is convenient, to identify any s ∈ F (U) with its etale map set : U → F. So in future we will
write

s(x) = set(x) = s|x ∈ Fx = Fx.

This takes a bit getting used to, but in the long run it is quite fruitful, as one can more easily switch
between the different descriptions of a sheaf.
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Theorem 3.6.4. Let Ψ be the map, that maps a sheaf F to its etale-sheaf (F, π) and let Φ be the map, that
maps an etale-sheaf to the sheaf of its sections.

Any etale-sheaf F is naturally isomorphic toΨΦF and every sheaf F ist naturally isomorphic to ΦΨF .

For any two etale-sheaves F,G over X the map Φ gives an isomorphism of groups

HomX(F,G) �
−→ HomX(ΦF,ΦG).

Also, for any two sheaves F ,G, the mapΨ yields a group isomorphism

HomX(F ,G) �
−→ HomX(ΨF ,ΨG).

In particular, this means that Φ is an equivalence of categories:{
etale-sheaves over X

}
↔

{
sheaves overX

}
.

Proof. Let F = ΦF be the sheaf of sections of F. Then ΨΦF = ΨF is the set of stalks of F . We define a
map uF : ΨF → F as follows. Let f ∈ ΨF , then f lies in a stalk Fx = lim−→

U∋x
F (U). So there is an open

subset U of x and a section s ∈ F (U) with f = [U, s]. We define uF( f ) = s(x). The group homomorphism
uF is injective, since uF( f ) = 0 implies that there is an open neighbourhood U of x with f = [U, 0], which
implies f = 0. It is surjective, because for f ∈ F there is an open neighbourhood V of f such that π|V is a
homeomorphism onto its image, the latter we call U. Let s : U→ F be the inverse map to π|V, then s is a
continuous section, so it lies in F (U). It therefore defines an element s of Fx with uF(s) = s(x) = f .

Conversely, we construct a map vF : ΦΨF → F as follows. Let U ⊂ X be open. Then every s ∈ ΦΨF (U)
is a section of the etale-sheafΨF , i.e., a continuous map s : U→

⊔
x∈U Fx with s(x) ∈ Fx for every x ∈ U.

By the definition of the topology on ΨF , any neighbourhood of y = s(x) contains a neighbourhood of
the form t(V) for some open neighbourhood V of x and t ∈ F (V). By continuity of S, the set U contains
a neighbourhood V′ ⊂ V, such that s(V′) ⊂ t(V), but that means s|V′ = t|V′ . In other words, s is locally
given by sections of F . By the Existence axiom, s is a section of F , i.e., an element of F (U). The map vF
sends s to this element. Then vF is an isomorphism. The rest of the theorem follows easily. □

Definition 3.6.5. A sequence of sheaf homomorphisms

F
f
−→ G

g
−→ H

is called exact, if g◦ f = 0 and the induced homomorphism im( f )→ ker(g) is an isomorphism of sheaves.

Corollary 3.6.6. A sequence of sheaf homomorphisms

F
f
−→ G

g
−→ H
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is exact iff for every x ∈ X the induced sequence of the stalks

Fx
fx
−→ Gx

gx
−→ Hx

is exact.

Proof. Theorem 3.6.4 implies that a sequence of sheaves is exact iff the coresponding sequence of etale
sheaves is exact. Consider F (U) as set of etale-sections. Then it is clear that

g f = 0 ⇔ gx fx = 0 ∀x∈X.

So let g f = 0. Let F
fet
−→ G

get
−→ H the corresponding sequence of etale-sheaves. The stalks of im( f ) are

im( f )x = lim
U∋x

f (F (U)) = fx(Fx).

That means that fet(F) is the etale-sheaf of im( f ). Likewise, ker(get) :=
{
x ∈ G : get(x) = 0

}
is the etale-sheaf

of ker(g). The induced homomorphism im( f ) → ker(g) corresponds to inclusion of the etale-sheaves
and the exactness is the equality of fet(F) and ker(get). The claim follows. □

* * *
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3.7 Direct and inverse images

Definition 3.7.1. Let f : X→ Y be a continuous map of topological spaces. For a sheaf F over X define
the direct image as the sheaf f∗F over Y given by

f∗F (U) = F ( f−1(U)).

The definitions easily imply that this indeed is a sheaf.

If ϕ : F → G is a morphism of sheaves over X, then there is an induced morphism f∗ϕ : f∗F → f∗G, for
an open set U ⊂ Y given by

f∗ϕ : f∗F (U) = F ( f−1(U))
ϕ f−1(U)
−→ G( f−1(U)) = f∗G(U).

One has f∗(ϕ ◦ψ) = f∗ϕ ◦ f∗ψ, so that f∗ is a functor from the category AB(X) of sheaves of abelian groups
over X to the category AB(Y).

Example 3.7.2. If f : X→ Y is a constant map with image y0 ∈ Y and let F be a sheaf over X. Then f∗F
is the scyscraper sheaf at the point y0 with stalk F (X).

Definition 3.7.3. LetG be a sheaf over Y. Then one defines the inverse image, i.e., the sheaf f−1
G, which

is the sheafification of the presheaf
U 7→ lim

−−→
V⊃ f (U)

G(V).

If ϕ : F → G is a morphism of sheaves on Y, then let f−1ϕ be the morphism from f−1
F to f−1

G derived
from

lim
−−→

V⊃ f (U)

F (V)
ϕ
−→ lim

−−→
V⊃ f (U)

G(V).

Again f−1 is a functor from AB(Y) to AB(X).

Example 3.7.4. Let f (x) = y0 be the constant map. Then f−1
G is the constant sheaf with stalk Gy0 .

Theorem 3.7.5. Let f : X → Y be a continuous map. Let F be a sheaf over X and G a sheaf over Y. Then
there is a natural bijection

Φ : HomX( f−1
G,F ) �

−→ HomY(G, f∗F ).

We say that the functor f−1 is left-adjoint to f∗ or that f∗ is right-adjoint zu f−1.

Here “natural” means thatΦ is a functor in both arguments, i.e., if α : F → F ′ is a sheaf homomorphism
over X, then the diagram

HomX( f−1
G,F ) Φ //

α◦

��

HomY(G, f∗F )

f∗α◦

��

HomX( f−1
G,F ′) Φ // HomY(G, f∗F ′)
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commutes. Likewise, the corresponding diagram for any sheaf homomorphism β : G → G′ over Y
commutes.

Proof. Since f−1
G is the sheafification of the presheaf f∼G : U 7→ lim→

V⊃ f (U)
G(V), there is a natural bijection

HomX( f−1
G,F ) � HomX( f∼G,F ).

therefore it suffices to give a natural bijection Φ : HomX( f∼G,F ) → HomY(G, f∗F ).

Let α : f∼G → F be a presheaf homomorphism. For an open subset U ⊂ X we have a group homomor-
phism

αU : lim
→

V⊃ f (U)

G(V) → F (U).

If V ⊂ Y is open, then U = f−1(V) is open in X and we define βV : G(V) → F ( f−1(V)) = f∗F (V) by
βV = α f−1(V). Then β is a presheaf homomorphism and we set Φ(α) = β.

For the converse direction, let β : G → f∗F be a sheaf homomorphism, i.e., for every open V ⊂ Y the map

βV : G(V)→ f∗F (V) = F ( f−1V)

is a group homomorphism, which is compatible with the restriction maps. For an open U ⊂ X and
V ⊃ f (U) one has U ⊂ f−1(V) and so one gets a group homomorphism G(V) → F ( f−1V) res

−→ F (U). By
the universal property of the direct limit, these homomorphisms glue to a homomorphism

αU : lim
→

V⊃ f (U)

G(V) → F (U).

We get an element α ∈ HomX( f∼G,F ). SetΨ(β) = α. One hasΨ ◦Φ = Id and Φ ◦Ψ = Id. □

* * *
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3.8 Locally-constant sheaves

Definition 3.8.1. A sheaf F over X is called a locally-constant sheaf, if every x ∈ X has an open
neighbourhood U, such that F |U is constant.

Example 3.8.2. On the space X = S1 it is possible to give a sheaf of abelian groups with each stalk
isomorphic to Z, which is locally-constant, but not constant.

We shall be able to prove this by the end of the section.

Proposition 3.8.3. Let F be a locally-constant sheaf over X. If X is connected, then the corresponding etale-sheaf
π : F→ X is a covering. In particular, paths on X can be lifted to F.

Proof. Let x ∈ X and U an open neighbourhood, on which F is constant, we call U a trivializing neigh-
bourhood of x. By Examples 3.5.2 and 3.5.8 we know that the etale space F|U of F |U is homeomorphic to
U ×M, where M = Fx is the stalk and we have a commutative diagram

F|U

π
  

� // U ×M

pr1
||

U

where we have written F|U for the etale sheaf π−1(U) π
−→ U.

Let Ux be the set of all y ∈ X such that there exists a bijection Fx → Fy. If y ∈ Ux and V is a trivializing
neighbourhood of y, then V ⊂ Ux, so Ux is open and for any other point z ∈ X we either have Ux = Uz or
Ux ∩Uz = ∅. With

V =
⋃

z∈X∖Ux

Uz

we have X = Ux ⊔ V and both are open and since X is connected we get Ux = X and therefore π is a
covering. □

Definition 3.8.4. Let Γ be a group. A Γ-module is an abelian group (M,+) together with an action of Γ
on M through group homomorphisms, i.e., for each γ ∈ Γ one has

γ.(m + n) = γ.m + γ.n

holds for all m,n ∈M.

Examples 3.8.5.

• If R is a ring and Γ a subgroup of the unit group R×, then every R-module is naturally a Γmodule.

• Let A be an abelian group and Γ an arbitrary group. The set AΓ of all maps f : Γ → A forms a
Γ-module with the action

γ. f (τ) = f (γ−1τ).

Definition 3.8.6. From now on let X be a path-connected space, which is locally simply connected.
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Let F be a locally-constant sheaf over X. Let x0 ∈ X be a fixed point and let Γ = π1(X, x0) be the
fundamental group. Let [γ] ∈ Γ and let m ∈ M = Fx0 . Then the path γ lifts to a uniquely determined
path γm : [0, 1]→ F = Fet with γm(0) = m. Write γ.m = γm(1).

Lemma 3.8.7. The rule [γ]m = γ̌.m defines an action of Γ on the group M. Every γ ∈ Γ acts by a group
homomorphism, so M is a Γ-module.

Proof. We need to show well-definedness. Let γ, τ representatives of the same element of Γ and let
h : I2

→ X be a homotopy with fixed ends. Then h lifts to a homotopy with of γm to τm. In particular
one has h̃(0, 1) = γ.m and h̃(1, 1) = τ.m. Also h̃(s, 1) ∈ Fx0 = M for every s ∈ [0, 1]. Therefore, s 7→ h̃(s, 1)
is a path M, which connects γ.m to τ.m. Since M is discrete, this path is constant, so γ.m = τ.m and the
action is well-defined.

Finally, for [γ], [τ] ∈ Γwe have

[γ]
(
[τ]m

)
= [γ]τ̌.m = γ̌.

(
τ̌.m

)
=

(
τ̌.γ̌

)
.m = (γ.τ)∨.m = [γ.τ]m =

(
[γ][τ]

)
m

Since the trivial path acts by the identity, we get an action.

Finally, we need to show that Γ acts by group homomorphisms, i.e.,

γ.(m + n) = γ.m + γ.n.

Let γm be unique the lift with γm(0) = m and define γn and γm+n in the same way. For each t ∈ [0, 1]
the points γm(t) and γn(t) sit in the fibre over the point γ(t), hence they can be added. Then the path
η : t 7→ γm(t)+ γn(t) is yet another lift of γ. But η(0) = m+ n = γm+n(0) and hence η and γm+n agree by the
uniqueness of lifts. Then

γ.(m + n) = γm+n(1) = η(1) = γm(1) + γn(1) = γ.m + γ.n. □

Definition 3.8.8. Let M be a Γ-module. Let X̃ be the universal covering of X and set

F = Γ\(X̃ ×M),

where Γ acts diagonally on X̃×M, so g(x,m) = (gx, gm). We equip M with the discrete topology, X̃×M with
the product topology and F with the quotient topology. Define π : F→ X by π(Γ(x,m)) = Γx ∈ Γ\X̃ = X.

Lemma 3.8.9. π : F→ X is a locally-constant etale-sheaf.

Proof. Let x ∈ X and let U be a neighbourhood, tivialising the universal covering p : X̃ → X. The
pre-image Ũ = p−1(U) is a disjoint union of open sets, which all are homeomorphic with U and which
are permuted by Γ. Fix one such Ũ0 and let ϕ : U→ Ũ0 be the inverse map of the projection. Then ϕ is a
homeomorphism and the natural map

U ×M
ϕ×1
−→ Ũ0 ×M ↪→ Ũ ×M→ Γ\Ũ ×M = F|U

is a homeomorphism, trivialising the sheaf F . □
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We now have two constructions. Lemma 3.8.7 gives a functor Φ form the category of all locally-constant
sheaves to the category ofZ[Γ]-modules. Conversely, Lemma 3.8.9 yields a functorΨ from the category
of Z[Γ]-modules to the category of locally-constant sheaves.

Theorem 3.8.10. The functors Φ and Ψ are quasi-inverse to each other. For a path-connected and locally
simply connected space X, we have an equivalence of categories:{

locally-constant sheaves
}
↔

{
Γ-modules

}
where Γ = π1(X, x0) is the fundamental group.

Proof. Let F be a locally-constant etale-sheaf. We construct a natural etale-sheaf isomorphism

τ : F→ ΨΦF = Γ
∖(

X̃ × Fx0

)
.

Let f ∈ F and let x = π( f ). Choose a path η in X from x0 to x. Then η has a uniquely determined lift η f to
F with η f (1) = f . Let f0 = η f (0) ∈ Fx0 . The homotopy class (with fixed ends) of η defines an element [η]
of X̃ with p([η]) = x. We define

τ( f ) = Γ([η], f0).

This construction a priori depends on the choice of the path η, at least modulo homotopy with fixed
ends. Another choice yields, modulo homotopy, a path of the form γ.η for some [γ] ∈ Γ. In this case, f0
is replaced by [γ] f0, so τ is a well-defined map.
The definition of the inverse map τ−1 is obvious: An element of Γ\X̃ × Fx0 is of the form Γ([η], f0)
with [η] ∈ X̃ and f0 ∈ Fx0 . Then η lifts in a unique way to a path η̂ f0 with η̂ f0 (0) = f0. Then set
τ−1 (
Γ([η], f0)

)
= η̂ f0 (1). Therefore, τ is bijective. The continuity of τ and τ−1 as well as the compatibility

with addition and inversion is left as an exercise to the reader.

For the converse direction we start with a Γ-module M and consider ΦΨ(M). This is the fiber over x0 of
Γ\X̃×M, which by definition equals Γ( f0×M), hence is isomorphic to M, where f0 is an arbitrary element
of the fiber over x0. □

* * *
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3.9 The global sections functor

Definition 3.9.1. Let X be a topological space. We consider the functor

H0 :
{
sheaves over X

}
→

{
abelian groups

}
given by

H0(F ) = F (X).

This is called the global sections functor, or just sections functor. If one wants to emphasize the space,
one also writes H0(X,F ).

Example 3.9.2. As an example we consider a path-connected, locally simply connected space X and a
locally-constant sheaf F . This comes from a module M of the fundamental group Γ = π1(X) and the
etale-sheaf can be written as Γ\(X̃×M). A global section s ∈ F (X) is a map s : X→ Γ\(X̃×M) of the form
s(Γx̃) = Γ(x̃, as(x̃)), with a uniquely determined continuous map as : X̃→M. Since X̃ is connected and M
is discrete, the map as is constant. For γ ∈ Γ one has

Γ(x̃, as) = s(Γx̃) = s(Γγx̃) = Γ(γx̃, as) = Γγ−1(γx̃, as) = Γ(x̃, γ−1as).

Comparing the two ends of this equation yields

as = γ.as,

i.e., as lies in the space ∈MΓ of Γ-invariants. Conversely, every as ∈MΓ gives a global section, so

H0(F ) � MΓ = H0(Γ,M).

We shall come back to this example later.

Lemma 3.9.3. Let 0→ F
f
−→ G

g
−→ H → 0 be an exact sequence of sheaves. Then the sequence

0→ H0(F )
fX
−→ H0(G)

gX
−→ H0(H)

is exact. In general, the map gX will not be surjective.

Proof. Since f has zero kernel, the map F (U)→ G(U) is injective for every open U ⊂ X, so in particular
for U = X, so fX is injective.

As gx fx = 0, for every s ∈ F (X) and every x ∈ X one has gX( fX(s))(x) = gx fx(s(x)) = 0, so gX( fX(s)) = 0,
which means that gX fX = 0. So we get im( fX) ⊂ ker(gX) and we want to show equality. For this let
s ∈ ker(gX). Then for a given x ∈ X the element s(x) lies in ker(gx) = im( fx) = lim

−→
U∋x

im( fU). Therefore, there

is an open neighbourhood Ux of x with s|Ux ∈ f (F (Ux)). For every x fix such a neighbourhood Ux and the
(uniquely determined) tx ∈ F (Ux) with f (tx) = s|Ux . These Ux form an open cover of X. For x, y ∈ X one
has tx|Ux∩Uy = ty|Ux∩Uy since the same is true for s and the tx are uniquely determined. By the Existence
axiom there is t ∈ F (X) with t|Ux = tx and by the Uniqueness axiom we infer f (t) = s.

At last we give an example for gX not being surjective: Let X = R/Z. Let the fundamental group Γ � Z
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act on M = Z2 in a way that 1.(x, y) = (y, x). Then MΓ = {(x, x) : x ∈ Z}. Let G be the locally-constant
sheaf Γ\(X̃ ×M). Further let H be the constant sheaf with stalk Z, which as a locally-constant sheaf is
associated to the trivial action of Γ on Z. Let g : G → H be the sheaf homomorphism associated to the
Γ-module homomorphism M → Z, (x, y) 7→ x + y. This is surjective in every stalk, but on the global
sections the group MΓ

→ Z has image 2Z , Z. □

Definition 3.9.4. For sheaf homomorphisms f , g : F → G we define f + g : F → G by ( f + g)(U) =
f (U) + g(U). So Hom(F ,G) becomes an abelian group.

Proposition 3.9.5. Let X be a space. The category AB(X) of sheaves of abelian groups over X is an abelian
category.

Proof. Composition is bilinear, since this holds for the category of abelian groups. The zero object is the
zero sheaf. The product of two sheaves F ,G is isomorphic to the coproduct and both equal the direct
sum U 7→ F (U)⊕G(U). So AB(X) is additive. Kernels and cokernels exist by Section 3.4. Finally, the last
axiom:

• If ker( f ) = 0, then f is the kernel of its cokernel. If coker( f ) = 0, then f is the cokernel of its kernel.
A morphism f with ker( f ) = 0 = coker( f ) is an isomorphism.

is satisfied, since it holds stalkwise. □

* * *
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3.10 Resolutions

Definition 3.10.1. An object P of a category C is called a projective object, if for every epi A ↠ B and
every arrow P→ B ther is an arrow P→ A, such that the diagram

A // // B

P

∃

__ OO

commutes. This means that arrows from P can be lifted along epis.

In other words, P is projective iff for every epi A↠ B the ensuing map given by composition

Hom(P,A) → Hom(P,B)

is surjective.

Examples 3.10.2.

• In the categorie of sets every obect is projective.

• Let R be a ring. In the category of R-modules, free modules are projective.

Definition 3.10.3. An object I of C is called an injective object, if it is projective in Copp, this means if for
every mono A ↪→ B and every arrow A→ I there exists an arrow B→ I, such that the diagram

A �
�

//

��

B

∃
��

I

commutes.

This means that I is injective, if arrows to I can be extended along monos.

In other words, I is injective, if for every mono A ↪→ B the induced map

Hom(B, I) → Hom(A, I)

is surjective.

Examples 3.10.4.

• In the category of sets and maps, every non-empty set is injective.

• In the category of abelian groups an object, i.e., an abelian group (A,+) is injective iffA is divisible,
which means that for every a ∈ A and every n ∈N there is b ∈ A with a = nb (Exercise).

Definition 3.10.5. We say: a categoryC has enough inectives, if for every object X there is a mono X ↪→ I,
where I is injective. The category is said to have enough projectives, ifAopp has enough inejctives, which
means that for every object X there is an epi P↠ X, where P is projective.
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Example 3.10.6. The category MOD(R) of modules of a given ring R has enough projectives, since every
module is the image of a free module.

Definition 3.10.7. For an abelian group A let

A∗ = Hom(A,Q/Z)

be the dual group. As the group Q/Z is divisible, it follows that for a free abelian group F the dual F∗ is
divisible.

Lemma 3.10.8. (a) The canonical map to the bidual,

A→ A∗∗,

a 7→ δa

with δa(α) = α(a), is injective.

(b) If M is an R-module for a commutative ring R, then M∗ be comes an R-module by setting

rα(m) = α(rm).

For an R-module homomorphism f : M → N the dual homomorphism f ∗ : B∗ → A∗, f ∗(β) = β ◦ f is an
R-module homomorphism. One has f ∗∗ = f , which means that the diagram

A∗∗
f ∗∗
// B∗∗

A
?�
δ

OO

f
// B
?�
δ

OO

commutes.

(c) The dual of δA : A ↪→ A∗∗ is written as pA : A∗∗∗ → A∗. Then the composition

A∗
δA∗
−→ A∗∗∗

pA∗
−→ A∗

is the identity map.

(d) The map δ is an R-module homomorphism. If P is a projective R-module, then P∗ is injective.

Proof. (a) The group Q/Z is divisible, hence injective in the category AB of abelian groups. Hence for
any subgroup H ⊂ A ensuing map A∗ → B∗ is surjective.

We need to show that for any given a , 0 in A there exists a homomorphism η : A→ Q/Zwith η(a) , 0.
For this let 2 ≤ n ≤ ∞ be the order of a. Let

η(a) =


1
n +Z n < ∞,
1
2 +Z n = ∞.
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Then η extends to a non-trivial group homomorphism from the subgroup ⟨a⟩ generated by a to Q/Z.
This eta can be extended to all of A and the claimed η has been found.

(b) For r ∈ R and β ∈ B∗, as well as a ∈ A we have

f ∗(rβ)(a) = (rβ)( f (a)) = β(r f (a)) = β( f (ra)) = f ∗(β(ra)) = (r f ∗(β)(a),

so f ∗ is an R-module homomorphism. To show commutativity of the diagram, for a ∈ A and β ∈ B∗ we
compute

f ∗∗(δa)(β) = δa( f ∗(β)) = δa(β ◦ f ) = β( f (a)) = δ f (a)(β).

(c) For α ∈ A∗ and a ∈ A we compute

pA

(
δA∗ (α)

)
(a) = δA∗ (α)

(
δA(a)

)
= δA(a)(α) = α(a).

(d) One has
δra(α) = α(ra) = (rα)(a) = δa(rα) = rδ(α).

Next let P be projective and assume given an exact diagram

P∗

0 // A //

η

OO

B

Dualize it to the solid arrow diagram:

P� _

��

��

P∗∗

��

0 A∗oo B∗oo

Since P is projective, the dotted arrow exists and the outer diagram dualizes to

P∗

0 // A∗∗ //

OO

B∗∗

aa

0 // A //

OO

B

OO

We show that the arrow ϕ : A → P∗ in this diagram coincides with the original arrow η in the first
diagram. For this, recall that by construction we have ϕ = pP∗ ◦ δP∗ ◦ η. But by part (c) it follows that
pP∗ ◦ δP∗ = Id, hence ϕ = η. It follows that P∗ is an injective object. □

Proposition 3.10.9. Let R be a commutative ring, then the category MOD(R) has enough injectives.
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Proof. Let M be an R-module and let
P→M∗ → 0

be an exact sequence with P being a projective module. It dualizes to 0 → M∗∗ → P∗ and as M embeds
into M∗∗, it embeds into P∗, which is injective by the lemma. □

Definition 3.10.10. An injective resolution of an object X of an abelian category is an exact sequence

0→ X→ I0
→ I1

→ . . . ,

in which the objects I0, I1, . . . are injective. We write 0→ X→ IX.

Lemma 3.10.11. If the abelian category A has enough injectives, then for every object there is an injective
resolution.

Proof. Let X be an object and X ↪→ I0 an injection into an injective object. Let M be the cokernel of X→ I0

and let M ↪→ I1 an injection into an injective I1, then the sequence 0 → X → I0
→ I1 is exact. Now

let n ≥ 1 and I0, . . . , In already constructed. Let M be the cokernel of In−1
→ In, ten choose an injection

M ↪→ In+1 in an injective object. Then the sequence 0 → X → I0
→ · · · → In+1 is exact. This finishes the

inductive construction of an injective resolution. □

Remark 3.10.12. A projective resolution of an object X is an exact sequence of the form

· · · → P2 → P1 → P0 → X→ 0,

where all P j are projective objects. If the category has enough projectives, then projective resiolutions
exist for every object.

In the category MOD(R) one can even take free modules, in which case one speaks of a free resolution.

* * *
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3.11 Derived functors

Definition 3.11.1. Let A and B be abelian categories. An additive functor F : A → B is called an
exact functor if it translates exact sequences to exact sequences. It is called left-exact, if for every exact
sequence of the form

0→ A→ B→ C→ 0

the sequence
0→ F(A)→ F(B)→ F(C)

is exact. Correspondingly, it is called right exact, if for every exact sequence 0 → A → B → C → 0, the
sequence

F(A)→ F(B)→ F(C)→ 0

is exact.

If F is contravariant, one uses the corresponding notions of Aopp, so F is called left-exact, if for every
exact sequence as above the sequence

0→ F(C)→ F(B)→ F(A)

is exact.

Example 3.11.2. The global sections functor H0 from the category of sheaves over a given space X to the
category of abelian groups is left-exact.

Lemma 3.11.3. For every object A in an abelian categoryA the functor Hom(A, •) is left-exact and the functor
Hom(•,A) is right-excat. Here we consider Hom(•,A) as a covariant functorAopp

→ AB.

An object A is projective, iff Hom(A, •) is exact. A is injective iff Hom(•,A) is exact.

Proof. Let 0 → X α
−→ Y

β
−→ Z → 0 be exact. Then α is the kernel of β and β the cokernel of α. Let

f : A→ X with α ◦ f = 0. Since 0→ X is the kernel of α, the morphism f factors through the zero map,
hence is zero. Therefore the map Hom(A, α) is injective. (Hom(A, α) is the functor Hom(A, ·) applied
to α). One has Hom(A, β) ◦ Hom(A, α) = Hom(A, β ◦ α) = 0, since β ◦ α = 0. Let f : A → Y be in the
kernel of Hom(A, β), i.e., β ◦ f = 0. As α is the kernel of β, the morphism f factors through α, i.e.,
f = α ◦ h = Hom(A, α)(h) for some h. Together we get that the sequence

0→ Hom(A,X)→ Hom(A,Y)→ Hom(A,Z)

is exact. The case of Hom(•,A) follows by switching to the opposite category.

The assertions on projective and injective objects are now only reformulations of the definitions. □

Lemma 3.11.4. Given two resolutions: 0 → M → IM and 0 → N → IN, where the second is supposed to be
injective, every morphism ϕ : M→ N extends to a morphism α : IM → IN of complexes.

If the first resolution is injective as well, then any two such extensions are homotopic, i.e., for two extensions α and
β of ϕ : M→ N, the difference α − β is nullhomotopic.
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Proof. We have exact rows:

0 // M

��

f 0
//

ϕ

��

I0
M

α0

��

f 1
// I1

M
//

0 // N
g0
// I0

N g1
// I1

N
//

,

As I0
N is mono, one can lift the diagonal morphism M

ϕ
−→ N → I0

N to I0
M, this defines α0. Write I−1

M = M,
as well as I−1

N =M and α−1 = ϕ. That means, we have constructed α−1 and α0.

For the induction step assume αn−2 and αn−1 are constructed.

In−1
M /ker( f n)� r

$$
In−2
M

f n−1
//

αn−2

��

In−1
M

f n
//

αn−1

��

F

**

99

In
M

αn

��

In−2
M gn−1

// In−1
N gn

// In
N

Consider F : gn
◦ αn−1 : In−1

M → In
N. If f n(x) = 0, then one has x = f n−1(y) for some y and one gets

F(x) = F( f n−1(y)) = gn(gn−1(αn−2(y))) = 0. This means, that F factors through In−1
M /ker( f n). Since In

N is
injective, one can lift F to In

M and such a lift is named αn.

This finishes existence. Now for uniqueness modulo homotopy. Now the Ip
M are supposed to be injective,

too. The morphism of complexes α− β extends ϕ = 0. So we have to show that any extension of the zero
map is nullhomotopic. We have a commutative diagram with exact rows

0 // M
dM //

0
��

I0
d0

I //

α0

��

I1
d2

I //

α1

��

I2

α2

��

d2
I // · · ·

0 // N
dN

// J0
d0

J

// J1
d1

J

// J2
d2

J

// · · ·

consisting of injective objects Ik, Jk. We construct morphisms Pk : Ik
→ Jk−1 such that αk = dk−1

J Pk +Pk+1dk
I .

We start with P0 : I0
→ N, this is the zero map. So let . . . ,Pk−1,Pk already constructed.

Ik−1
dk−1

I //

��

Ik
dk

I //

αk

��Pk
~~

Ik+1
dk+1

I //

αk+1

��

· · ·

Jk−1
dk−1

J

// Jk
dk

J

// Jk+1
dk+1

J

// · · ·

In particular we assume αk = dk−1
J Pk, on in the image of Ik−1. That means that αk

− dk−1
J Pk is zero on the
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kernel of dk
I , so it factors through the image of dk

I .

Ik−1
dk−1

I //

��

Ik
dk

I //

αk

��

Pk

��

!!

Ik+1
dk+1

I //

αk+1

��

· · ·

im(dk
I )
- 

<<

αk
−dk−1

J Pk

}}

Jk−1
dk−1

J

// Jk
dk

J

// Jk+1
dk+1

J

// · · ·

As Jk is injective, αk
− dk−1

J Pk extends to an arrow Ik+1
→ Jk, which we call Pk+1. Then on the one hand we

have αk = dk−1
J Pk + Pk+1dk

I as announced and on the other hand, αk+1 = dk
JP

k+1, on the image of Ik, so that
the construction can go on. The lemma is proven. □

Definition 3.11.5. LetA be an abelian category with enough injectives and let F : A→ B be a left-exact
functor to the abelian category B. For every object X of A choose an injective resolution 0 → X → IX

and define
RkF(X) = Hk(F(IX)).

By Lemma 3.11.4 for every morphism f : X → Y in A there is a morphism of complexes IX → IY and
so there exists a morphism RkF( f ) : RkF(X) → RkF(Y). By the lemma these morphisms are uniquely
determined. In other words: RpF is a functor fromA to the category B.

Lemma 3.11.6. (a) If one applies a left-exact functor F to a split-exact sequence 0→ A→ B→ C→ 0, then the
resulting sequence 0→ FA→ FB→ FC→ 0 is exact.

(b) Let 0→ I→ B→ C→ 0 be an exact sequence in an abelian category, where I is injective. Then the sequence
splits.

(c) Let 0 → X → Y → Z → 0 be an exact sequence in an abelian category with enough injectives. Then there
exist injective resolutions IX, IY, IZ and morphisms between them such that the diagram

0

��

0

��

0

��

0 // X

��

// Y

��

// Z

��

// 0

0 // I0
X

��

// I0
Y

��

// I0
Z

��

// 0

0 // I1
X

//

��

I1
Y

//

��

I1
Z

//

��

0

...
...

...

is commutative and exact.
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Proof. (a) The splitting of the sequence means that B can be replaced with A ⊕ C, so the sequence
decomposes into two isomorphisms, which are preserved by a left-exact functor.

(b) By injectivity, the identity arrow I→ I can be extended to an arrow s : B→ I making the diagram

0 // I //

Id
��

B

s
��

I

commute, i.e., it is a splitting.

(c) Pick I0
X and I0

Z first and then set I0
Y = I0

X⊕I0
Z. Then repeat the same for the sequence of the cokernels. □

Theorem 3.11.7. Let A be an abelian category with enough injectives and let F : A → B be a left-exact
functor to an abelian category B.

(a) For every n ≥ 0 the functor RnF is additive. Up to isomorphism of functors, RnF is independent of the
choices of resolutions.

(b) There is a natural isomorphism of functors F � R0F.

(c) For every exact sequence
0→ X→ Y→ Z→ 0

and every n ≥ 0 there is a natural morphism

δn : RnF(Z)→ Rn+1F(X)

such that the sequence

· · · → RnF(X)→ RnF(Y)→ RnF(Z) δn

−→ Rn+1F(X)→ . . .

is exact.

(d) For every morphism of short exact sequences

0 // X //

��

Y //

��

Z //

��

0

0 // X′ // Y′ // Z′ // 0

and every n ≥ 0 the diagram

RnF(Z) δn
//

��

Rn+1F(X)

��

RnF(Z′) δn
// Rn+1F(X′)

commutes.
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(e) If I is an injective object, then one has RnF(I) = 0 for n ≥ 1 .

Proof. The only non-immediate point is the long exact sequence. For this choose resolutions as in Lemma
3.11.6 part (c). Each sequence 0→ Ik

X → Ik
Y → Ik

Z → 0 splits by part (b) of the lemma and so the seuence
of complexes 0 → F(IX) → F(IY) → F(IZ) → 0 is exact. From here one proceeds as in Theorem 5.4.3 of
AlgTop1, when the long exact sequence for homology was constructed. The connection homomorphisms
is constructed using the snake lemma. □

* * *
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Throughout, let F : A → B be a left exact additive functor between abelian categories and assume that
A has enough injectives.

Definition 3.11.8. An object A of A is called acyclic with respect to F, if for every i ≥ 1 the equation
RiF(A) = 0 holds. Let X ∈ A. An exact sequence

0→ X→ A0
→ A1

→ . . .

is called acyclic resolution of X, if all A j are acyclic.

Example 3.11.9. Injective objects are acyclic, and hence injective resolutions are acyclic resolutions.

Lemma 3.11.10. Let
0→ A→ B→ C→ 0

be an exact sequence inA and assume that A is F-acyclic. Then the sequence

0→ F(A)→ F(B)→ F(C)→ 0

is exact, too.

Proof. This follows from the long exact cohomology sequence in part (c) of Theorem 3.11.7. □

Theorem 3.11.11. Let A be an abelian category with enough injectives and let F : A → B be a left-exact
functor to an abelian category B. Let 0→ X→ A0

→ . . . be an F-acyclic resolution. Then there is a natural
isomorphism RiF(X) → Hi(F(A•)). That means that derived functors (and thus sheaf cohomology) can be
computed with arbitrary acyclic resolutions.

Proof. We need a lemma.

Lemma 3.11.12. Let 0 → Y0
→ Y1

→ · · · be an exact sequence of F-acyclic objects. Then the sequence
0→ F(Y0)→ F(Y1)→ . . . is exact.

Proof. As F is left-exact, the sequence

0→ F(Y0)→ F(Y1)→ F(Y2)

is exact. Let Z j = coker(Y j−1
→ Y j). We get a commutative and exact diagram

0 // Y0 // Y1 //

  

Y2 //

  

Y3

Z1

>>

  

Z2

>>

  

0

>>

0

>>

0.
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Applying F we get an exact sequence

0→ F(Y0)→ F(Y1)→ F(Z1)→ R1F(Y0) = 0.

It follows that F(Z1) = coker(F(Y0) → F(Y1)). The exact sequence 0 → Z1
→ Y2

→ Y3 yields an exact
sequence

0→ F(Z1)→ F(Y2)→ F(Y3).

Plugging in the previuous, we see that the sequence

coker(F(Y0)→ F(Y1))→ F(Y2)→ F(Y3)

is exact, too. This amounts to the exactness of

F(Y1)→ F(Y2)→ F(Y3)

i.e., the claimed exactness at F(Y2). This argument can be repeated to give the claim. □

To prove the theorem choose an injective resolution

0→ X→ I0
→ I1

→ . . . .

By Lemma 3.11.4 we get a commutative diagram

0 // X //

=

��

A0 //

��

A1 //

��

· · ·

0 // X // I0 // I1 // · · ·

where the vertical maps, after enlarging Ik if neccessary, can be assumed to be injective. Let (Y j) be the
sequence of cockernels of the vertical maps. We get an exact and commutative diagram

0

��

0

��

0 // X //

=

��

A0 //

��

A1 //

��

· · ·

0 // X // I0 //

��

I1 //

��

· · ·

0 // Y0 //

��

Y1 //

��

· · ·

0 0

Each column yields a long exact sequence as in part (c) of Theorem 3.11.7, which for j ≥ 0 and k ≥ 1
contains the exact sequence 0 = RkF(I j) → RkF(Y j) → Rk+1F(A j+1) = 0. Hence we get that Y j is acyclic,
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too. Further, Lemma 3.11.10 yields, that each sequence

0→ F(A j)→ F(I j)→ F(Y j)→ 0

is exact. Therefore, we get an exact sequence of complexes

0→ F(A)→ F(I)→ F(Y)→ 0.

with the corresponding long exact cohomology sequence

H j−1F(Y)→ H jF(A)→ H jF(I)→ H jF(Y).

By Lemma 3.11.12 both ends are zero, so the arrow in the middle is an isomorphism, hence

H jF(A) � H jF(I)) = RiF(X). □

* * *
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3.12 Delta functors

Definition 3.12.1. LetA and B be abelian categories. A δ-functor formA to B is a sequence of additive
functors Ti, i = 0, 1, 2, . . . , together with a family of morphisms δi : Ti(C) → Ti+1(A) for every exact
sequence 0→ A→ B→ C→ 0 such that

• For every short exact sequence as above, the sequence

0→ T0(A)→ T0(B)→ T0(C) δ
−→ T1(A)→ . . .

· · · → Tp(A)→ Tp(B)→ Tp(C) δ
−→ Tp+1(A)→ . . .

is exact.

• For every morphism of short exact sequences

0 // A //

α

��

B //

β

��

C //

γ

��

0

0 // X // Y // Z // 0

the δs make a commutative diagram

Tp(C) δ //

��

Tp+1(A)

��

Tp(Z) δ // Tp+1(X).

Definition 3.12.2. A δ-functor T is called a universal δ-functor, if for every other δ-functor S and every
natural transformation f 0 : T0

→ S0 there is a uniquely determined sequence of natural transformations
f p : Tp

→ Sp, such that for each exact sequence 0→ A→ B→ C→ 0 the diagram

· · · // Tp(A) //

f p
A

��

Tp(B) //

f p
B

��

Tp(C) δ //

f p
C

��

Tp+1(A) //

f p+1
A
��

· · ·

· · · // Sp(A) // Sp(B) // Sp(C) δ // Sp+1(A) // · · ·

commutes.

Lemma 3.12.3. If S and T are universal δ-functors and if T0 � S0, then Tp � Sp for every p ≥ 0.

Proof. Let f 0 : T0
→ S0 be an isomorphism with inverse g0 : S0

→ T0. Let f p and gp the uniquely
determined extensions for p ≥ 1. Then f pgp is an extension of f 0g0 = Id, commuting with the δs. Since
such an extension is uniquely determined, it follows f pgp = Id. The other direction works the same, so
the f p are isomorphisms. □

Definition 3.12.4. A functor F : A → B is called erasable, if for every object X ∈ A there is a mono
u : X ↪→ I such that F(u) = 0. In the applications one will even have F(I) = 0, but the definition is a bit
more general.
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Example 3.12.5. Let A,B be abelian categories, F : A → B be additive and left-exact and assume that
A has enough injectives. Then there are the right derived functors RpF for p ≥ 1 and these functors are
erasable, since they vanish on injective objects.

Theorem 3.12.6. Let T be a δ-functor, such that each Tp, p ≥ 1 is erasable. Then T is universal.

Proof. Let S be another δ-functor and let f 0 : T0
→ S0 be given. We erase a given object A of A with an

object I and we get an exact sequence

0→ A u
−→ I v

−→ C→ 0

with T1(u) = 0. By the long exact sequence, the solid arrows form a commutative diagram with exact
rows:

T0(I)
T0(v)
//

f 0
I
��

T0(C)
δT //

f 0
C
��

T1(A) //

f 1
A
��

0

S0(I)
S0(v)
// S0(C)

δS // S1(A).

The last zero in the top row comes from T1(u) = 0. It follows δT = coker(T0(v)). As the second row is
exact, we get δSS0(v) f 0

I = 0 and so δS f 0(C)T0(v) = 0. Therefore there is a uniquely determined arrow
f 1(A), such that the entire diagram is commutative.

We have to show that f 1 is a natural transformation of functors, i.e., that for every morphism τ : A→ B
inA the diagram

T1(A)
T1(τ)

//

f 1
A
��

T1(B)

f 1
B
��

S1(A)
S1(τ)

// S1(B)

commutes. For this let τ : A→ B be a morphism inA. Consider the pushout P:

A �
� u //

τ

��

I

��

B // P.

Since u is mono, by Lemma 2.7.4 the arrow B → P is mono as well. Let P ↪→ N be a monomorphism,
which erases P. We get a commutative diagram with exact rows:

0 // A //

τ

��

I //

α

��

C //

β

��

0

0 // B // N // Y // 0,

Where B→ N is the composition B→ P→ N and Y is the cokernel. The diagram, the commutativity of
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which we want to show, is the right side square in the following cube diagram:

T0(C)
δT //

f 0
C

��

T0(β)

##

T1(A)
T1(τ)

##

T0(Y) //

��

��

T1(B)

f 1
B

��

S0(C)

S0(β) ##

// S1(A)
S1(τ)

##

S0(Y) // S1(B).

All side squares of the diagramm commute with the possible exception of the right hand square. But
since δT is an epi, this square has to commute, as well.

Next we need to show that f1 commutes with the connection morphism δ. Let

0→ A→ B→ C→ 0

be an exact sequence inA. By the same pushout construction construction one gets an erasing monomor-
phism A→ I and a commutative diagram with exact rows

0 // A //

Id
��

B //

α

��

C //

β

��

0

0 // A // I // X // 0.

Consider the diagram:
T0(C)

T0(β)

~~

f 0
C
��

δT

  

S0(C)

T0(X)
δT //

f 0
X
�� S0(β)~~

δS

  

T1(A)

f 1
A
��

S0(X)
δS // S1(A).

We want to show that the right hand square commutes. The triangles above and below are commtuative
by the definition of the δ-functor. The left square is commutative, since f 0 is a natural transformation.
The front square commutes by the definition of f 1. Hence the last square commutes as well.

An iteration of this argument with the index pair (n,n + 1) in stead of (0, 1) gives the theorem. □

* * *
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3.13 Sheaf cohomology

Proposition 3.13.1. Let R be a ring and X a topological space. Then the abelian category MODR(X) of all sheaves
of R-modules has enough injectives.

Proof. Let F be a sheaf of R-modules over X. For every x ∈ X the stalk Fx is an R-module, so there
exists an injection Fx ↪→ Jx into an injective R-module. Consider the sheaf J : U 7→

∏
x∈U Jx. This is the

product of the skyscraper sheaves Sx(Jx) for x ∈ X in the category MODR(X) of sheaves of R-modules
over X. So for every sheaf G one has

Hom(G,J) �
∏
x∈X

Hom(G,Sx(Jx)).

On the other hand one has Hom(G,Sx(Jx)) � Hom(Gx, Jx). So there exists a natural injective homomor-
phism F → J given by the maps Fx → Jx. The functor Hom(•,J) is the direct product over all x ∈ X of
the stalk functor F 7→ Fx, which is exact, followed by HomR(•, Jx), which is exact, as Jx is injective. That
means that Hom(•,J) is an exact functor, so J is an injective object. □

Definition 3.13.2. The sheaf cohomology of a sheaf F is defined to consist of the right derivatives of
the global sections functor, i.e.,

Hk(F ) = RkH0(F ).

One also writes this as
Hk(X,F ) = RkH0(X,F ).

Definition 3.13.3. A sheaf F is called flabby, if for any two open sets V ⊂ U ⊂ X the restriction
resU

V : F (U)→ F (V) is surjective. Skyscraper sheaves are examples of flabby sheaves.

Theorem 3.13.4. (a) Injective sheaves are flabby.

(b) If 0 → F α
−→ G

β
−→ H → 0 is an exact sequence of sheaves and if F is flabby, then for every open set

U ⊂ X the sequence
0→ F (U)→ G(U)→H(U)→ 0

is exact.

(c) Let 0 → F α
−→ G

β
−→ H → 0 be an exact sequence of sheaves and let F and G be flabby. Then H is

flabby.

(d) Flabby sheaves are acyclic with respect to the global sections functor H0.

Proof. (a) Let Z be the constant sheaf with stalk Z. For an open set U ⊂ X let ZU = j!(Z|U) be the
sheafification of the presheaf

V 7→

Z(V) V ⊂ U,

0 otherwise.
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We show that for every sheaf F there is a natural isomorphism

F (U) � Hom(ZU,F ).

For s ∈ F (U) let ϕs : ZU → F be defined as follows. Let V ⊂ X be open and t ∈ ZU(V). Then

ϕs(t) = ts|U∩V.

The inverse map to s 7→ ϕs is given by ϕ 7→ sϕ with sϕ = ϕ(1U).

Let I be an injective sheaf and let V ⊂ U ⊂ X be open sets. These induce a mono ZV ↪→ ZU and since I
is injective, one gets a surjection I(U) = Hom(ZU,I)→ Hom(ZV,I) = I(V). So I is flabby.

(b) We have an exact sequence of sheaves 0 → F
α
−→ G

β
−→ H → 0 and we want to show that

0 → F (U) → G(U) → H(U) → 0 is exact. Let s ∈ H(U). Then there is an open cover U =
⋃

i∈I Ui and
ti ∈ G(Ui) such that s|Ui = β(ti). One has that (ti − t j)|Ui∩U j lies in the kernel of β, i.e., in the image of α, so
local pre-images exist. As α is injective, the local pre-images are compatible, so they come from some
fi, j ∈ F (Ui ∩U j). As F is flabby, there is a f̃i, j ∈ F (Ui) with f̃i, j|Ui∩U j = fi, j. If one replaces ti by ti − α( f̃i, j),
one gets ti|Ui∩U j = t j|Ui∩U j , so these extend to a section t ∈ G(U) with β(t) = s.

(c) We have an exact sequence of sheaves 0→ F α
−→ G

β
−→ H → 0, where now F and G are flabby and

we want to show thatH is flabby.

Let V ⊂ U ⊂ X be open sets. We get a commutative diagram with exact rows (by part (b))

0 // F (U) //

����

G(U) //

����

H(U) //

��

0

0 // F (V) // G(V) // H(V) // 0

Using diagram chase, one sees that the last vertical arrow is an epi, too.

(d) We now show that flabby sheaf are acyclic, which is the reason why one considers them in the first
place. Let F be a flabby sheaf. Since F can be embedded in an injective sheaf, we get an exact sequence

0→ F → I → H → 0,

where I is injective. By (a), I is flabby and by (c), H is, too. Since I is injective, one has Hp(I) = 0 for
p ≥ 1. The long exact cohomology sequence looks like this

0→ H0(F )→ H0(I)→ H0(H)→

→ H1(F )→ 0→ H1(H)→

→ H2(F )→ 0→ H2(H)→ . . .

By (b) the first line is exact when one puts a zero at the end, which means that H1(F ) = 0 holds for every
flabby sheaf. Further one has Hk(H) � Hk+1(F ) for k ≥ 1. But sinceH is flabby, one also has H1(H) = 0
and therefore H2(F ) = 0 and also H2(H) = 0 and so on. □
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* * *
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3.14 Fine sheaves

Definition 3.14.1. Let ϕ : F → G be a sheaf homomorphism. The support of ϕ, written supp(ϕ) is the
closure of the set of all x ∈ X with ϕx : Fx → Gx , 0, i.e.,

supp(ϕ) =
{
x ∈ X : ϕx , 0

}
.

Remark 3.14.2. In books on Algebraic Geometry you will find the definition of the support of a sheaf
F and the set of points x, where Fx , 0. That means that one doesn’t take the closure of this set. This
is useful for non-Hausdorff spaces, as the closure can simply be too large. Here we use the notion of
support as it is customary in Analysis, as the applications lie in the realm of Analysis.

Definition 3.14.3. A sheaf F is called a fine sheaf, if for every open cover X =
⋃

i∈I Ui there is a family
(ϕi)i∈I of endomorphisms ϕi : F → F with

(a) supp(ϕi) ⊂ Ui and

(b) the family (ϕi) is locally-finite in the sense that for each x ∈ X there exists an open neighbourhood
U, such that U ∩ supp(ϕi) = ∅ for all but finitely many i ∈ I,

(c)
∑

i∈I ϕi = Id|F .

Examples 3.14.4.

(a) Let M be a smooth manifold. Then for every cover (Ui) there is a partition of unity, i.e., a locally-finite
family ui ∈ C∞(M) with supp(ui) ⊂ Ui and ∑

i∈I

ui = 1.

This means that the sheaf C∞ of germs of smooth functions in fine, and so is the sheaf Ωp of all
smooth p-differential forms, as one can define ϕi(ω) = uiω.

(b) Skyscraper sheaves are fine.

Lemma 3.14.5. (a) If 0 → F
f
−→ G

g
−→ H → 0 is an exact sequence of sheaves and if F is fine, then the

sequence of groups 0→ F (X)→ G(X)→H(X)→ 0 is exact.

(b) If X is paracompact Hausdorff space, then to every sheaf F there exists a monomorphism F ↪→ J , where J
is a product of skyscraper sheaves with injective stalks. The sheaf J is fine and injective.

(c) Let 0 → F → I0
→ I1

→ . . . be a resolution into sheaves Ip which are products of skyscraper sheaves with
injective stalks. If F is fine, then the sequence 0→ F (X)→ I0(X)→ I1(X)→ . . . is exact.

Proof. (a) We have to show, that gX is surjective. So let t ∈ H(X). Then there is a cover (Ui) of X and
si ∈ G(Ui) such that g(si) = t|Ui . The difference

si j = si − s j
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is a section of ker(g) � F on Ui ∩U j. Over Ui ∩U j ∩Uk one has

si j + s jk = sik.

Let ϕi be a family of endomorphisms F � ker(g) associated to (Ui). Since the support of ϕ j lies in U j,
one can extend ϕ j(si j) to a section in ker(g)(Ui) ⊂ G(Ui). Let

s′i =
∑

j

ϕ j(si j).

Then s′i ∈ ker(g)(Ui) and over Ui ∩U j one has:

s′i − s′j =
∑

k

ϕk(sik) −
∑

k

ϕk(s jk) =
∑

k

ϕk(si j) = si j.

Therefore
si − s′i = s j − s′j

holds on Ui ∩ U j. Since g(s′i ) = 0 and g(si) = t|Ui , the prescription s(x) = (si − s′i )(x) for x ∈ Ui defines a
global section s of Gwith g(s) = t.

(b) Let J be the product of all skyscaper sheaves Sx(Jx), as constructed in the proof of the existence of
enough injective sheaves, Proposition 3.13.1. Then J is injective. We need to show that it is fine. Since
X is paracompact, it suffices to consider a locally-finite cover (Ui)i∈I. As J is a product of skyscraper
sheaves and singletons {x}, x ∈ X are closed, there is a family (ϕi)i of endomorphisms of J , which in
every point only take the value 0 or Id with the property that suppΦi ⊂ Ui and

∑
i ϕi = Id. So J is fine.

(c) For every object A in an abelian category, on the set End(A) = Hom(A,A) addition and composition
establish the structure of a ring with unit. The category of cochain complexes for a given category is
again an abelian category. So let C• = (Cp)p∈Z be a complex of sheaves over a space X and let R = End(C•).
Let N ⊂ R be the set of nullhomotopic endomorphisms.

N is a two-sided ideal in R.
To show this, let ϕ ∈ R and let n ∈ N. Let P be a homotopy such that n = Pd + dP. Then, as ϕ is a
complex morphism, it commutes with the differentials, so nϕ = pϕd + dPϕ, so pϕ is a nullhomotopy for
nϕ. Likewise, ϕP is a nullhomotopy for ϕn.

Let now F be a fine sheaf and let 0 → F → I0
→ I1

→ . . . be a resolution, where each Ip is a product
of skyscraper sheaves with injective stalks. As any endomorphism ϕ : F → F can be extended to a
complex-endomorphism for the resolution by Lemma 3.11.4. This extension can be done stalk-wise,
and so the extension ϕp will satisfy supp(ϕp) ⊂ suppϕ. The complex-endomorphism (ϕ•) is uniquely
determined up to homotopy. Therefore we get a ring homomorphism

End(F )→ End(I•)/N.

The sequence 0 → F (X) → I0(X) → I1(X) is exact. So let p ≥ 1 and let s ∈ Ip(X) with ds = 0. Since
Ip−1
→ Ip

→ Ip+1 is exact, there exists a covering (Ui)i∈I such that for every i ∈ I there is ti ∈ Ip−1(Ui) with
s|Ui = dti. Let (ϕi) be a family of endomorphisms of F underlying the covering (Ui) with supp(ϕi) ⊂ Ui
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and
∑

i∈I ϕi = Id. These endomorphisms can be lifted to I• satisfying supp(ϕi,p) ⊂ Ui for each i ∈ I and
one has Id = h+

∑
i ϕi,•, where h is null-homotopic. As ds = 0 it follows that h(s) = dt for some t ∈ Ip−1(X).

We can extend each ϕi,p(ti) and each ϕi,p(dti) by zero outside Ui to get

s = h(s) +
∑

i

ϕi,p(s) = dt +
∑

i

ϕi,p(dti)︸  ︷︷  ︸
=dϕi,p(ti)

= d

t +
∑

i

ϕi,p(ti)

 . □

Theorem 3.14.6. Let X be a paracompact Hausdorff space. Then fine sheaves on X are acyclic with respect
to the global sections functor H0.

Proof. Let F be a fine sheaf on X. By (b) and (c) of the lemma there is an injective resolution 0 → F →
I0
→ I1

→ . . . such that the sequence 0→ F (X)→ I0(X)→ I1(X)→ . . . is exact. The sheaf cohomology
is by definition the cohomology of the complex 0→ I0(X)→ I1(X)→ . . . , which is exact, except at I0(X),
so Hk(X,F ) = 0 for k ≥ 1. □

* * *
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3.15 Cech Cohomology

In this section, X will denote a paracompact Hausdorff space.

Lemma 3.15.1. (a) Let U ⊂ X be open, Z ⊂ X closed with Z ⊂ U. Then there is an open set V with

Z ⊂ V ⊂ V ⊂ U.

(b) For every locally-finite cover (Ui)i∈I there is a refinement (Vi)i∈I, such that for every i ∈ I one has Vi ⊂ Ui.

Proof. (a) Let A be the closed set A = X∖U. We first consider the case Z = {z}. As X is a Hausdorff space,
for every a ∈ A there is an open neighbourhood Ba with z < Ba. Then (Ba)a∈A ∪ {U} is an open cover of X.
By paracompactness there is a locally-finite refinement (W j) j∈J ∪ {U}, where we have, that for every j ∈ J
there is an a ∈ A with W j ⊂ Ba. Let Ṽ be an open neighbourhood of z, that meets only finitely many W j,
say W1, . . . ,Wn. Then

V = Ṽ ∖ (W1 ∪ · · · ∪Wn)

is an open neighbourhood of z, which satisfies the claim, since z < Ba for all a ∈ A and W j ⊂ Ba for some
a.

Now let Z be arbitrary. By the first part there is, to every z ∈ Z, an open neighbourhood Vz with

z ∈ Vz ⊂ Vz ⊂ U.

Therefore (Vz)z∈Z ∪ {X ∖ Z} is an open cover of X. Let (Vi)i∈I ∪ {X ∖ Z} be a locally-finite refinement. As
this cover is locally-finite, one has ⋃

i∈I

Vi =
⋃
i∈I

Vi.

Let V =
⋃

i∈I Vi. Then V is open and

Z ⊂ V ⊂ V =
⋃

i

Vi ⊂ U.

For (b) let (Ui)i∈I be a locally-finite cover. Let S be the set of all families of open sets (Vi)i∈J, where J ⊂ I
and Vi ⊂ Ui, such that (Vi)i∈J ∪ (Ui)i∈I∖J is a cover of X. On S we instal the partial order

(Vi)i∈J ≤ (Ṽi)i∈ J̃ ⇔ J ⊂ J̃, Vi = Ṽi ∀i∈J.

By Zorn’s lemma there is a maximal element (Vi)i∈J. We claim that J = I. Assume, this is not the case.
Let i0 ∈ I ∖ J and let

Z = X ∖


⋃
i∈J

Vi ∪
⋃
i,i0

i∈I∖J

Ui


Then Z is closed and since the Vi and Ui form a cover, we get Z ⊂ Ui0 . By (a) there is an open set Vi0 ⊂ X
with Z ⊂ Vi0 ⊂ Vi0 ⊂ Ui0 . Therefore, J can be enlarged by i0, the family wasn’t maximal, which is a
contradiction and the claim follows. □
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Definition 3.15.2. Let X be a paracompact Hausdorff space. Let U = (Ui)i∈I be an open cover of X. A
tuple (U0, . . . ,Uk) of sets of the cover is called a Cech-k-simplex or in this section just a k-simplex. For
a k-simplex σ = (U0, . . . ,Uk) we define its support to be the set |σ| = U0 ∩ · · · ∩ Uk. The i-th side of a
k-simplex σ is the k − 1-Simplex

σi = (U0, . . . Ûi . . . ,Uk).

LetF be a sheaf over X and let Ck(U,F ) be the set of all maps f , which attach to a k-simplex σ an element
of F (|σ|). Note that F (∅) = 0. The elements of Ck(U,F ) are called k-cochains. Define

d : Ck(U,F ) → Ck+1(U,F )

by

d f (σ) =
k+1∑
i=0

(−1)i f (σi)||σ|.

One has d2 = 0, hence one gets a cochain complex, whose cohomology one writes as Ȟ
p
(U,F ). If ϕ :

F → G is a sheaf homomorphism, then one gets a morphism of cochain complexes C•(U,F )→ C•(U,G)
and so a morphism Ȟ

k
(U,F )→ Ȟ

k
(U,G). Therefore Ȟ

k
(U, ·) is a functor from the categorie of sheaves

over X to the category of abelian groups.

An element f of C0(U,F ) maps an element Ui to a section si ∈ F (Ui). If d f = 0, then

0 = d f (Ui,U j) = f (U j)|Ui∩U j − f (Ui)|Ui∩U j ,

and one then has si|Ui∩U j = s j|Ui∩U j , which implies that f (Ui) = s|Ui for a unique global section s ∈
F (X). Conversely, every global section s yields a map f as above by setting f (Ui) = s|Ui . One gets an
isomorphism

Ȟ
0
(U,F ) � H0(F ,X).

Let V be a refinement of the cover U. Then there is a map µ : V → U such that V ⊂ µ(V) for every
V ∈ V. We call such a map a refinement map If σ = (V0, . . . ,Vk) is a k-simplex of the cover V, then
µ(σ) = (µ(V0), . . . , µ(Vk)) is a k-simplex of the cover U. This µ induces a cochain map µ#

k : Ck(U,F ) →
Ck(V,F ) given by

µ#
k( f )(σ) = f (µ(σ))||σ|

and yielding a homomorphism
µ∗k : Ȟ

k
(U,F ) → Ȟ

k
(V,F ).

We need to show that the latter map on cohomology does not depend on the choice of a refinement map.

Lemma 3.15.3. Let τ :V →U be another refinement map. Then one has

τ∗k = µ
∗

k.

Proof. We construct a homotopy. Let σ = (V0, . . . ,Vk−1) be a (k − 1)-simplex Then set

σ̃ j = (µ(V0), . . . , µ(V j), τ(V j), . . . , τ(Vk−1)).
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Define Pk : Ck(U,F )→ Ck−1(V,F ) by

Pk( f )(σ) =
k−1∑
j=0

(−1) j f (σ̃ j)||σ|.

We want to show:
τ#
− µ# = dP + Pd.

For f ∈ Ck(U,F ) and σ = (V0, . . . ,Vk) we compute:

dP( f )(σ) =
k∑

i=0

(−1)iP( f )(V0, . . . V̂i . . . ,Vk)

=
∑
j<i

(−1)i+ j f (µ(V0), . . . , µ(V j), τ(V j), . . . τ̂(Vi) . . . , τ(Vk))||σ|

+
∑
j>i

(−1)i+ j+1 f (µ(V0), . . . µ̂(Vi) . . . , µ(V j), τ(V j), . . . , τ(Vk))||σ|

and

Pd( f )(σ) =
k∑

j=0

(−1) jd f (σ̃ j)||σ|

=

k∑
j=0

(−1) jd f (µ(V0), . . . , µ(V j), τ(V j), . . . , τ(Vk))||σ|

=
∑
i< j

(−1)i+ j f (µ(V0), . . . µ̂(Vi) . . . , µ(V j), τ(V j), . . . , τ(Vk))||σ|

+
∑
i> j

(−1)i+ j+1 f (µ(V0), . . . , µ(V j), τ(V j), . . . τ̂(Vi) . . . , τ(Vk))||σ|

+

k∑
j=0

f (µ0(V0), . . . , µ(V j−1), τ(V j), . . . , τ(Vk))||σ|

−

k∑
j=0

f (µ(V0), . . . , µ(V j), τ(V j+1), . . . , τ(Vk))||σ|.

The first two lines in the last expression equal −dP( f )(σ) hence cancel in dP + Pd. We end up with

(dP + Pd)( f )(σ)

+

k∑
j=0

f (µ0(V0), . . . , µ(V j−1), τ(V j), . . . , τ(Vk))||σ|

−

k∑
j=0

f (µ0(V0), . . . , µ(V j), τ(V j+1), . . . , τ(Vk))||σ|

= f (τ(V0), . . . , τ(Vk))||σ| − f (µ(V0), . . . , µ(Vk))||σ|

= (τ#
− µ#)( f )(σ).
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We have shown that the homomorphism of chain complexes µ#
−τ# is chain nullhomotopic and therefore

µ∗ and τ∗ agree on cohomology. □

For two open coversU andV we writeU <V ifV is a refinement ofU. This makes the set of all open
covers is a directed set.

There is a little set-theoretic hickup here, since we have defined a cover as a family and we can change
index sets to get new covers. This can be circumvented by allowing only index sets I, which are subsets
of, say P(X).

IfU < V, then we have shown that there is a canonical homomorphism Ȟ
k
(U,F )→ Ȟ

k
(V,F ). So the

abelian groups (Ȟ
k
(U,F ))U form a directed system. We define

Ȟ
k
(X,F ) = lim

−−→
U

Ȟ
k
(U,F ).

* * *
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4 Comparing cohomology theories

4.1 De Rham cohomology

Let X be a smooth manifold and let k ∈
{
0, . . . ,dim X

}
. For an open set U ⊂ X the set Ωk(U) of k-

differentialforms is anR-vector space. The map U 7→ Ωk(U) form a sheafΩk. For instanceΩ0 is the sheaf
of smooth germs of smooth functions. This contains the constant sheafKR as a subsheaf.

Theorem 4.1.1. The sequence
0→ KR → Ω0 d

−→ Ω1 d
−→ . . .

is a fine resolution of the constant sheafKR. Hence we get

Hk
dR(X) = Hk(X,KR).

Proof. From the Analysis 4 lecture we take:

Lemma 4.1.2 (Poincaré Lemma). Let U ⊂ Rn open and star-shaped and let ω be a smooth k-form in U with
k ≥ 1. If dω = 0, then there exists η ∈ Ωk−1(U) such that ω = dη.

As a smooth manifold is locally diffeomorphic to star-shaped open sets in Rn, the sequence is exact
locally, which means it is an exact sequence of sheaves. By example 3.14.4 the sheaves Ωk are fine. □

* * *
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4.2 Singular cohomology

Let X be a topological space and R a Z-module, i.e., an abelian group. For an open subset U ⊂ X
let Ck(U,R) = Hom(Ck(U),R) be the set of all singular cochains with values in R. For V ⊂ U let
resU

V : Ck(U,R) → Ck(V,R) be the restriction. So Pk : U 7→ Ck(U,R) is a presheaf. The coboundary
operator d : Ck(U,R) → Ck+1(U,R) commutes with restriction, so it defines a presheaf homomorphism
Ck
→ Ck+1. Let Ck be the sheafification of Ck. Then C0 is the sheaf of all maps with values in R. It contains

the constant sheafKR as subsheaf.

Lemma 4.2.1. The presheaf Pk satisfies the axiom of existence, but in general not the axiom of uniqueness.

In particular, it follows that the canonical map

P
k(X)→ Ck(X)

is surjective.

Proof. Let U =
⋃

i∈I Ui be open sets and let fi ∈ Ck(Ui,R) be given such that fi|Ui∩U j = f j|Ui∩U j holds for all
indices i, j ∈ I. Let E ⊂ Ck(U,R) be the group generated by all σ ∈ Ck(U,R) with the property that there
exists an index i ∈ I with σ ⊂ Ui. We then can define f̃ (σ) = fi(σ), independent of the index i and this
defines a linear map f̃ : E→ R. We have Ck(U) = E⊕ F, where F is the group generated by all remaining
simplices. So for s = sE + sF with sE ∈ E and sF ∈ F we define

f (s) = f̃ (sE).

Then f ∈ Ck(U,R) and we have f |Ui = fi for every i ∈ I.

Finally we give an example for the failure of the uniqueness axiom. Suppose X = U ∪ V with open sets
U and V and let E be the abelian group generated by all chains which are contained either in U or in V.
Pick a simplex σ, which is not contained in U or in V. Define a linear map f : Zσ ⊕ E → Z by f (E) = 0
and f (σ) = 1. Extend f to a linear map on Ck(X). Then f is locally zero, but not globally. □

Theorem 4.2.2. Let X be a paracompact Hausdorff space and locally contractable. The sequence

0→ KR → C
0 d
−→ C

1 d
−→ . . .

is a fine resolution of the constant sheafKR. We conclude

Hk
sing(X,R) = Hk(X,KR).

Proof. For the exactness at C0 it suffices to show, that for every x ∈ X there is an open neighbourhood U,
such that the sequence KR(U)→ C0(U,R)→ C1(U,R) is exact. For this choose U path-connected and let
α ∈ ker(d), so α : U → R with α(γ(0)) − α(γ(1)) = 0 for every path γ in U. Since U is path-connected ist,
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the map α is constant, i.e., inKR(U). The exactness at the other places follows from local contractability,
since contractible sets have trivial singular cohomology.

Next we show that the sheaves Ck are fine. For this let (Ui) be a locally-finite cover. Choose functions
ui : X→ {0, 1}with supp ui ⊂ Ui and

∑
i ui = 1. Define an endomorphism ϕi of Ck(U,R) by

ϕi( f )(σ) = ui(σ(t0)) f (σ),

where σ : ∆k
→ U is continuous and t0 is a fixed point. These endomorphisms commute with the

restrictions and thus define sheaf endomorphisms ofCk with suppϕi ⊂ Ui and
∑

i ϕi = Id. So the sheaves
C

k are all fine.

For the last assertion we need to show that the canonical map Ck(X,R) → Ck(X) is an isomorphism in
cohomology. For a covering U = (Ui)i∈I of X let Ck,U(X) denote the free abelian group generated by
Ck(Ui), i ∈ I. Then the canonical map Ck,U → Ck(X) is an isomorphism in homology, this is shown usinmg
barycentric decomposition. Let Ck

U
(X,R) = Hom(Ck,U(X),R). ForU <V, i.e., whenV is a refinement of

U, there is a canonical map Ck,V → Ck,U and thus, dually, Ck
U
→ Ck

V
and these maps are isomorphisms

in cohomology. Set
C̃k(X,R) = lim

−→
U

Ck
U

(X,R),

where the direct limit runs over all coverings U. The canonical map ϕ : Ck(X,R) → C̃k(X,R) is an
isomorphism in cohomology. Finally, by definition of the sheafification, there is a natural isomorphism
of complexes τ : Ck(X) �

−→ C̃k(X,R). Then the map τ−1
◦ ϕ induces the desired isomorphism

Hk
sing(X,R) �

−→ Hk(X CKR). □

Remark 4.2.3. The assertion of the theorem becomes false on non-locally contractible spaces. Let for
instance X be the Hawaiian earring. Then Eda/Kawamura sowed in The singular homology of the Hawaiian
earring. J. London Math. Soc. (2) 62 (2000), no. 1, 305–310., that

H1
sing(X) �

 ∞∏
j=1

Z

 ⊕
 ∞∏

j=1

Z
/ ∞⊕

j=1

Z

 .
In particular, this is not a free group. However, the very definition of Cech cohomology implies

Ȟ
1
(X) �

∞⊕
j=1

Z

and we shall see in Section 4.4, that the latter also equals the singular cohomology.

* * *
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4.3 Group cohomology

Let Γ be a group. Let MOD(Γ) be the abelian category of all Γ-modules. For an Γ-module M let

MΓ = {m ∈M : γm = m ∀γ ∈ Γ}

be the group of all Γ-invariant elements. Then M 7→ MΓ defines a functor H0(Γ, ·) from MOD(Γ) to the
category MOD(Z) = AB of Z-modules or abelian groups. It is easy to see that this functor is left-exact.
The right-derivatives of this functor are by definition the cohomology groups:

Hk(Γ,M) = Rk
H

0(Γ,M).

Let Y = EΓ be the universal covering of BΓ = Γ\Y. A Γ-module M induces alocally-constant sheaf
M = Γ\(Y ×M) over X = Γ\Y. Let Hk(X,M) be the corresponding sheaf cohomoloy.

Theorem 4.3.1. There is a natural isomorphy

Hk(Γ,M) � Hk(X,M).

In particular, when M = R is an abelian group with trivial Γ-action, thenM is the constant sheaf with stalk
R and so Theorem 4.2.2 implies that

Hk(Γ,R) = Hk
sing(BΓ,R)

in accordance with Definition 1.11.2.

Proof. The functors M 7→ Hk(Γ,M) form a universal δ-functor on MOD(Γ). Let AB(X) be the category
of sheaves of abelian Groups on X. Then F 7→ Hk(X,F ) is a universal δ-functor on AB(X). The sheaf-
functor MOD(Γ)→ AB(X), that to a module M attaches the locally-constant sheafLM, is exact. Therefore
M 7→ Hk(X,LM) is a δ-functor on MOD(Γ). It remains to show universality. As usual, we do that by
showing erasability of the Hk for k ≥ 1. Let M ∈MOD(Γ) and let

IM = {α : Γ→M}

be the abelian group of all maps from Γ to M. This becomes a Γ-module by

g.α(τ) = g(α(g−1τ)).

The map, which sends m ∈M to the constant map with value m, is an embedding M ↪→ IM of Γ-modules.
So it remains to show that

Hk(X,LIM ) = 0

for k ≥ 1. Let π : Y→ X = Γ\Y be the projection.

Lemma 4.3.2. One has
LIM � π∗KM,
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whereKM is the constant sheaf with stalk M on Y.

Proof. Let y ∈ Y and let U be an open neighbourhood of y such that U ∩ γU = ∅ for every γ ∈ Γ ∖ {1}.
Further, IM can be identified with

∏
γ∈ΓM, where Γ acts by permutations and action on the factors at

the same time. We write Clc for the set of all locally-constant maps. Then LIM (π(U)) by definition is
the set of all continuous sections of the projection Γ\

(
ΓU × IM

)
→ Γ\

(
ΓU

)
. Such a section s is a map

ΓU → Γ\
(
ΓU × IM

)
sending y ∈ ΓU to, say, Γ(y, α(y)), where the well-definedness implies that for γ ∈ Γ

we have
Γ(y, γ−1α(γy)) = Γ(γy, γγ−1α(γy)) = Γ(γy, α(γy)) = s(γy) = s(y) = Γ(y, α(y)).

This means that α(γy) = γα(y), and, as IM gets the discrete topology here, we have that α is locally-
constant. So we get

LIM (π(U)) �
{
α ∈ Clc(ΓU, IM) : α(γy) = γα(y)

}
�

α ∈ Clc

ΓU,∏
γ∈Γ

M

 : α(γy)τ = γα(y)γ−1τ


�

α ∈
∏
γ∈Γ

Clc (ΓU,M) : α(γy)τ = γα(y)γ−1τ


�

∏
γ∈Γ

Clc (γU,M
)
� π∗KM(π(U)). □

We now show that π∗KM is acyclic. For this note that the functor π∗ : AB(Y)→ AB(Γ\Y) is exact. This is
due to the special properties of the projection π : Y → Γ\Y, for if F is a sheaf over Y and if y0 ∈ Y, then
the stalk of π∗F over the image point π(y0) equals

π∗Fπ(y0) =
∏

y∈Y:π(y)=π(y0)

Fy.

Since a sequence of sheaves is exact iff all stalk sequences are exact, we conclude that π∗ is exact.

Further, for every sheaf F on Y one has

H
0(π∗F ) = H0(F ),

where H0 is the global sections functor (on the left over Γ\Y, on the right over Y). We choose a special
injective resolution ofKM by products of skyscraper sheaves with injective stalks

0→ KM → I0
→ I1

→ . . .

The images π∗(Ip) are again products of skyscraper sheaves with injective stalks. Since π∗ is exact, the
sequence

0→ π∗KM → π∗I0
→ π∗I1

→ . . .
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is an injective resolution of π∗KM. It follows that

Hk(Γ\Y, π∗KM) = Hk(H0(π∗I•)) = Hk(H0(I•)) = Hk(Y,KM)

The right hand side is zero for k ≥ 1, by Theorem 4.2.2 and the contractability of Y. □

* * *
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4.4 Cech-cohomology

In this section let X be a paracompact Hausdorff space.

Theorem 4.4.1. (Ȟ
k
)k is a universal δ-functor on the category AB(X). It follows

Ȟ
k
(X,F ) � Hk(X,F ).

Proof. For the δ-functor let 0→ F → G → H → 0 be an exact sequence of sheaves and letU be an open
cover of X. then the sequence

0→ Ck(U,F )→ Ck(U,G)→ Ck(U,H)

is exact. Let C
k
(U,H) be the image of Ck(U,G) in Ck(U,H). Then the sequence

0→ Ck(U,F )→ Ck(U,G)→ C
k
(U,H)→ 0

is exact. One gets a short exact sequence of cochain complexes

0→ C•(U,F )→ C•(U,G)→ C
•

(U,H)→ 0.

LetV be a refinement ofU. A given refinement map µ :V →U yields a commutative diagram

0 // C•(U,F ) //

µ

��

C•(U,G) //

µ

��

C
•

(U,H) //

µ

��

0

0 // C•(V,F ) // C•(V,G) // C
•

(V,H) // 0.

This in turn gives a commutative diagram of cohomology groups

. . . // H
k−1

(U,H) δ //

��

Ȟ
k
(U,F ) //

��

Ȟ
k
(U,G) //

��

H
k
(U,H) //

��

. . .

. . . // H
k−1

(V,H) δ // Ȟ
k
(V,F ) // Ȟ

k
(V,G) // H

k
(V,H) // . . .

Taking the direct limit, one gets a lang exact sequence

· · · → H
k−1

(X,H) δ
−→ Ȟ

k
(X,F )→ Ȟ

k
(X,G)→ H

k
(X,H)→ . . .

Lemma 4.4.2. There is a natural isomorphism H
k
(X,H) � Ȟ

k
(X,H), which commutes with the connection

homomorphisms.

Proof. It suffices to show that to every given locally-finite coverU and to every given f ∈ Ck(U,H) there
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is a refinement O and a refinement map µ : O → U, such that µ( f ) ∈ C
k
(O,H). So letU = (Ui)i∈I be an

open cover and let f ∈ Ck(U,H). By Lemma 3.15.1 there exists an open coverV = (Vi)i∈I with Vi ⊂ Ui

For every i ∈ I.

As (U.) is locally-finite, for every x ∈ X there is an open neighbourhood Ox with

• Ox ⊂ Vi for some i ∈ I,

• if Ox ∩ Vi , ∅, then Ox ⊂ Ui.

• Ox lies in the intersection of all Ui containing x,

• if σ is a k-simplex of the coverU and if x ∈ |σ|, (so Ox ⊂ |σ|), then the restriction f (σ)|Ox is the image
of a section of G over Ox.

The last condition can be fulfilled, since there are only finitely many k-simplices for the coverU, which
contain x. The cover (Ox)x∈X is our candidate. For every x ∈ X choose some Vx ∈ V and Ux ∈ U with
Ox ⊂ Vx ⊂ Vx ⊂ Ux. We get a refinement map µ : O → U. Now let σ = (Ox0 , . . . ,Oxk ) be a k-simplex to the
coverO. Then one has Ox0∩Vxi , ∅ for 0 ≤ i ≤ k, so it follows Ox0 ⊂ Uxi . Hence Ox0 ⊂ Ux0∩ . . .Uxk = |µ(σ)|.
Therefore,

µ( f )(σ) = f (Ux0 , . . . ,Uxk )||σ|

= f (Ux0 , . . . ,Uxk )|x0︸               ︷︷               ︸
∈G(Ox0 )

∣∣∣∣∣∣∣∣∣∣∣∣
|σ|︸                  ︷︷                  ︸

∈G(|σ|)

.

Finally one gets µ( f ) ∈ C
k
(O,H). □

So the long exact sequence is the one demanded in the definition of a δ-functor. The functoriality of the
δ-morphism is clear on the level of Ck(U,F ) and therefore follows for the direct limit.

It follows, that Ȟ is a δ-functor. For universality, we show that Ȟ
k

is erasable for k ≥ 1. By Lemma 3.14.5
and Theorem 3.14.6 it suffices to show the following lemma.

Lemma 4.4.3. If F is fine, one has Ȟ
k
(X,F ) = 0 For every k ≥ 1.

Proof. Let k ≥ 1. It suffices to show Ȟ
k
(U,F ) = 0 for every locally-finite coverU = (Ui)i∈I. Let (ϕi) be an

associate family of Endomorphisms of F with suppϕi ⊂ Ui and
∑

i ϕi = 1. We show that the Identity on
C•(U,F ) is nullhomotopic. For this we construct maps hp : Cp(U,F )→ Cp−1(U,F ) for every p ≥ 1. Let
f ∈ Cp(U,F ) and let σ = (U0, . . . ,Up−1) be a (p − 1)-simplex to the coverU. Then ϕi ◦ f (Ui,U0, . . . ,Up−1)
has support in Ui ∩U0 ∩ · · · ∩Up−1. Extending by zero, we can view ϕi ◦ f (Ui,U0, . . . ,Up−1) as a section
on U0 ∩ . . . ,∩Up−1. Define

hp( f )(σ) =
∑

i

ϕi ◦ f (Ui,U0, . . . ,Up−1).
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Then one gets
d ◦ hp + hp+1 ◦ d = Id

for p ≥ 1. The Lemma follows. □

By the lemma Ȟk is erasable for k ≤ 1 and therefore they form a universal δ-functor. □

* * *
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4.5 Leray covers

In this section X continues to be a paracompact Hausdorff space.

Lemma 4.5.1. Let P =
∏

x∈X Sx,Ax be a product of skyscraper sheaves. Then Ȟk(U,P) = 0 for every k ≥ 1 and
every coverU.

Proof. For every open set U ⊂ X we have P(U) =
∏

x∈U Ax and this isomorphism commutes with the
Cech-differential, hence it suffices to show the claim for a single skyscraper sheaf S = Sx0,A. In that
case, let I′ = {i ∈ I : x0 ∈ Ui} and X′ =

⋃
i∈I′ Ui. Then the embedding X′ ↪→ X induces isomorphisms on

Ȟk(U,S) for all k as the sheaf vanishes outside X′. Therefore, we can replace X with X′ and likewise
replace I by I′ and henceforth assume that x0 ∈ Ui for every i ∈ I. Then for a simplex σ, every section
s ∈ S(|σ|) is uniquely determined by the value s(x0), which can be every element of A. We therefore can
identify Ck(U,S) with the set of maps f : Ik+1

→ A and the differential is

d f (i0, . . . , ik+1) =
k+1∑
j=0

(−1)i f (i0, . . . î j . . . , ik+1).

This is the coboundary operator to the following chain complex Ck is the free abelian group generated
by Ik+1 and the boundary operator is

∂(i0, . . . , ik) =
k∑

j=0

(−1)k (i0, . . . , î j . . . , ik).

Let Y be the full simplicial complex on the vertex set I. Mapping (i0, . . . , ik) to the singular simplex
spanned by i0, . . . , ik defines a map from Hk(C•) to Hk,sing(Y). In the same way as the equivalence of
singular and simplicial homology, one shows that this map is an isomorphism. By Proposition 1.3.3 one
concludes Ȟk(U,S) � Hk

sing(Y,A), but the latter vanishes for k ≥ 1 since the full simplicial complex Y is
contractible. □

Definition 4.5.2. A cover U of X is called Leray-cover for the sheaf F , if for every k-simplex σ =
(U0, . . . ,Uk) the sheaf F ||σ| is acyclic.

Example 4.5.3. Let X be a smooth manifold. By the Poincaré Lemma the constant sheaf R is acyclic on
every open set U ⊂ X, which is diffeomorphic withRn. Therefore X possesses locally-finite Leray-covers.
If X is compact, there is a finite Leray cover.

Theorem 4.5.4. IfU is a Leray cover for the sheaf F , then the natural map

Ȟ
p
(U,F ) → Ȟ

p
(X,F )

is an isomorphism.

So it suffices to compute Cech cohomology with one Leray cover.
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Proof. Embed F into a sheaf J which is a product of skyscraper sheaves with injective stalks. Then
J|U is injective for every open set U ⊂ X. In particular, U is a Leray cover for J as well. Let G be the
cokernel, so we have an exact sequence

0→ F → J → G→ 0.

AsU is a Leray cover, for every k-simplex the sequence

0→ F (|σ|)→ J(|σ|)→ G(|σ|)→ 0

is exact. We get an exact sequence of Cech complexes

0→ C•(U,F )→ C•(U,J)→ C•(U,G)→ 0.

This yields a long exact sequence on the cohomology. The same holds for the restrictions to |σ| for any
given cochain σ. As F ||σ| andJ||σ| are acyclic, the long exact sequence implies that G||σ| is acyclic, too. So
U is a Leray cover for G, too.

By Lemma 4.5.1 we have Ȟk(U,J) = 0 for k ≥ 1. Together with the homomorphism into the Cech
cohomology, we get the following commutative diagrams with exact rows:

0 // Ȟ
0
(U,F ) //

�
��

Ȟ
0
(U,J) //

�
��

Ȟ
0
(U,G) //

�
��

Ȟ
1
(U,F ) //

α
��

0

0 // Ȟ
0
(X,F ) // Ȟ

0
(X,J) // Ȟ

0
(X,G) // Ȟ

1
(X,F ) // 0

Since the first three vertical arrows are isomorphisms, the five lemma implies that the arrow α is an
isomorphism, too.

For k ≥ 1 the long exact sequence gives

0 // Ȟ
k
(U,G) //

��

Ȟ
k+1

(U,F ) //

��

0

0 // Ȟ
k
(X,G) // Ȟ

k+1
(X,F ) // 0.

In the first diagram the first three vertical arrows are isomorphisms and so is the third. In the second
diagram we can apply a seesaw principle since know thatU is a Leray cover for the sheaf G, too. □

Application for Cech-cohomology

Cech-cohomology was invented in complex analysis and has many applications there. Here we only
mention the Cousin-problem: Let X ⊂ Cn be open and let (Ui) be an open cover. A function f : X → C
is called holomorphic, if for every z ∈ X and every 1 ≤ j ≤ n the map w 7→ f (z1, . . . , z j−1,w, z j+1, . . . zn) is
holomorphic in a neighbourhood of z j.

A meromorphic function on X is a map f : X → C ∪ {∞}, such that for every z ∈ X there is an open
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neighbourhood U and holomorphic functions h1, h2 on U and

f |U =
h1

h2
.

Let O(X) be the set of holomorphic functions on X and M(X) the set of all meromorphic functions.
Further let O×(X) be the set of holomorphic functions without zero.

Let there be given an open cover (Ui)i∈I of X. Let fi ∈ M(Ui) be meromorphic functions with fi
f j
∈

O
×(Ui ∩U j) for all i, j ∈ I.

Question: is there f ∈ M(X) such that f
fi
∈ O

×(Ui) for every i?

(This means that the global function f has the same zeros and poles as the fi.)

Theorem 4.5.5. If Ȟ
1
(U,O) = 0 and each Ui is simply connected, then each Cousin problem to the covering

U has a solution.

Proof. It is easy to see that there exists a so called weak solution, i.e., a continuous function ψ ∈ C(X∖P),
defined outside the set P poles, such that ψ/ fi extends continuously to a continuous, zero-free function.

Thenψ = ψi fi on Ui, where the functionψi has no zeros. Note that the exponential function exp : C→ C×

is the universal covering of C×. Therefore the continuous function ψ : Ui → C×, factors throup exp, i.e.,
there exists a function ϕi ∈ C(Ui) with ψi = eϕi , i.e., ψ = eϕi fi on Ui. On Ui ∩U j one therefore has

eϕ j−ϕi =
fi
f j
∈ O

×(Ui ∩U j). (∗)

This implies ϕi, j = ϕi − ϕ j ∈ O(Ui ∩ U j). The family s = (ϕi, j)i, j∈I is a cocycle, i.e., lies in Z1(U,O), as the
following computation shows. Let σ = (U0,U1,U2) be a 2-simplex, then on U0 ∩U1 ∩U2 we have

ds(σ) = s(U1 ∩U2) − s(U0 ∩U2) + s(U0 ∩U1)

= ϕ1 − ϕ2 − (ϕ0 − ϕ2) + ϕ0 − ϕ1 = 0.

As Ȟ1(U,O) = 0, this cocycle is a coboundary. Thus there exist holomorphic functions gi ∈ O(Ui) with

ϕi, j = ϕi − ϕ j = gi − g j

on Ui ∩U j. By (∗) we get eg j−gi = fi/ f j, so
egi fi = eg j f j

holds on Ui ∩ U j. Hence there exists a global meromorphic function f ∈ M(S) with f = egi fi on Ui,
whence the claim. □
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