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Riemann Surfaces 2

1 Coverings and fundamental group

1.1 Surfaces

Definition 1.1.1. A surface is a topological space S together with a family (Ui, hi)i∈I,
where

(a) every Ui ⊂ S is an open subset,

(b) hi : Ui → R2 is a homeomorphism to an open subset hi(Ui) ⊂ R2,

(c) one has S =
⋃

i∈I Ui,

(d) S is a separable Hausdorff space.

Here S being separable means that S has a countable dense subset.

Every hi is called a chart of the surface, the family (Ui, hi)i∈I is called an atlas of the
surface.

Examples 1.1.2. (a) R2 is a surface with the identity map as only chart. The same
holds for any open subset of R2.

(b) The Riemann number sphere Ĉ = C ⊔ {∞} is a surface with the charts
h1 : C→ C � R2, h1(z) = z and h2 : C× ⊔ {∞} → C, h2(z) = 1

z .

(c) The torus R/Z ×R/Z is a surface with the charts

ha,b : Ua,b → R
2,

(x, y) 7→ (x, y),

where Ua,b = {(x, y) : a < x < a + 1, b < y < b + 1} and (a, b) ∈ R2.

(d) The condition that S be a Hausdorff space, does not follow from the other axioms
as the following example shows: Let S = C× ⊔ {a, b}, where a, b are two new
elements. We call a subset U ⊂ S open, if

(a) U ∩ C is open in C and

(b) if a ∈ U or b ∈ U, then there is ε > 0, such that U contains the open disk around
zero of radius ε.

(e) The condition of separability does not follows from the other axioms as the
following example shows: To every countable ordinal number α we attach a
“surface” Fα in a way that α < β ⇒ Fα ⊂ Fβ.
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(i) We set F0 = C.

(ii) We set Fα+1 = Fα ⊔ {Re(z) ≥ 0}, where the topology is defined as follows: we
fix a homeomorphism Fα

�
−→ C

�
−→ L, where L = {z : Re(z) < 0} is the left

half-plane. Then we give Fα+1 � C the usual topology of C.

(iii) If λ is a countable limit number, then Fλ =
⋃
α<λ Fα also is homeomorphic to C.

Let c be the smallest non-countable ordinal number, then

F =
⋃
α<c

Fα

is a topological space which atisfies all axioms of a surface, except for separabilitry.

Definition 1.1.3. Let p ∈ S. A chart (U, h) is called chart around p, if h(p) = 0.

Remark 1.1.4. Note that a surface S is locally path-connected, i.e., every point p ∈ S
has a path-connected open neighbourhood. This has the following consequence:

If S is connected, then it is path-connected.

1.2 Paths

Definition 1.2.1. A continuous map γ : [0, 1]→ S is called a path from γ(0) to γ(1).
The space S is called path-connected, if to any two points x, y ∈ S there is a connecting
path.

Definition 1.2.2. Two paths γ, η : I = [0, 1]→ S are called homotopic (with fixed
ends), if there is a continuous map h : I × I→ S with

• h(s, 0) = γ(0), h(s, 1) = γ(1) fuer alle s ∈ I, sowie

• h(0, t) = γ(t) and h(1, t) = η(t) fuer alle t ∈ I.

If γ and η are homotopic, they have the same ends, so γ(0) = η(0) and γ(1) = η(1).

γ

η

homotopy of paths
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Lemma 1.2.3. Homotopy of paths is an equivalence relation.

Proof. The relation γ ∼ γ is clear. Further it is clear that γ ∼ η implies η ∼ γ, since if h is
the first homotopy then h̃(s, t) = h(1 − s, t) is the second. Finally assume γ ∼ η and
η ∼ τ with homotopies h and h′, then h̃, given by

h̃(s, t) =

h(2s, t) 0 ≤ s ≤ 1
2 ,

h′(2s − 1, t) 1
2 , s ≤ 1

is a homotopy of γ and τ. □

Definition 1.2.4 (Composition of paths). Let γ, η be paths with γ(1) = η(0). Then the
path γ · η is defined by

γ · η(t) =

γ(2t) 0 ≤ t ≤ 1
2 ,

η(2s − 1) 1
2 < t ≤ 1.

If γ is a path from x to y and η from y to z, then γ · η is a path from x to z.

Lemma 1.2.5. Composition of paths is well-defined and associative on homotopy classes.

Proof. The first assertion is that γ ∼ γ′ and η ∼ η′ implies that γ · η is homotopic to
γ′ · η′. Constructing a homotopy to do this job is left to the readeras an exercise.

The second assertion means that (α · β) · γ is homotopic to α · (β · γ). These two paths
have the same image, so the homotopy only has to perform a change of parameters.
The homotopy

h(s, t) =


α ((2 + 2s)t) 0 ≤ t ≤ 1

2+2s ,

β (4t − (1 + s)) 1
2+2s < t ≤ 1

2+2s +
1
4 ,

γ ((4 − 2s)t − (3 − 2s)) 1
2+2s +

1
4 < t ≤ 1

does this. □

Definition 1.2.6. The path γ̌(t) = γ(1 − t) is called the reverse path of γ.

A path c : [0, 1]→ S with c(0) = c(1) is called a closed path.

We write π1(S, a) for the set of all homotopy classes of closed paths with endpoint a ∈ S.

Proposition 1.2.7. The set π1(S, a) is a group with composition of paths as multiplication.

If S is connected, then for every b ∈ S the group π1(S, b) is isomorphic with π1(S, a). The group
π1(S, a) is called the fundamental group of S in the basepoint a.
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Proof. The law of associativity is satisfied by Lemma 1.2.5. The neutral element is
given by the constant path. The inverse to γ is given by the reverse path γ̌. If finally η
is a path connecting a to b, then

γ 7→ η · γ · η̌

is an isomorphism of the fundamental groups π1(S, a) �
−→ π1(S, b). □

Definition 1.2.8. A connected surface S is called simply connected, if π1(S, a) = {1} for
one and therefore all a ∈ S.

Proposition 1.2.9. If S ⊂ C is a star-shaped domain, then S is simply-connected.

Proof. Let a ∈ S be a point, from which one sees all of S. Then for a closed path γ with
end-point a the map

h(s, t) = (1 − s)γ(t) + sa

is a homotopy to the constant path. □

Proposition 1.2.10. The number-sphere Ĉ is simply connected.

Proof. every close path γ with endpoint 0 is homotopic to a path that doesn’t meet
z = 1. Now Ĉ ∖ {1} � C and C is star-shaped. □

1.3 Unramified coverings

Definition 1.3.1. An unramified covering of a surface S is a continuous map

π : E→ S,

such that there exists a discrete space D , ∅ and for every x ∈ S an open neighborhood
U, so that the diagram of continuous maps

π−1(U) � //

π
""

U ×D

p1
||

S

commutes. Here the horizontal arrow is a homeomorphism and p1 is the projection
onto the first coordinate. The space U ×D is equipped with the product topology.

As D is discrete, the product U ×D is homeomorphic with the disjoint union
⊔

d∈D U
of copies of U.
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A neighborhood U of x with this property is called a trivializing neighborhood.

The degree of the covering is the cardinality of the setD.

Examples 1.3.2. • The trivial coveringp1 : S ×D→ S.

• The map p : C× → C× given by p(z) = z2 is a non-trivial unramified covering of
degree 2.

Definition 1.3.3. A homomorphism of coverings or a deck transformation from
E→ S to F→ S is a continuous map ψ : E→ F such that the diagram

E
ψ

//

��

F

��

S

commutes.

Lemma 1.3.4 (Lifting of paths). Let π : E→ S be a covering. Let γ : [0, 1]→ S be a
continuous map and let x0 = γ(0). Then for every y ∈ π−1(x0) there is exactly one path
γ̃y : [0, 1]→ E with γ̃y(0) = y and π ◦ γ̃y = γ.

Every such γ̃y is called a lifting of γ. The map y 7→ γ̃y(1) is a bijection from π−1(x0) to
π−1(x1), where x1 = γ(1).

If γ and τ are paths in S with γ ≃ τ, then one has γ̃y ≃ τ̃y.

Proof. Let y ∈ π−1(x0). Let U ⊂ S be a trivializing neighborhood of x0, i.e.,
π−1(U) � U ×D. Then there is a neighborhood Uy of y such that π|Uy is a
homeomorphism of Uy to U. Let t0 > 0 such that γ([0, t0)) ⊂ U, then γ can on [0, t0) be
lifted in a unique way to a path γ̃ with γ̃(0) = y. Let t1 > 0 be the supremum of all
t0 > 0 such that γ|[0,t0) has a unique lifting γ̃ with γ̃(0) = y. Let V be a trivializing
neighborhood of γ(t1). In this neighborhood we can extend this lifting, if t1 < 1, so by
maximality of t1 we get t1 = 1.

The map y 7→ γ̃y(1) is bijective, because the corresponding map for γ̌ is an inverse.

Let γ ≃ τ in S and let h : [0, 1] × [0, 1]→ x ba a homotopy with fixed ends. As above
one sees that h has a unique lifting to a continuous map h̃ : [0, 1] × [0, 1]→ E with
π ◦ h̃ = h and h̃(0, 0) = y. Then h̃ is the desired homotopy. □

Proposition 1.3.5. Let S be connected. Let π : E→ S be a covering. Then every connected
component C of E is a covering of S. Further C is open in E and path-connected.
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So every covering decomposes into disjoint connected coverings. Every connected covering of a
path-connected space is path-connected.

Proof. Let y0 ∈ E and let x0 = π(y0). Let W(y0) be the set of all points z ∈ E, which can
be joined with y0 by a path in E. This is the path component of y0. Let
D = π−1(x0) ∩W(y0). Let x1 ∈ S and let γ be a path from x0 to x1. For every z ∈ D there
is exactly one lifting γ̃z of γ to E, which starts in z. Then γ̃z(1) lies in W(y0) and the
map z 7→ γ̃z(1) is a bijection from D to D′ = π−1(x1) ∩W(y0). So W(y0) is a covering.
Further the set W(y0) is a union of sets of the form U ×DC, where U is a trivializing
neighborhood. This means that W(y0) is open and E decomposes into path
components, which are open, so they coincide with the connected components. □

1.4 The universal covering

Theorem 1.4.1. Let S be a connected surface.

(a) x0 ∈ S. Let πE : E→ S and πF : F→ S connected coverings and let E be simply
connected. Choose some fixed e ∈ π−1

E (x0) and f ∈ π−1
F (x0). Then there is exactly one

homomorphism of coverings ψ : E→ F with ψ(e) = f . The map ψ is surjective.

(b) In particular, if S has a simply connected covering, then it is unique up to
isomorphism. We call it the universal covering and write it as S̃→ S.

Proof. (a) Let y ∈ E and let γy be a path in E from e to y. Define

ψ(y) = ˜(πE ◦ γy) f (1).

This means, we project γy to S first, then lift it to F and evaluate at 1. Since E is simply
connected, γy is uniquely determined by y up to homotopy with fixed ends. So the
projection πE ◦ γy is uniquely determined up to homotopy and so the lift is unique up
to homotopy. So the map ψ is well-defined. As πE and πF are local homeomorphisms,
ψ is continuous. Commutativity of the diagram is clear by definition. Uniqueness is
clear as well, since a given homomorphism of coverings from E to F must map the
path γy to the unique lifting of πE ◦ γy.

(b) If E and F are simply connected coverings, and if e, f are as above, then there are
uniquely determined homeomorphisms ψ : E→ F and ϕ : F→ E with ψ(e) = f and
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ϕ( f ) = e. Then ϕ ◦ ψ is the uniquely determined homeomorphism E→ E that maps e
to e, so ϕ ◦ ψ = Id. In the same way one gets ψ ◦ ϕ = Id. □

Theorem 1.4.2. Let S be a connected surface. Then S has a universal covering

p : S̃→ S.

The fundament group Γ = π1(S, x0) acts by homeomorphisms on S̃, in a way that S � Γ\S̃.
For every connected covering E→ S there is a subgroup Σ of Γ, such that E � Σ\S̃.

Proof. We construct S̃ as follows: Choose a base point x0 ∈ S and define S̃ as the set of
all paths τ with starting point x0 modulo homotopy with fixed ends. The projection
p : S̃→ S is

p([τ]) = τ(1).

The fundamental group Γ = π1(S, x0) acts on S̃ by

[γ][τ] = [γ.τ]

for [γ] ∈ Γ and [τ] ∈ S̃. We give S̃ a topology as follows: Let [τ] ∈ S̃. Let x = τ(1) and U
a simply connected open neighborhood of x in S. For every y ∈ U choose a path σy

from x to y, which completely lies in U. Then σy is uniquely determined up to
homotopy with fixed ends. Let

Ũ =
{
[τ.σy] : y ∈ U

}
Then p|Ũ is a bijection Ũ→ U. On Ũ we instal the topology induced by this bijection.
Finally, on S̃ we put the topology induced by all inclusion maps Ũ ↪→ S̃, where U runs
through the set of all simply connected open subsets of S. We now show: If γ ∈ Γ and
γŨ ∩ Ũ , ∅, then γ = 1. For this let γŨ ∩ Ũ , ∅. Then there are y, z ∈ U with
γ.τ.σy ≃ τ.σz. Evaluating at 1, one sees y = z, so γ.τ.σy ≃ τ.σy. Therefore

x0 ≃ γ.τ.σy.σ̌y.τ̌.

We have σy.σ̌y ≃ x0 and so τ.σy.σ̌y.τ̌ ≃ x0. This yields γ ≃ x0, which means that γ
represents the neutral element of Γ. Next we show

p−1(U) =
⊔
γ∈Γ

γŨ � Ũ × Γ � U × Γ.



Riemann Surfaces 9

For this let [η] ∈ p−1(U), so η(1) = y ∈ U. Then γ = [η.σ̌y.τ̌] ∈ Γ and one has
[η] = γ[τ.σy] ∈ γŨ. Therefore p is a covering.

The space S̃ is path-connected, since for each [τ] ∈ S̃ there is a path σ in S̃, which
connects [τ] to the constant path:

σ(s) = [t 7→ τ((1 − s)t)].

Let π : E→ S be a connected covering. Then E is path-connected. Choose f ∈ π−1(x0).
Define η : S̃→ E by

η([τ]) = τ̃ f (1),

where τ̃ f is the unique lift of the path τ to E with τ̃ f (0) = f . Since π ◦ τ̃ f = τ, the
diagram

S̃
η

��

��

E

π
��

S

commutes. To see that the map η is surjective, let e ∈ E and let τ be a path in E from f
to e. Since the lift is unique, one has e = η([π ◦ τ]). Therefore η is a covering. Let

Σ =
{
λ ∈ S̃ : η(λ) = f

}
Then Σ ⊂ Γ and η induces a homeomorphism Σ\S̃→ E.

It remains to show that S̃ is simply connected. For this let σ be a closed path in S̃ with
starting point y0. We may assume that y0 is the class of the constant path in S of value
x0 ∈ S. Then σ is the unique lifting of the path p ◦ σ, which starts at y0. Then the class
of p ◦ σ is an element of S̃ which projects to x0. Let τt be the path s 7→ p ◦ σ(st). Then
t 7→ [τt] is a path which connects y0 to [p ◦ σ]. This path T : t 7→ [τt] is a lift of p ◦ σ,
with T(0) = y0, so by uniqueness T = σ. So y0 = σ(1) = T(1) = [τ1] = [p ◦ σ]. This means
that p ◦ σ is homotopic to the constant path and this homotopy lifts to a homotopy of σ
to the constant path in S̃. □

Definition 1.4.3. A group action of Γ on a set M is a free action or a fixed-point free
action, if for every m ∈M and every γ ∈ Γ one has

γm = m ⇒ γ = 1.
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So an action is free, if all stabilizer groups

Γm = {γ ∈ Γ : γm = m}

are trivial.

Definition 1.4.4. Let Y be a topological space. A group action of Γ on S is a
discontinuous action, if every point y ∈ Y has an open neighborhood U such that

γU ∩U , ∅ → γ = 1.

If an action is discontinuous, it is free.

Definition 1.4.5. A group action of Γ on a topological space S is a continuous action,
if for every γ ∈ Γ the map S→ S, x 7→ γx is continuous.

Lemma 1.4.6. Let G be a finite group which acts continuously and freely on a metric space.
Then G acts discontinuously.

Proof. Assume, G does not act diskontinuously. Then there exists a point x ∈ S such
that for every open set Un = B1/n(x), n ∈N there is a gn ∈ G with gn , 1 and
gnUn ∩Un , ∅. Since G is finite, we can assume gn = g for some g ∈ G. This means that
for every n there is xn, yn ∈ Un with xn = gyn. The sequences xn and yn both converge
to x, so by continuity we get gx = x. Contradiction! □

Definition 1.4.7. A group Γ acts transitively on a set M, if M consists of a single
G-orbit only, i.e., if

m,n ∈M ⇒ ∃ γ ∈ Γ : γm = n.

Let S be connected and π : E→ S a covering. A deck transformation is a bijection
d : E→ E such that the diagram

E d //

π
��

E

π
��

S

commutes. Let Deck(π) be the group of all deck transformations. One also calls
Deck(π) the Galois group of the covering and writes it as Gal(π) or Gal(E/S).

Proposition 1.4.8. Let S be connected and π : E→ S be a covering.

(a) If E is connected and d a deck-transformation with d(e) = e for some e ∈ E, then d = IdE.
In particular we get: If π is the universal covering, then Deck(π) � π1(S).
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(b) If Y is simply connected and if a group Γ acts discontinuously on Y, then Y = S̃ with
S = Γ\Y and Γ � π1(S).

Proof. (a) Let d(e) = e and let f ∈ E. Then there exists a path α from e to f in E. Let
γ = π ◦ α. Then α is the unique lifting of γ to E with α(0) = e, so α = γ̃e. On the other
hand d ◦ α is a lifting as well γ with d ◦ α(0) = d(α(0) = d(e) = e, so we get d ◦ α = α and
thus d( f ) = d ◦ α(1) = α(1) = f , which means, d = Id.

If π is universal, then Γ = π1(S, x0) acts discontinuously on S̃ by deck transformations,
so Γ ↪→ Γ(π). The group Γ also acts transitively on the fibre F = π−1(x0). So let d be
adeck transformation and let e ∈ F. Then there exists γ ∈ Γwith d(e) = γ(e), so
γ−1d(e) = e, which means γ−1d = Id, or γ = d.

(b) Let Y be simply connected and let Γ acts discontinuously. We show that the
projection π : Y→ S := Γ\Y is a covering. For this let x ∈ Γ\Y, say x = Γy. Let V be an
open neighborhood of y with γV ∩ V , ∅ ⇒ γ = 1. Then U = π(V) is an open
neighborhood of x and the diagram

π−1(U) =
⊔
γ∈Γ γV � //

π
''

V × Γ � U × Γ

p1
xx

U

commutes. Therefore π is a covering. Since Y is simply connected, we get Y � S̃. □

Definition 1.4.9. A covering π : E→ S is called normal, if the canonical map

E/Gal(E/S)→ S

is a homeomorphism.

Lemma 1.4.10. Let π : E→ S be a connected covering of a surface S. Then the following are
equivalent.

(a) π is normal,

(b) for every x ∈ S the Galois group Gal(π) acts transitively on the fibre π−1(x),

(c) Ther is a point x ∈ S, such that Gal(π) acts transitively on the fibre π−1(x).

Proof. (a)⇒(b): Let x ∈ S. The fibre of E/Gal(π) is the set of Gal(π)-orbits of π−1(x).

(b)⇒(c) is clear.
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(c)⇒(a): The map E/Gal(π)→ S is a connected covering, which has trivial fibre and
one place. Then it has trivial fibre everywhere. A covering with trivial fibre is a
homeomorphism. □

Theorem 1.4.11 (Main Theorem of Galois-theory of coverings). Let S be a surface
and let S̃ be the universal covering. The map

H 7→ S̃/H

is a bijection between the set of all conjugacy classes of subgroups H of Γ = π1(S) and the
set of isomorphy classes of connected coverings S̃/H→ S̃/Γ = S of S, so{

subgroups H of Γ
}
/conjugation

�
−→ {conn. coverings E→ S}/isomorphy

A covering is normal if and only if the corresponding subgroup H is a normal subgroup of
Γ. So then the map specializes to{

normal subgroups
}
�
−→

{
normal coverings

}
/isomorphy.

Proof. First we show well-definedness: Let the groups G,H ⊂ Γ be conjugate, say

ψhψ−1
∈ G.

Then ψ induces a homeomorphism ϕ : S̃/H→ S̃/G such that the diagram

S̃
ψ

//

pH
��

S̃
pG
��

S̃/H
ϕ
// S̃/G

commutes. This implies well-definedness.

We show injectivity of the map H 7→
(
S̃/H→ S

)
: let H,G be two subgroups of Γ giving

isomorphic coverings. Then there is a homeomorphism ϕ : S̃/H→ S̃/G over S.
Because of the uniqueness of the universal covering the map S̃→ S̃/H→ S̃/G lifts to a
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homeomorphism ψ : S̃→ S̃ such that the diagram

S̃
ψ

//

pH
��

S̃
pG
��

S̃/H
ϕ
// S̃/G

commutes. If h ∈ H, so pH(hx) = pH(x), then pG(ψ(hx)) = pG(ψ(x)), which means that

ψhψ−1
∈ G.

This also works from G to H, so that ψHψ−1 = G. Thus we get injectivity.

Surjectivity is obtained from the universal property of the universal covering. □

1.5 Determining the fundamental group

Proposition 1.5.1. The fundamental groups of C×, T and E× = {z ∈ C : 0 < |z| < 1} each are
isomorphic to Z.

Proof. If γ is a closed path in C×, then γ(t)
|γ(t)| is a closed path in S1. So we get

isomorphisms π1(C×) � π1(T) � π1(E×). Now T � R/Z, so R is the universal covering
and by Proposition 1.4.8 the fundamental group is Z. □

Definition 1.5.2. Let G,H,L be groups and let ϕ : L→ H, ψ : L→ H be group
homomorphisms. Then the amalgamate product

G ∗L H

is by definition equal to the set of all finite tuples (words) of the form (x1, x2, . . . , xn)
with x j ∈ G ⊔H modulo the reduction rules:

(a) (. . . , x, y, . . . ) = (. . . , xy, . . . ),
if x, y both lie in G or both lie in H, and

(b) (. . . , x, 1, y, . . . ) = (. . . , x, y, . . . )
where 1 is the neutral element of G or H. Finally,

(c) (. . . , ϕ(x), . . . ) = (. . . , ψ(x), . . . )
for every x ∈ L.

In the special case L = {1} one writes this group as G ∗H and calls it the free product of
G and H.
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Remark 1.5.3. (i) The composition

(x1, . . . , xm)(y1, . . . , ym) = (x1, . . . , xm, y1, . . . , yn)

makes G ∗L H a group. The tuple (1) is the neutral element.

(ii) By the reduction rules every element of G ∗L H can be written in the form
(x1, y1, x2, y2, . . . , xn, yn) with x1, . . . , xn ∈ G and y1, . . . , yn ∈ H, all non-trivial with
the possible exception of x1 or yn. We call this the standard form of elements of
G ∗L H.

(iii) The map x 7→ (x) is a canonical group homomorphism sG : G→ G ∗L H. Same for
H. These homomorphisms need not be injective. For example, if G = L and
ϕ = Id, as well as H = {1}, then G ∗L H = {1}.

The group G ∗L H is generated by the images of these homomorphisms.

Examples 1.5.4. • Z ∗Z = F2 the free group in two generators.
If α and β are generators of the free group, then ϕ : Z ∗Z→ F2, given in the
standrad form by

ϕ( j1, k1, . . . , jn, kn) = ak1b j1 · · · a jnbkn

is an isomorphism.

• If L = H and ψ = Id, then it does not matter what ϕ looks like, we always have
G ∗H H � G.

Proposition 1.5.5 (Universal property of the amalgamate product). There is a
commutative diagram

G ∗L H

G

sG
;;

H

sH
cc

L
ϕ

cc

ψ

;;

This has the universal property that for every commutative diagram of group homomorphisms

Z

G

α
??

H

β
__

L
ϕ

__

ψ

??
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there is exactly one homomorphism η : G ∗L H→ Z such that the diagram

Z

G ∗L H

η

OO

G

sG
;;

α

HH

H

sH
cc

β

WW

L
ϕ

cc

ψ

;;

commutes.

Proof. One defines η(g1, h1, . . . , gn, hn) = α(g1)β(h1) · · ·α(gn)β(hn). The well-definedness
and the unversal property are easily seen. □

Theorem 1.5.6 (Seifert-van Kampen). Let S = U ∪ V with U,V open, such that
U,V,U ∩ V , ∅ are path connected. Then

π1(S) � π(U) ∗π1(U∩V) π1(V).

Proof. Choose a base point a ∈ U ∩ V. The maps in the diagram

π1(S)

π1(U)

α
88

π1(V)

β
ff

π1(U ∩ V)
ψ

88

ϕ

ff

are induced by the inclusions. By the universal property there is a homomorphism
η : π1(U) ∗π1(U∩V) π1(V)→ π1(S) such that α and β factorize over η. We want to show
that η is an isomorphism.

Surjectivity: We have to show that every closed path γ in S can be written as
composition of closed paths in U and V. The following picture gives the idea:
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U V

We cover the unit interval I with the connected components of γ−1(U) and γ−1(V). As I
is compact, finitely many suffice. So there is a decomposition 0 = t0 < · · · < tn = 0 such
that, say, γ([t2k, t2k+1]) ⊂ U and γ([t2k+1, t2k+2]) ⊂ V for all k. We connect γ(t1) with a
inside of U ∩V and we get a closed path inside U. From a we go back to γ(t1), follow γ

to γ(t2) and connect this point in U ∩ V with a. This is a closed path in V. Iteration
yields the claim.

Injectivity: Let γ be a path, which is nullhomotopic in U ∪ V. Let H : I × I be a
homotopy to the trivial path. We cover the compact set I × I with finitely many
connected components of h−1(U) and h−1(V). Then there is n ∈N such that h(Qk,l) lies
completely in U or completely in V for any 0 ≤ k, l ≤ n − 1, where Qk,l is the square

Qk,l =

[
k
n
,

k + 1
n

]
×

[
l
n
,

l + 1
n

]
.

Let xi j be the vertices of these squares. and let ηi j be paths from a to h(xi j), lying
entirely in U ∩ V if xi j ∈ h−1(U ∩ V) or entirely in U or entirely in V otherwise. The
path γ( j/n, t) can be split into the paths η j,i+1 · h( j/n, t) · η−1

j,i , which by the restriction of h
entirely inside U or V are homotopic to h(( j + 1)/n, t). The claim follows. □

Theorem 1.5.7. Let a1, . . . , an be distinct points. Then

π1(C ∖ {a1, . . . , an}) � Fn.

Proof. The space C can be covered by open sets U1, . . . ,Un such that every U j contains
exactly one of the points a1, . . . , an, U j is simply connected, and (U1 ∪ · · · ∪Uk)∩Uk+1 is
simply connected. Let V j = U j ∖ {a1, . . . , an}. Then π1(V j) � Z and
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π1(V1 ∪ · · · ∪ Vk+1) � π1(V1 ∪ · · · ∪ Vk) ∗ π1(Uk+1) and therefore, by induction

π1(C ∖ {a1, . . . , an}) � π1(V1) ∗ · · · ∗ π1(Vn) � Z ∗ · · · ∗Z � Fn. □
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2 Classification of surfaces

2.1 Triangulations

Definition 2.1.1. Let ∆ be the closed triangle in Cwith vertices 0, 1, i. A 2-Simplex of
the surface S is an injective continuous map σ : ∆→ S, which maps the interior ∆̊
homeomorphically to an open subset of S. The images of 0, 1, i are called the vertices
of the simplex. The images of the lines [0, 1], [1, i], [i, 0] are called the edges of the
simplex. A triangulation of S is a family (α j : ∆→ S) j∈J of 2-simplices, such that every
x ∈ S either lies

• in the interior of exactly one simplex or

• on the edge of exactly two simplices or

• on the vertex of finitely many simplices.

Corollary 2.1.2. Let (α j) j be a triangulation. Then

(a) Any two simplices intersect either in a common edge or in a common vertex or in the
empty set.

(b) For every a ∈ S the set of all simplices, which contain a is finite and their union is a
neighborhood of a.

(c) If S is compact, any triangulation is finite.

Proof. Clear. □

Theorem 2.1.3. Every surface has a triangulation.

Proof. (Idea) By separability there is a locally finite atlas (Ui, ϕi)n
i=1, n ∈N ∪ {∞} with

ϕi(Ui) = B1+ε(0), ε > 0, such that the sets Vi = ϕ−1
i (B1(0)) still cover all of S. By

induction on n and possibly changing some radii, one sees that the boundaries ∂Vi

form a finite union of disjoint arcs between the set of intersection points⋃
i< j

∂Vi ∩ ∂V j □
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2.2 Simplicial complexes

Definition 2.2.1. Let E be a set. An abstract simplicial complex with vertex set E is a
set S ⊂ P(E) with the properties:

• Every S ∈ S is finite,

•
⋃

M∈SM = E,

• A ⊂ B ∈ S ⇒ A ∈ S.

The elements of S are called (abstract) simplices.

Definition 2.2.2. Fix N ∈N. A geometric simplex of dimension d is the convex hull of
d + 1 affine independent points in RN.

A geometric simplicial complex is a set Sgeom of geometric simplices in RN such that

• A,B ∈ S ⇒ A ∩ B ∈ S,

• Let E be the set of all vertices of simplices in Sgeom. Then

S =
{
E ∩ S : S ∈ Sgeom

}
is an abstract simplicial complex with vertex set E and one has

Sgeom =
{

conv(S) : S ∈ S
}
.

In this case one says that Sgeom is a geometric realization of S.

Beispiele

• • • • •

•

•• •

• •

The existence of a triangulation implies:

Theorem 2.2.3. Every surface is homeomorphic to a 2-dimensional geometric simplicial
complex.
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2.3 Classification

Definition 2.3.1 (Gluing). Let S,Y,Z be topological spaces and let there be maps

S Y

Z
ϕ

__

ψ

??

The Gluing
S ⊔Z Y

is defined as the set S ⊔ Y/ ∼, where

a ∼ b ⇔


a = b

or
a = ϕ(z), b = ψ(z) for some z ∈ Z


On S ⊔Z Y one instals the topology induced by the two maps S→ S ⊔Z Y and
Y→ S ⊔Z Y.

Definition 2.3.2. Let S be a surface. We attach a handle to S choosing two disjoint
closed disks D1,D2, then cutting out their interiors and gluing in a cylinder [0, 1] × S1.

Definition 2.3.3. The torus R2/Z2 can be described as the closed square I × I, I = [0, 1]
modulo identifying opposite boundary lines:



Riemann Surfaces 21

If one instead identifies like this:

one gets a non-orientable surfaceK, called the Klein bottle.

Another construction of the Klein bottle is this:

K � S2/ ∼,

where ∼ is the equivalence relation where each point is equivalent to its opposite.

Theorem 2.3.4. Every compact surface is homeomorphic to exactly one of the following:

(a) for every g = 0, 1, 2, . . . a sphere S2 � Ĉ with g handles,

(b) for every g = 0, 1, 2, . . . a Klein bottle g handles.

The number g in the theorem is called the genus of the surface. The torus has genus 1,
a pretzel has genus 3.

Proof. Note that case (a) gives all orientable surfaces, whereas (b) gives the
non-orientable ones.

Let Z be a sphere with 2g handles, one can order these (up to homeomorphism)
symmetrical with respect to z 7→ −z, such that S = Z/ ± 1 is a KLein bottle with g
handles.

Let S be a non-orientable compact surface. Then S = Γ\S̃, where S̃ is the universal
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covering and Γ the group of deck transformations. The mapping

D : γ 7→

1 γ orientation-preserving,

−1 γ not orientation-preserving,

is a gorup homomorphism and so the kernel Σ = ker(D) is a subgroup of index 2.
Then Σ\S̃ is a 2-fold covering, which is orientable. If you apply the theorem to Σ\S̃
one gets the assertion for S as well. This means that it suffices to prove the theorem in
the case of an orientable surface.

Lemma 2.3.5. A connected, orientable, compact surface S is either homeomorphic to S2, or
there is exactly one g = 1, 2, . . . , such that S is homeomorphic to the following polygon modulo
boundary identifications: One starts with a disk-shaped polygon with 4g boundary segments,
which are lines and which are identified in the following way: every segment c is identified
with c−1 in the opposite orientation:

ag

bg

a−1
g

b−1
g

a1

b1
a−1

1 b−1
1

This induces the canonical triangulation of S by joining an arbitrary point p in the interior
of the n-gon by line segments with the vertices of the edges a j, b j.

Proof. Choose a finite triangulation. Start with a triangle add neighboring triangles
according to the following recipe: At every step one has a finite set of triangles that
constitute a connected subset of Cwhich interior maps injectively to S. Some of the
boundary edges get identified by this map to S. If this is so for every boundary edge,
the construction stops. Otherwise, choose an edge, which has not been identified with
another and add the corresponding triangle to the set.
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This construction stops and yields a closed polygon T, which maps surjective onto S
under identifying boundary edges. As S is orientable, every edge gets identified with
its inverse. Starting at an arbitrary vertex and denoting the edges by a, b, c, . . . one gets
a word of the form abcdb−1e f a−1 . . . (example) in which every letter occurs once and
once again as inverse. Next we reglue some triangles to get the desired form.

(a) If we have the situation that two consecutive edges belong to the same triangle,
we remove this triangle and reglue it at b−1:

p

q

r

a b

b−1

{

p

q r

r
c

p

(b) By chnaging edge lengthes of the triangles , we cancel expressions of the form aa−1:

a a−1

{

(c) Two edges a, b are said to be chained, if they occur in the order a . . . b . . . a−1 . . . b−1.

We show that for every edge a there is an edge b such that a and b are chained. If
this was not so, then a would occur as follows:

a

a−1

p

p

On the right hand side there are only edges b, for which the edge b−1 is also on the
right. The same is true for the left hand side. But then the polygonal line closes
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between the two occurrences of p and the ensuing topological space has two
components, which are glued together at p, hence is not a surface!

•

We finally have to show that the edges can be arranged in a way that chained edges
come directly after one another. To achieve this, we reglue twice:

a

p

a−1

b−1 b {

b−1 b
q

p

p−1

{ q
q−1

p

p−1

Here p and q are in general not single edges, but paths. In the first step we chop off
everything below c and reglue it by gluing a and a−1.

Now, in the vertex, where c and d meet, there are two consecutive edges, which are
chained. In the next picture we cut along the dotted path and reglue along p to get the
desired sequence aba−1b−1:

b−1

a−1

a

b

p

p−1

Repeating these operations with other chained pairs, we get the desired form. □

The theorem follows from this, since every sequence aba−1b−1 glues a handle to S. □

2.4 Fundamental group and Euler number
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Theorem 2.4.1. Let S be an orientable compact surface, i.e., a sphere with g handles. Then
there are generators of the fundamental group a1, . . . , ag and b1, . . . , bg such that π1(S) is
the group generated by a1, . . . , ag, b1, . . . , bg with the only relation:

[a1, b1][a2, b2] · · · [ag, bg] = 1.

Proof. Write S a a convex polygon P with boundary idientifications as in Lemma 2.3.5.
Let p be a point in the interior of the polygon. Let U = S ∖ {p} and let V be S minus the
boundary of the polygon. Then S = U ∪ V and U ∩ V is homeomorphic to C×, hence
has fundamental group � Z, generated by

∏g
j=1[a j, b j]. The set V is contractible, so

π1(V) = 1. Centric dilation defines a homotopy, so an isomorphism

π1(U) � π1(∂(U)) = π1(4g-gon).

The boundary of U is a bouquet B2g of 2g cicles and π1(B2g) is the free group in the
generators a1, . . . , ag, b1, . . . , bg. By the Seifert-van Kampen Theorem we get

π1(S) � π1(B2g) ∗Z π1(V)︸︷︷︸
=1

� π(B2g)/
∏

j

[a j, b j]. □

Theorem 2.4.2 (Euler number). Let S be a compact orientable surface of genus g. Fix a
triangulation with T triangles, E edges and V vertices. Then one has

V − E + T = 2 − 2g.

Proof. The following are easy to show

(i) The number χ = V − E + T remains the same when the triangulation is refined.

(ii) Any two triangulations have (after moving some edges and vertices) a common
refinement.

(iii) The formula is correct for the canonical triangulation of Lemma 2.3.5

The theorem follows. □
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3 Riemann surfaces

3.1 Definition

Definition 3.1.1. An atlas (Ui, hi)i∈I of a surface S is called a holomorphic atlas, if
every transition map α = h j ◦ h−1

i :

Ui ∩U j
hi

{{

h j

##

C α
// C

is holomorphic hi(Ui ∩U j)→ h j(Ui ∩U j) ist. Since this then holds for any pair of
indices, this map is biholomorphic.

Definition 3.1.2. LetA = (Ui, hi)i∈I be a holomorphic atlas. An arbitrary chart (U, h) is
called compatible withA, if every transition map hi ◦ h−1 is biholomorphic. If this is
the case, one can extend the atlas by the chart (U, h) and still get a holomorphic atlas.

Therefore, a given holomorphic atlasA is contained in exactly one maximal
holomorphic atlasAmax, given by

Amax =
{
(U, h) : h is compatible withA

}
.

Definition 3.1.3. A maximal holomorphic atlas is called a holomorphic structure or
complex structure on the surface S.

A tuple (S,A) consisting of a surface S and a complex structureA is called a Riemann
surface.

Examples 3.1.4. • The Riemann number sphere is a Riemann surface with the
charts z 7→ z and z 7→ 1

z .

• In the case of the torus the transition maps are translations, hence holomorphic.
So the torus is a Riemann surface.

Examples 3.1.5. • Let S = Y = C and U = C×. Further let

ϕ(z) = z, ψ(z) =
1
z
.

Then S ⊔U Y = Ĉ is the Riemann number sphere.
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• Let S = Y = C and U = C×. Further let

ϕ(z) = z, ψ(z) = z.

Then S ⊔U Y is not a Hausdorff space. It is the space of Example 1.1.2 (d).

3.2 Existence

Theorem 3.2.1. (a) Every Riemann surface is orientable.

(b) On every orientable compact surface there exists a complex structure.

Proof. (a) Multiplication with i induces an R-linear endomorphism J : TpS→ TpS on
each tangent space TpS. One has J2 = −1. If v ∈ TpS is non-zero, then the basis (v, Jv) of
TpS induces an orientation on TpS and therefore the map J induces an orientation on S.

(b) On S2 � Ĉ there is a complex structure. Any S , S2 can be written (Lemma 2.3.5) as
a polygon modulo boundary identifications:

ag

bg

a−1
g

b−1
g

a1

b1
a−1

1 b−1
1

We can assume all edges a j, b j, a−1, b−1
j to be of equal length. Then one can assume that

the identification maps are rotations followed by translations, i.e., they are of the form
z 7→ az + b with a ∈ C, |a| = 1 and b ∈ C. These maps exted to neighborhoods of the
respective edge and are biholomorphic there. So they define holomorphic charts in
neighborhoods of every boundary point. □
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3.3 Holomorphic maps

Definition 3.3.1. Let S,Y be Riemann surfaces. A map F : S→ Y is called a
holomorphic map, if for any two holomorphic charts (U, ϕ), (V, ψ), U ⊂ S V ⊂ Y the
induced map ψ ◦ F ◦ ϕ−1

C
ϕ−1

−→ S F
−→ Y

ψ
−→ C

is holomorphic, where defined, i.e., on ϕ
(
F−1(V) ∩U

)
.

The map F is called biholomorphic, or an isomorphism of Riemann surfaces, if F is
homolomorphic and bijective.
(In this case the inverse map F−1 os automatically holomorphic, too.)

Definition 3.3.2. Let S be a Riemann surface. The set of all biholomorphic maps
F : S→ S is a group, the automorphism group Aut(S).

Definition 3.3.3. A holomorphic map f : S→ C is called a holomorphic function on
S. The set of all holomorphic functions is denoted by

O(S).

Proposition 3.3.4. (a) The automorphism group of C is

Aut(C) =
{
z 7→ az + b : a ∈ C×, b ∈ C

}
.

(b) The automorphism group of the unit disk

E := {z ∈ C : |z| < 1}

is
Aut(E) =

{
z 7→ c

z − a
az − 1

: |c| = 1, a ∈ E
}
.

(c) The automorphism group of the upper half plane

H = {z ∈ C : Im(z) > 0}

is

Aut(H) =

z 7→
az + b
cz + d

:

a b
c d

 ∈ SL2(R)/{±1}

 .
Proof. (a) Each map ϕa,b(z) = az + b is biholomorphic. Let ϕ : C→ C be an arbitrary
bihilomorphic map. Let ϕ(z) =

∑
∞

n=0 anzn be its power series. Assume, the power
series is infinite. Then ϕ(z) takes every value with one possible exception infinitely
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often by the Theorem of Picard. Therefore, it cannot be bijective. So ϕ(z) is a
polynomial. Let n be its degree. Ist z ∈ C is not a zero of the derivative of ϕ, then ϕ
takes the value z at n different places. For ϕ to be bijective, we must have n = 1.

(b) follows from the Schwarz lemma and (c) follows after the application of the Cayley
map. τ(z) = z−i

z+i , which maps the upper half plane biholomorphically to the unit
disk. □

Theorem 3.3.5 (Coverings). Let F : S→ Y be a covering of surfaces. If Y is a Riemann
surface, i.e., has a given complex structure, then there is exactly one complex structure on
S, which makes F a holomorphic map.

In particular, the universal covering becomes a Riemann surface in a unique way.

Proof. Let (Vi, ϕi) be a holomorphic atlas of S. After decomposing the Vi, one can
assume that the pre-image F−1(Vi) is a disjoint union of connected open sets

⊔
j Ui, j,

where for each j the map F|Ui, j is a homeomorphism onto Vi. Then (Ui, j, ϕi ◦ F) is a
holomorphic atlas on S, which makes F holomorphic. The uniqueness is clear, as F is a
lokal homeomorphism. □

Definition 3.3.6. Let F : S→ Y be a holomorphic map between Riemann surfaces. Let
a ∈ S and let (U, ϕ), (V, ψ) charts centered around a and F(a). After post-composing
with a translation in Cwe can assume ψ(F(a)) = 0. The order of F in the point a is
defined as

orda(F) = min{n : bn , 0}, where ψ ◦ F ◦ ϕ−1(z) =
∑
n≥1

bnzn.

The order does not depend on the choice of charts, since a change of charts only
menas per- and post-composing with biholomorphic maps, which does not change
the vanishing order of a holomorphic function.

Note that
orda(F) = ∞ ⇔ F is constant in a neighborhood of a.

Proposition 3.3.7 (Local model of holomorphic maps). Let F : S→ Y be holomorphic and
a ∈ S with n = orda(F) < ∞. Then there are charts (U, ϕ), centered around a and (V, ψ),
centered around F(a), such that

ψ ◦ F ◦ ϕ−1(z) = zn.



Riemann Surfaces 30

Proof. First let ϕ, ψ be any centered charts, such that ψ ◦ F ◦ ϕ−1(z) = zn ∑
∞

j=0 a jz j, a0 , 0.
In a small disk around zero the function h(z) =

∑
∞

j=0 a jz j has no zero and therefore has
a holomorphic n-th root g(z). The function zg(z) has non-vanishing derivative in z = 0,
so it is biholomorphic in a small disk. Let η be the inverse map. Then we have
ψFϕ−1(z) = (zg(z))n Set w = zg(z), then one has ψ ◦ F ◦ϕ−1(η(w)) = wn. The charts ψ and
η−1
◦ ϕ now do the job. □

Corollary 3.3.8 (Open Mapping Theorem). Let F : S→ Y and let S be connected. Then the
image F(S) is open in Y.

Proof. Let y ∈ Y be in the image, so y = F(a) with a ∈ S. If F was constant in a
neighborhood of a, then the connected component of F−1(y), which contains a, would
be closed on one hand, open by the identity theirem on the other, therefore it ’d be
equal S, as S is connected. Therfore F is not constant in any neighborhood of a. This
means that we can apply the proposition. Since the map zn maps any
zer-neighborhood to a zero-neighborhood, the image F(S) contains a neighborhood of
y. □

Definition 3.3.9. A subset A ⊂ S is called analytic, if A is closed and every point in A
possesses a neighborhood U, such that A∩U is the zero-set of a holomorphic function
U→ C.

A set A ⊂ S is called locally-finite, if every point of S has a neighborhood U, such that
A ∩U is finite.

Corollary 3.3.10. For a subset A of a Riemann surface S the following are equivalent:

(a) A is locally-finite,

(b) A is closed and discrete,

(c) A has no accumulation point in S.

Proof. (a)⇒(b): Let x ∈ S ∖ A. Then there is a neighborhood U of x such that A ∩U is
finite. As S is a Hausdorff space, A is locally finite and x < A, there is an open
neighborhood V of x with V ∩ A = ∅. So the set S′ = S ∖ A contains a neighborhood
around each of its membergs, hence is open, so A is closed. Discreteness of A is clear
as S is a Hausdorff space.

(b)⇒(c): Assume that x0 is an accumulation point of A. Then x0 ∈ A, as A is closed.
Since A is discrete, there is a neighborhood U of x0 with A ∩U = {x0}. But then x0

cannot be an accumulation point of A.
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(c)⇒(a) A having no accumulation point means that ever x ∈ S has a neighborhood U
with U ∩ A being finite. □

Theorem 3.3.11. Let S be a connected Riemann surface and A ⊂ S be an analytic set.
Then A = S or A is locally finite in S.

Proof. Assume that A has an accumulation point a0. Then there is an open
neighborhood U of a0 and a holomorphic function f on U, such that A ∩U is the zero
set of f ist. Then a0 is an accumulation point of zeros of f , therefore f is identically
zero in a neighborhood of. This means that A has inner points. By the same argument
each boundary point of Å is an inner point itself, so A = S. □

3.4 Ramified coverings

Definition 3.4.1. A holomorphic map F : S→ Y between Riemann surfaces is called
proper, if for compact set K ⊂ Y the pre-image F−1(K) ⊂ S is compact, too.

A holomorphic map F : S→ Y is called finite, if F is proper and for every point y ∈ Y
the fibre F−1(y) is finite.

A holomorphic map F : S→ Y is called a (ramified) covering, if for every y ∈ Y there
are charts (V, ϕ) around y and (Ui, ψi) around xi ∈ F−1(y), such that

F−1(V) =
⊔
i∈I

Ui,

further F(Ui) = V and F in these charts is of the form

ϕ ◦ F ◦ ψ−1
i : z 7→ zni .

Such charts are called standard charts.

Convention: In topology, the word covering means unramified covering. In complex
analysis it also means possibly ramified coverings.

From this point onward, we switch to the tradition of complex analysis. So

• covering now means possibly ramified covering and

• unramified covering means unramified covering.
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Lemma 3.4.2. Every proper map F : S→ Y between surfaces is closed.

Proof. Let A ⊂ S be closed and b ∈ Y ∖ F(A). Let U be a neighborhood of b with
compact closure U. Then F−1(U) ∩ A is compact. Then the image
F(F−1(U)∩A) = U∩ F(A) is compact. This means that U∖ (U∩ F(A)) is a neighborhood
of b, which does not intersect F(A), so Y ∖ F(A) is open, hence F(A) is closed. □

Theorem 3.4.3. Let F : S→ Y be a holomorphic map and S , ∅.

(a) F is finite if and only if F is proper and non-constant.

(b) If F is finite, then F is a covering.

(c) If F is a covering, Y is connected and if for one point y ∈ Y the index set of the
definition I = Iy is finite, then F is finite and in particular proper.

In particular, every non-constant holomiorphic map between connected compact Riemann
surfaces is a finite covering.

Proof. (a) Let F be finite. Then every fibre F−1(y) is finite, so in particular, different
from S. So F is proper and non-constant. For the converse, if F is proper, then every
fibre F−1(y) is compact. The fibre is also analytic and different from S, hence
locally-finite and by compactness, finite.

(b) Let y ∈ Y. As F is proper, Y connected and S , ∅, it follows that F is surjective:

Proof. The image F(S) is open by the open mapping theorem. It is also closed by
Lemma 3.4.2. Since Y is connected, we get F(S) = Y. □

So let F−1(y) = {x1, . . . , xd}. We choose charts (V, ψ) around y and (Ui, ϕi) around xi and
after decreasing the Ui we can assume that the Ui are disjoint and F(Ui) ⊂ V. By
Proposition 3.3.7 for every i there is a chart (Ũi, ϕ̃i) around xi with Ũi ⊂ Ui such that

ψ ◦ F ◦ ϕ̃−1
i : z 7→ zni

with ni = ordxi(F). The claim follows.
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(c) We show first, that F−1(y) is finite for every y ∈ Y. For this we define

deg(F, ·) : Y→N ∪ {∞}, y 7→
∑

x∈ f−1(y)

ordx(F).

Since f is a covering, this map is locally constant. It is finite in one point, hence
globally finite, as Y is connected. It remains to show properness. For this let K ⊂ Y be
compact. For every y ∈ Y there are neighborhoods Vy and Uy,i as in the definition of a
covering. As Y is locally compact, there are open neighborhoods V′y such that V′y is
compact and contained in Vy. Since K is compact, finitely many V′1, . . . ,V

′

n suffice to
cover K. It is enoufg, to show that each f −1(V′i ) is compact. This follows from the fact
that the map z 7→ zn is proper. □

Definition 3.4.4. The map deg(F, ·) is called the degree of the holomorphic map
F : S→ Y. Every point x ∈ S with ordx(F) > 1 is called a ramification point of F.

If S and Y are connected and compact and F is non-constant, the degree map is
constant. In this case we denote this constant by deg(F) and call it the degree of F.

Lemma 3.4.5. Let F : S→ Y be a covering. For x ∈ S the following are equivalent:

(a) x is a ramification point of F,

(b) There are local charts ϕ,ψ around x and F(x) with ϕ(x) = 0, such that for the function
g = ψ−1

◦ F ◦ ϕ one has g′(0) = 0.

(c) For all local charts ϕ,ψ around x and F(x) with ϕ(x) = 0 one has g′(0) = 0, where
g = ψ−1

◦ F ◦ ϕ.

Proof. This follows from the fact that for an open neighborhood U ⊂ C of zero and a
holomorphic, non-constant g : U→ C the point z = 0 is a ramification point if and
only if g(z) − g(0) = znh(z) for some n ≥ 2. This is equivalent to g′(0) = 0. □

Lemma 3.4.6. For a covering, the set of ramification points is locally-finite.

Proof. Let F : S→ Y be a covering. Let x be a ramification point. Then there is a
neighborhood in which F acts like z 7→ zn. This map has zeor for its only ramification
point. □

Definition 3.4.7. Let F : S→ Y be a covering of Riemann surfaces.

(a) The group Gal(S/Y) =
{
σ ∈ Aut(S) : F ◦ σ = F

}
is called the Galois group of F.



Riemann Surfaces 34

(b) Let A ⊂ S be the set of ramification points of F. Then F is called normal, if the
unramified covering S ∖ A→ Y ∖ F(A) is normal.

Lemma 3.4.8. Let F : C→ C be the covering z 7→ zn. Then Gal(F) � Z/nZ.

Proof. Let τ(z) = e2πi/nz. We claim that Gal(F) is generated by the element τ. So let
σ : C→ C be biholomorphic with σ(z)n = F(σ(z)) = F(z) = zn. Then σ(z) = az + b for
suitable a, b ∈ C, a , 0. It follows b = 0 and an = 1. □

Proposition 3.4.9. Let F : S→ Y be a normal finite covering, where Y is connected. Let
y ∈ Y. Then the group Gal(F) acts transitively on the fibre F−1(y). In particular one has
ordx(F) = ordx′(F) for all x, x′ ∈ F−1(y).

Proof. Let A ⊂ S be the set of ramification points and S′ = S ∖ A, as well as
Y′ = Y ∖ F(A). Then F′ = F|S′ is an unramified covering. So the Galois group acts
transittove;y on F−1(y), y ∈ Y′ by Lemma 1.4.10. As Y′ is dense in Y, the claim follows
generally. □

3.5 Riemann-Hurwitz Theorem

Theorem 3.5.1 (Riemann-Hurwitz Formula). Let F : S→ Y be a non-constant
holomorphic map between two compact, connected Riemann surfaces. Then

2g(S) − 2 = deg(F)
(
2g(Y) − 2

)
+

∑
x∈S

(ordx(F) − 1) .

Proof. We choose a triangulation of Y, such that every triangle lies in a standard chart
and that the images of the ramification points are vertices of the triangulation. Then
the pre-images of the vertices, edges and triangles define a triangulation of S. Let
VS,VY,ES,EY,TS,TY be the sets of the vertices, edges and triangles.

Then |ES| = |EY|deg(F) and |TS| = |TY|deg(F) and one has

|VS| = |VY|deg(F) +
∑
x∈S

(1 − ordx(F)).
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By the Euler formula 2 − 2g = V − E + T of Theorem 2.4.2 we get

2 − 2g(S) = |VS| − |ES| + |TS|

= (|VY| − |EY| + |TY|) deg(F) +
∑
x∈S

(1 − ordx(F))

=
(
2 − 2g(Y)

)
deg(F) +

∑
x∈S

(1 − ordx(F)).

Multiplying by (−1) we get the claim. □

3.6 Meromorphic functions

Let U ⊂ C be a domain. A meromorphic function on U is a holomorphic function
f : U ∖ P→ C, where P is a closed discrete subset of U and every p ∈ P is a pole of f .
This means that in a neighborhood of p one has

f (z) =
∞∑

n=−N

cn(z − p)n, z , p.

Definition 3.6.1. Let S be a Riemann surface. A meromorphic function on S is a
function f : S ∖ P→ C, where P ⊂ S is a closed discrete subset and for every
holomorphic chart (U, ϕ) the funkction f ◦ ϕ−1 is meromorphic on ϕ(U) ⊂ C. The set
M(S) of all meromorphic functions on S forms a field with the point-wise operations.

Proposition 3.6.2. Let f be a meromorphic function on S Define f (a) = ∞ for every pole of f .
In this way we get a holomorphic map of Riemann surfaces

f : S→ Ĉ.

Conversely, let f : S→ Ĉ be a non-constant holomorphic map. Then f , restrictes to
S ∖ f −1(∞) is a meromorphic function.
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3.7 Differential forms

Definition 3.7.1. Let S be a Riemann surface and p ∈ S. A point derivation in p is a
linear map D : C∞(S)→ Cwith

D( f g) = D( f )g(p) + f (p)D(g).

this equation is called the Leibniz rule. The C-vector space of point derivations in p is
denoted by TpS and is called the tangent space at the point p.

Lemma 3.7.2. The tangent space at p has dimension 2. For a local chart z with z(p) = z0, the
two maps

∂
∂x

: f 7→
∂ f
∂x

(z0)

and
∂
∂y

: f 7→
∂ f
∂y

(z0)

are a basis of Tp.

Proof. Analysis 3. □

Definition 3.7.3. A map V : S→
⊔

p∈S Tp with Vp = V(p) ∈ Tp is called smooth vector
field, if for every f ∈ C∞(S) the function

V f (p) = Vp( f )

is smooth.

In local coordinates a smooth vector field can be written in the form V = f ∂
∂x + g ∂

∂y ,
where f and g are smooth functions.

Definition 3.7.4. Let T∗p be the dual space of Tp, it is called the cotangent space. A
(smooth) differential form or 1-Form is a map ω : S→

⊔
p∈S T∗p such that ω(p) ∈ T∗p for

every p and such that for every smooth vector field S the map

ω(V) : S→ C,

p 7→ ω(p)(Vp)

is smooth.

In local coordinates z every differential form ω can be written in the form
ω = αdx + βdy, where (dx, dy) is the basis dual to

(
∂
∂x ,

∂
∂y

)
and α, β are smooth functions.
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So V = f ∂
∂x + g ∂

∂y implies

ω(V)(z) = α(z) f (z) + β(z)g(z).

Definition 3.7.5. (Exterior derivative) Let u : S→ R or u : S→ C. Locally in a chart
define

du =
∂u
∂x

dx +
∂u
∂y

dy.

This notation is konsistent for the coordinate functions x, y : U→ R, that make up the
chart, i.e., dx = dx and dy = dy. In Analysis 3 one shows that this construction is
independent of the chart. This means that to every smooth function u one gets a
smooth differential form du.

The functions z : U→ C and z : U→ C give differential forms. One gets

dz = dx + idy, dz = dx − idy.

A given form ω = αdx + βdy can also be written as

ω = udz + vdz

with
u =

1
2

(α − iβ), v =
1
2

(α + iβ).

The form ω is called (1, 0)-form, if in every holomorphic chart it can be written as

ω = udz.

It is called a (0, 1)-form, if it can likewise be written as ω = vdz.

Lemma 3.7.6. ω is a (1,0)-form, if and only if for every p ∈ S the R-linear map
ω(p) : Tp → C is C-linear.

ω is a (0,1)-Form, if and only if for every p ∈ S the R-linear map ω(p) : Tp → C is
anti-C-linear, i.e., if for every λ ∈ C and v ∈ Tp one has

ω(p)(λv) = λω(p)(v).

Every differential form is the sum of a uniquely determined (1,0) and a unique (0,1)-form. One
write Ω1(S) for the space of 1-forms, Ω1,0(S) for the space of (1,0)-forms and Ω0,1(S) for the
space of (0,1)-forms. One has a direct decomposition into complex vector spaces

Ω1(S) = Ω0,1(S) ⊕Ω0,1(S).



Riemann Surfaces 38

Proof. The form dz is C-linear and the form dz is anti-linear. Every R-linear map
T : C→ C can be written in a unique way as T = A + B, where A is complext-linear
and B is anti-linear. □

Definition 3.7.7. The exterior differential d : C∞(S)→ Ω(S) can in local coordinates be
written as

d f =
∂ f
∂x

dx +
∂ f
∂y

dy =
∂ f
∂z

dz +
∂ f
∂z

dz,

where
∂
∂z
=

1
2

(
∂
∂x
− i

∂
∂y

)
,

∂

∂z
=

1
2

(
∂
∂x
+ i

∂
∂y

)
We write d′ : C∞(S)→ Ω1,0(S) and d′′ : C∞(S)→ Ω0,1(S) for the projections,so

d′ f =
∂ f
∂z

dz, d′′ f =
∂ f
∂z

dz.

Definition 3.7.8. Since dz ∧ dz = 0 = dz ∧ dz, we conclude that every 2-form η can, in
local coordinates, be written as η = u dz ∧ dz. We write the components of the exterior
differential d = d′ + d′′ as in the Hodge diamond

Ω2

Ω1,0

d′′
<<

Ω0,1

d′
bb

C∞
d′

bb

d′′

<<

Definition 3.7.9. A complex-valued differential form ω is called a holomorphic form,
if in every holomorphic chart ω = udz, where additionally u is required to be a
holomorphic function. The C-vector space of all holomorphic differential forms is
written as Ωhol(S).

A point p ∈ S is called a zero of order n of a holomorphic differential form ω, if one can
write ω around p in the form ω = αdz with ordp α = n.

Lemma 3.7.10. The map d : O(S)→ Ωhol(S) is derivation, i.e., it is C-linear and one has the
Leibniz rule:

d( f g) = f dg + gd f .

In local coordinates one has

d f =
∂ f
∂z

dz.
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Proof. Let D ∈ Tp. One has

dp( f g)(D) = D( f g) = f (p)D(g) + g(p)D( f )

= f (p)dp(g)(D) + g(p)dp( f )(D).

The first formula follows from this. For the second, let D ∈ Tp and z be a local
coordinate with z(p) = 0. Then there is exactly one λ ∈ Cwith D = λ ∂

∂z . So

d f (D) = D( f ) = λ
∂ f
∂z
= λ

∂ f
∂z
· 1 =

∂ f
∂z

dz
(
λ
∂
∂z

)
=
∂ f
∂z

dz (D) . □

There are meromorphic differential forms, too:

Definition 3.7.11. Let S be a Riemann surface. A meromorphic differential form ω on
S is by definition a holomorphic differential form on S ∖ P, where P is a closed discrete
subset of S, such that locally,

ω = f dz

with a meromorphic function f .

Proposition 3.7.12. Let S be a connected Riemann surface.

(a) Let f ∈ M(S). Then d f is a meromorphic differential form.

(b) If ω is a meromorphic differential form and f ∈ M(S), then fω is a meromorphic
differential form. In this way the set Ωmer(S) of all meromorphic differential forms is a
vector space over the fieldM(S). The dimension of this space is at most 1.

Proof. (a) In any local coordinate z we have d f = ∂ f
∂z dz and ∂ f

∂z is meromorphic, again.

(b) The only non-trivial assertion is that about the dimension. If Ωmer(S) = 0, we have
nothing to show. Otherwise, there is a meromorphic differential form ω , 0 on S. Let
η be another meromorphic differential form. In local coordinates we have η = f dz and
ω = gdz, such that locally one has η = ( f/g)ω. This means that there is an open
covering (Ui)i∈I of S and hi ∈ M(Ui), such that on Ui one has η = hiω. Then hi and h j

agree on Ui ∩U j and the hi define a meromorphic function h ∈ M(S) with η = hω. □

Remark 3.7.13. One can show that on each Riemann surface there exists a
non-constant meromorphic function. We don’t present the proof as it requires more
complex analysis than we are willing to invest here. For compact surfaces, however,
we will give a proof later.
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If f is a non-constant meromorphic function, then ω = d f is a non-vanishing
meromorphic differential form and for connected S the space Ωmer(S) is indeed a
one-dimensionalM(S) vector space.

Definition 3.7.14. A complex-valued 2-Form is a map η, that to each point p ∈ S
attaches an alternating bilinear form η(p) : Tp × Tp → C.

For a 1-form ω ∈ Ω1(S), locally ω = αdx + βdy the form

dω =
∂α
∂y

dy ∧ dx +
∂β

∂x
dx ∧ dy =

(
∂β

∂x
−
∂α
∂y

)
dx ∧ dy

is a well-defined 2-form, as is shown in Analysis 3.

Lemma 3.7.15. We write

∂
∂z
=
∂
∂x
− i

∂
∂y

und
∂

∂z
=
∂
∂x
+ i

∂
∂y
.

If f is a smooth function, then

d f =
∂ f
∂z

dz +
∂ f
∂z

dz =: d′ f + d′′ f .

The function f is holomorphic if and only if ∂ f
∂z = 0 and this is equivalent to d f being a

(1,0)-form.

Let ω = udz + vdz be a 1-form. Then

dω =
(
∂v
∂z
−
∂u
∂z

)
dz ∧ dz.

A (1,0)-form ω is holomorphic if and only if dω = 0.

Proof. The equation ∂ f
∂z = 0 is equivalent to the Cauchy-Riemann equations. The rest is

computation. □

Definition 3.7.16. A 1-form ω on S is called closed, if dω = 0. It is called exact, if there
exists a smooth function f , such that ω = d f .

It follows that a (1,0)-form ω is exact if and only if it is the derivative of a holomorphic
function. In this case ω is holomorphic.

Definition 3.7.17. Let ω = α1dx + β1dy and η = α2dx + β2dy be 1-forms. Then

ω ∧ η = (α1β2 − α2β1) dx ∧ dy
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is a 2-form, called the exterior product of ω and η.

3.8 Integration of differential forms

Let γ : [0, 1]→ S be a smooth path and ω a 1-form. Then γ defines a piecewise smooth
oriented submanifold and the integral

∫
γ
ω is defined as:∫

γ

ω =

∫ 1

0
ω(γ′(t)) dt.

Here one views γ′(t) as a tangent vector in γ(t) and evaluates ω in this vector.

The integral of a 2-form over a surface S is defined by a partition of unity:∫
S
ω =

∑
i∈I

∫
Ui

uiω,

where the Ui are chart sets. In a local chart z = x + iy one can write ω as f (z) dx ∧ dy
and define the integral as

∫
U

f (z) dx dy.

Lemma 3.8.1 (Local computation of path intgerals). Let ω be a 1-form on S, which in a
chart z can be written as ω = αdx + βdy. Let γ : [0, 1]→ U be a smoot path U. Then∫

γ

ω =

∫ 1

0

(
α(γ(t))

∂x(γ(t))
∂t

+ β(γ(t))
∂y(γ(t))
∂t

)
dt.

Proof. A direct computation in local coordinates. □

Theorem 3.8.2 (Stokes). Let ω be a 1-form on the Riemann surface S and let the domain
D ⊂ S be relatively compact with piecewise smooth boundary. Then∫

∂D
ω =

∫
D

dω.

Proof. Analysis 3. □

Corollary 3.8.3. A 1-form ω is closed if and only if for any two homotopic paths γ, τ one has∫
γ

ω =

∫
τ

ω.
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Proof. “⇐” Suppose that for any two homotopic paths the integrals are equal. Then for
any disk D ⊂ S the integral

∫
∂D
ω vanishes, as the boundary is homotopic to a constant

path. By Stokes’s Theorem one gets
∫

D
dω = 0 for every disk and therefore dω = 0.

“⇒” Suppose ω is closed. If γ, τ are two homotopic paths, that doe not cross and are
such that the image of a homotopy which moves γ into τ, covers the interior of the
domain which is bounded by γ and τ, then the equality of the integrals follows from
Stokes’s Theorem. By dividing paths and homotopies into parts one gets the claim in
general. □

Proposition 3.8.4. Let S be a simply connected Riemann surface and ω a closed
complex-valued smooth 1-form. Then ω possesses a primitive, i.e., there is a smooth function
f : S→ C with ω = d f .

Proof. Fix a point p0 in S and define

f (p) =
∫ p

p0

ω,

where the integral is taken over any path connecting p0 to p. This gives a well-defined
function f , since any two paths connecting p0 to p are homotopic, hence give the same
integral. A local computation as in complex analysis, shows that d f = ω. □

Lemma 3.8.5. Any two primitives for a given ω differ by a locally-constant function.

Locally, every holomorphic form has a primitive.

Proof. In a local coordinate z we have ω = f dz. A local primitive is a holomorphic
function F with F′ = f . Locally, such a function exists and is unique up to a
constant. □

By the example S = C× we know that not every holomorphic differential form has a
primitive.

Recall: Let S = U ⊂ C be open and γ : [0, 1]→ S continuous differentiable and set∫
γ

f (z) dz =
∫ 1

0
f (γ(t))γ′(t) dt.

If f has a primitive F, then ∫
γ

f (z) dz = F(γ(1)) − F(γ(0)).
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3.9 Analytic continuation

Definition 3.9.1. Let S be a Riemann surface and x ∈ S. Consider the set M of all pairs
(U, f ), where U ⊂ S is a connected open neighborhood of x and f : U→ C is a
holomorphic function. Call two pairs (U, f ) and V, g) equivalent, if

f ≡ g on C(x,U ∩ V),

where C(x,U ∩ V) is the connected component of x in U ∩ V. A function germ or
germ around x is an equivalence class [U, f ]. The set of all germs around x is denoted
by Ox(S) or Ox.

Definition 3.9.2. Let γ : [0, 1]→ S be a path. Let f ∈ Oγ(0) be a germ. A germ g ∈ Oγ(1)

is called an analytic continuation of f along γ, if there exists a sequence
0 = t0 < t1 < · · · < tn = 1, as well as open sets Ui ⊂ S with γ([ti, ti+1] ⊂ Ui and
holomorphic functions fi : Ui → C, such that

• f0 = f , fn = g and

• fi and fi+1 coincide on Ui ∩Ui+1.

By the identity theorem, an analytic continuation is unique, if it exists.

Examples 3.9.3. • An analytic continuation does not always exist. For instance let
S = C, γ(t) = t and f (z) = 1

z−1 . Then there is no analytic continuation.

• An analytic continuation depends on the path, not only the endpoints. Let for
instance f (z) = log z be the standard-branch of the holomorphic logarithm in
U = {Re(z) > 0} ⊂ C = S. Then let m ∈N and γ(t) = e2πikt. Then the analytic
continuation along the closed path γ equals g(z) = 2πik + log z.

Theorem 3.9.4. Let ω ∈ Ωhol(S) be a holomorphic differential form. Let γ : [0, 1]→ S be
a path and let F ∈ Oγ(0) be a germ of a primitive of ω at γ(0). Then there is an analytic
continuation of F along γ to γ(1).

Proof. For every point t ∈ [0, 1] there is a connected open neighborhood Ut ⊂ S on
which ω has a primitive. The pre-image of Ut in [0, 1] is open, so it contains an open
interval I(t) = (t − εt, t + εt) around t. As [0, 1] is compact, finitely many of these sets
I(t0), I(t1), . . . , I(tn) will cover the unit interval. Here we can assume
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0 = t0 < t1 < · · · < tn = 1. Let f0 = F be a primitive of ω on U0 = Ut0 . On U1 there is
exactly one primitive f1 of ω, which coincides with f0 on U0 ∩U1. On U2 there is
exactly one f2 coinciding with f1 and so on up to fn. □

Corollary 3.9.5. Let ω ∈ Ωhol(S) satisfy
∫
γ
ω = 0 for every closed path γ. Then ω has exactly

one primitive up to constants.

Theorem 3.9.6 (Analytic continuation and homotopy). Let S be a Riemann surface,
α, β homotopic paths with endpoints p, q and let f ∈ Op. Assume that the analytyc
continuation of f exists along each path γs(·) = h(s, ·), where h is a homotopy. Then the
analytic continuations of f along α coincides with the continuation along β.

Proof. Let s ∈ [0, 1]. As the analytic continuation along γs exists, there are open sets
U0, . . . ,Un on which there are holomorphic functions successively extending f . In
particular we have γs([0, 1]) ⊂ U = U0 ∪ · · · ∪Un. A simple compactness argument
shows that there is ε = ε(s) > 0, such that for every s′ ∈ (s− ε, s+ ε) the image of γs′ lies
in U, too. Then the U j give an analytic continuation along γs′ , too and so that analytic
continuations along all s′ ∈ (s − ε, s + ε) coincide.

As the unit interval is compact, there are s1 < · · · < sm, such that the intevals
(s j − ε(s j), s j + ε(s j)) cover all of [0, 1]. So the continuation along γ0 coincides with the
continuation along γs1 and this with the one along γs2 and so on until γ1. □

Definition 3.9.7. Let ω ∈ Ωmer(S) be a meromorphic differential form on S and in a
local coordinate z with z(p) = 0 let ω = f dz. Then

Respω = Res0 f

is called the residue of ω in p.

Lemma 3.9.8. The residue is well-defined, i.e., it does not depend on the choice of the local
coordinate.

Proof. In a given coordinate the residue can be described by the integral over a path
encircling the point p. □
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3.10 Harmonic forms

Definition 3.10.1. For a smooth 1-form ω ∈ Ω(S) = Ω1(S) on a Riemann surface S, the
complex conjugate ω is a smooth 1-form again, since complex conjugation is R-linear.
We say that ω is real, if ω = ω. The real part of a form ω is defined by

Re(ω) =
1
2

(ω + ω).

A given form ω is uniquely decomposed as

ω = ω1,0 + ω0,1
∈ Ω1,0

⊕Ω0,1 = Ω.

We define the Hodge star operator as

∗ω = i
(
ω1,0 − ω0,1

)
.

Lemma 3.10.2. The Hodge ∗-operator is an R-linear map Ω→ Ω with the following
properties

(a) ∗Ω0,1 = Ω1,0 and vice versa,

(b) ∗ ∗ ω = −ω, ∗ω = ∗ω,

(c) ∗d′ f = id′′ f , ∗d′′ f = −id′ f ,

(d) d ∗ d f = 2id′d′′ f .

Proof. A computation. □

Definition 3.10.3. A 1-form ω ∈ Ω1(S) on a Riemann surface is called harmonic, if

dω = d ∗ ω = 0.

A smooth function f is called harmonic, if d f is, i.e., of d ∗ d f = 0, or, equivalently,
d′d′′ f = 0.

Proposition 3.10.4. For a 1-form ω ∈ Ω1(S) the following are equivalent:

(a) ω is harmonic,

(b) d′ω = d′′ω = 0,

(c) ω = ω1 + ω2, where ω1 ∈ Ωhol(S) and ω2 ∈ Ωhol(S),
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(d) for every p ∈ S there exists an open neighborhood U and a harmonic function f on U such
that ω = d f .

Proof. The equivalence of (a), (b) and (c) follows from Lemma 3.10.2.

(a)⇒(d): since a harmonic form ω is closed, the Poincaré Lemma implies that there
exists a neighbourhood U of p, such that ω = d f for same function f . Since
0 = d ∗ ω = d ∗ d f , it follows that f is harmonic. The converse is trivial. □

Definition 3.10.5. The complex vector space of all harmonic 1-forms on a surface S
will be denoted as Harm1(S). We have

Harm1(S) = Ωhol(S) ⊕Ωhol(S).

Theorem 3.10.6. Every real harmonic 1-form σ ∈ Harm1(S) is the real part of exactly one
holomorphic 1-form ω ∈ Ωhol(S).

Proof. Suppose σ = ω1 + ω2 with ω1, ω2 ∈ Ωhol(S). Since ω1 + ω2 = σ = σ = ω1 + ω2 we
get ω1 = ω2 and hence σ = Re(2ω1). To prove uniqueness, assume ω ∈ Ωhol(S) with
Re(ω) = 0. Since locally we have ω = d f for a holomorphic function f it follows that f
has constant real part. Then f is constant and ω = 0. □

For later use, we note the Lemma of Dolbeault:

Lemma 3.10.7 (Dolbeault’s lemma). Let U ⊂ C be open and star-shaped. For every
f ∈ C∞(U) there exists g ∈ C∞(U), such that

∂g
∂z
= f .

Proof. Consider the 1-form ω = f dz. By the Poincaré Lemma there exists g ∈ C∞(U)
such that ∂g

∂z dz + ∂g
∂z dz = dg = ω. The claim follows. □

Corollary 3.10.8. (a) For a Riemann surface, the sequence of sheaves

0→ O→ C∞ d′′
−→ Ω0,1

→ 0

is exact. This follows from Dolbeault’s lemma 3.10.7.
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(b) For a Riemann surface S one has

H1(S,O) � Ω0,1(S)/d′′C∞(S)

and
H1(S,Ωhol) � Ω2(S)/dΩ1,0(S).

Proof. □

* * *
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4 Sheaves

4.1 Presheaves

Definition 4.1.1. Let S be a topological space. A resheaf F is a mapping

U 7→ F (U),

attaching to an open set U ⊂ S an abelian group F (U), together with group
homomorphisms, the so called restriction homomorphisms,

ρU
V : F (U)→ F (V),

for all open sets V ⊂ U, such that the following axioms are satisfied

(i) F (∅) = 0,

(ii) ρU
U = Id for every U,

(iii) ρV
W ◦ ρ

U
V = ρ

U
W, whenever W ⊂ V ⊂ U.

We write s|V instead of ρU
V(s). The elements of F (U) are called sections of F on U.

Definition 4.1.2. A morphism of presheaves ϕ : F → G is given by group
homomorphisms ϕU : F (U)→ G(U) for all open U ⊂ S, which commute with the
restriction homomorphisms.

A sheaf is a presheaf which additionally satisfies two principles:

(i) (uniqueness): If s ∈ F (U) and U =
⋃

i∈I Ui is an open covering of the open set
U ⊂ S, and if s|Ui = 0 for every i ∈ I, then s = 0.

(ii) (existence) If U =
⋃

i∈I is an open covering and if for every i ∈ I there is given an
si ∈ F (Ui) with si|Ui∩U j = s j|Ui∩U j for every pair i, j ∈ I, then there is s ∈ F (U) with
si = s|Ui for every i ∈ I.

Definition 4.1.3. Morphismen of sheaves are defined to be the morphisms of the
presheaves.

Examples 4.1.4. • Let S be a Riemann surface. Then U 7→ O(U) and U 7→ M(U) are
sheaves on S with addition as group law. The map U 7→ O(U)× is a sheaf, where
O(U)× is the multiplicative group of nowhere vanishing holomorphic functions.

• Let S be a Riemann surface, then the map U 7→ Ωhol(U) is a sheaf.
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• Let S be a topological space. Then the map U 7→ C(U,R) is a sheaf.

• Let S be a topological space and A an abelian group. The map U 7→ A isnot
generally a sheaf, since the axioms imply that for two disjoint open sets U,V ⊂ S
one has F (U ∪ V) = F (U) ⊕ F (V).

The so-called constant sheafKA with group A maps any open set U to the group
KA(U) of all locally-constant maps σ : U→ A.

• Let S be a Riemann surface. The structure sheaf is the sheaf O, which attaches to
any open set U the additive group O(U) of holomorphic functions on U. This is
indeed a sheaf of rings.

Remark 4.1.5. Let F be a sheaf on the topological space S. Then

F (∅) = 0.

Proof. Let s ∈ F (∅) and let I = ∅. Then we have the empty covering

∅ =
⋃
i∈I

Ui

and for every i ∈ I (there are none) we have that s|Ui = 0 (we could claim whatever,
here). Hence by uniqueness, we have s = 0. □

Definition 4.1.6. Let S be a topological space, F a presheaf of abelian groups, p ∈ S a
point. The stalk of F in p is defined to be

Fp = lim
→

U∋p
F (U),

where U runs through the set of all open neighborhoods of x. An element of Fp

therefore is a germ in p.

This means that
Fp =

{
(s,U) : U is open, x ∈ U, s ∈ F (U)

}/
∼

where ∼ is the equivalence relation given as follows: (s,U) ∼ (t,V) if and only if there
exists W ⊂ U ∩ V open with x ∈W and

s|W = t|W.

Lemma 4.1.7. Let F be a sheaf with Fp = 0 for every p ∈ S. Then F = 0.

Proof. Let s ∈ F (U) for some open U ⊂ S and let p ∈ U. Since the germ sp vanishes,
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there is an open set Up ⊂ U with s|Up = 0. The sets (Up)p∈U form an open covering of U,
so that by the local uniqueness, we have s = 0. □

4.2 Complexes

Definition 4.2.1. A sequence of homomorphisms of abelian groups

. . .
d−2
−→ G−1

d−1
−→ G0

d0
−→ G1

d1
−→ . . .

is called a complex, if d jd j−1 = 0 for every j ∈ Z. This is equivalent to

Im(d j−1) ⊂ ker(d j)

for every j. A complex is called exact, if Im(d j) = ker(d j+1) holds for all j. In this case
one also speaks of an exact sequence.

Definition 4.2.2. For a complex A = (Ai, di)i∈Z the quotient group

H j(A) = ker(d j)/ Im(d j−1)

is called the j-th cohomology group of the complex.

Definition 4.2.3. A homomorphism of complexes ϕ : A• → B• is a family of group
homomorphisms ϕp : Ap → Bp such that for every p ∈ Z the diagram

Ap
d //

ϕp

��

Ap+1

ϕp+1

��

Bp
d // Bp+1

commutes.

A homomorphism of complexes will map the kernel of d to the kernel of d and
likewise for the image, so it induces a homomorphism of the cohomology

ϕ∗ : Hp(A)→ Hp(B).

Definition 4.2.4. A homomorphism of complexes ϕ : A→ B is called null-homotopic,
if there are group homomorphisms hp : Ap → Bp−1 such that

ϕp = dhp + hp+1d.
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We picture this situation by the (non-commutative!) diagram

Ap−1

ϕp−1

��

// Ap

ϕp

����

hp

}}

// Ap+1

ϕp+1

��

hp+1

}}

Bp−1
// Bp

// Bp+1

Lemma 4.2.5. Let ϕ : A→ B be a morphism of complexes. If ϕ is null-homotopic, then ϕ∗ is
the zero map,

ϕ∗ = 0.

Proof. Assume ϕp = dhp + hp+1d. Let s ∈ Ap with ds = 0. Then one has

ϕp(s) = dhp(s) + hp+1 ds︸︷︷︸
=0

= d(hp(s)),

so ϕ(s) lies in the image of d and therefore is zero in the cohomology. □

4.3 Cech-cohomology

Definition 4.3.1. Let U = (Ui)i∈I be a covering of S. A Cech-cochain of a sheaf F is an
element of the group

Cp(U,F ) =
∏

(i0,...,ip)∈Ip+1

F (Ui0 ∩ · · · ∩Uip).

We view such an element as a map s mapping a tuple (i0, . . . , ip) ∈ Ip+1 to an element
s(i0, . . . , ip) of the group F (Ui0 ∩ · · · ∩Uip).

Definition 4.3.2. The coboundary-operator ď : Cp(U,F )→ Cp+1(U,F ) is defined by

ď(s)(i0, . . . , ip+1) =
p+1∑
j=0

(−1) js(i0, . . . , î j, . . . , ip+1).

Lemma 4.3.3. One has ď2 = 0, so

0→ C0(U,F ) ď
−→ C1(U,F ) ď

−→ . . .

is a complex.
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Proof. We compute

ď2s(i0, . . . , ip+2) =
p+2∑
j=0

(−1) jďs(i0, . . . , î j, . . . , ip+2)

=

p+2∑
j=0

(−1) j
j−1∑
k=0

(−1)ks(i0, . . . , îk, . . . , î j, . . . , ip+2)

+

p+2∑
j=0

(−1) j
p+2∑

k= j+1

(−1)k−1s(i0, . . . , î j, . . . , îk, . . . , ip+2)

=
∑
j<k

(−1) j+ks(i0, . . . , îk, . . . , î j, . . . , ip+2)

−

∑
k< j

(−1) j+ks(i0, . . . , î j, . . . , îk, . . . , ip+2) = 0. □

Definition 4.3.4. A given s ∈ Cp(U,F ) is called cocycle, if ď(s) = 0. The group of all
p-cocycles is denoted by Zp(U,F ). The image Bp(U,F ) := d(Cp−1(U,F )) is a subgroup
of Zp(U,F ), the elements of which we call p-coboundaries.

Definition 4.3.5. The group

Hp(U,F ) := Zp(U,F )/Bp(U,F )

is called the p-th cohomology group of F with respect to U.

By definition we have that

H0(U,F ) = Z0(U,F ) = F (S)

is the group of global sections of F .

Definition 4.3.6. A covering V is called a refinement of a covering U, if for every
V ∈ V there is a U ∈ U with V ⊂ U.

In this case we write V ≥ U.

Let V ≥ U and U = (Ui)i∈I, as well as V = (V j) j∈J. We then get a map τ : J→ I with
V j ⊂ Uτ( j). The restriction induces a comparison map

τc : Cp(U,F )→ Cp(V,F ),

given by
τc(s)( j0, . . . , jp) = s(τ( j0), . . . , τ( jq))

∣∣∣∣
V j0∩···∩V jq

.
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Lemma 4.3.7. The map τc is a morphism of complexes and thus induces comparison maps

vV
U := τ∗ : Hp(U,F )→ Hp(V,F ).

These do not depend on the choice of τ. For p = 0 this map is bijective and for p = 1 it is
injective.

Proof. It is easily verified that τc is a group morphism and that τcd = dτc.

Bijectivity at p = 0 is clear as both sides coincide with the group F (S).

Now let γ : J→ I be another map with the property, that V j ⊂ Uγ( j) for every j ∈ J. We
have to show that τ∗ = γ∗. To show this, we construct a homotopy. Define
hq : Cq(U,F )→ Cq−1(V,F ) by

hq( f )( j0, . . . , jq−1) =
q−1∑
k=0

(−1)k f (τ( j0), . . . , τ( jk), γ( jk), . . . , γ( jq−1))

∣∣∣∣∣∣∣
V j0∩···∩V jq−1

.

Next we show that τc
q − γ

c
q = hq+1ď + ďhq, so that τc

q − γ
c
q is null-homotopic. For this we

compute

(hq+1ď + ďhq)(s)( j0, . . . , jq)

=

q∑
k=0

(−1)kďs
(
τ( j0), . . . , τ( jk), γ( jk), . . . , γ( jq)

)∣∣∣∣∣∣∣
V j0∩···∩V jq

+

p∑
k=0

(−1)khqs( j0, . . . , ĵk, . . . , jq)

=

q∑
k=0

(−1)k
k∑
ν=0

(−1)νs
(
τ( j0), . . . , τ̂( jν), . . . τ( jk), γ( jk), . . . , γ( jq)

)∣∣∣∣∣∣∣
V j0∩···∩V jq

+

q∑
k=0

(−1)k
q∑
ν=k

(−1)ν+1s
(
τ( j0), . . . , τ( jk), γ( jk), . . . , γ̂( jν), . . . , γ( jq)

)∣∣∣∣∣∣∣
V j0∩···∩V jq

+

p∑
k=0

(−1)k
k−1∑
ν=0

(−1)νs(τ( j0), . . . , τ( jν), γ( jν), . . . , γ̂( jk), . . . , γ( jq))

∣∣∣∣∣∣∣
V j0∩···∩V jq

+

p∑
k=0

(−1)k
q∑
ν=k

(−1)ν+1s(τ( j0), . . . , τ̂( jk), . . . , τ( jν), γ( jν), . . . , γ( jq))

∣∣∣∣∣∣∣
V j0∩···∩V jq

The first and the last row cancel. The two middle rows cancel up to the first and the



Riemann Surfaces 54

last summand. These are τc
− γc. By Lemma 4.2.5 it follows τ∗ = γ∗.

We finally show injectivity at p = 1. For this let s ∈ Z1(U,F ) with the property, that
τc(s) = ďt for some t ∈ C0(V,F ), i.e., for all ( j0, j1) ∈ J2 we have
s(τ( j0), τ( j1)) = t( j1) − t( j0) on V j0 ∩ V j1 . The cocycle property of s says that on
Ui0 ∩Ui1 ∩Ui2 one has s(i1, i2) − s(i0, i2) + s(i0, i1) = 0 for every (i0, i1, i2) ∈ I3. Let i ∈ I and
j0, j1 ∈ J, then on Ui ∩ V j0 ∩ V j1 one has

t( j1) − t( j0) = s(τ( j0), τ( j1)) = s(τ( j0), i) − s(τ( j1), i),

or
s(τ( j0), i) + t( j0) = s(τ( j1), i) + t( j1).

This means that one can glue these sums to get a section hi ∈ F (Ui), which satisfies
hi = s(τ( j), i) + t( j) on Ui ∩ V j. These hi hence give an element h ∈ C0(U,F ) and we
claim that ď(−h) = s. On Ui0 ∩Ui1 ∩ V j0 one has

−ďh(i0, i1) = h(i0) − h(i1)

= s(τ( j0), i1) − s(τ( j0), i0)

= s(i0, i1). □

Definition 4.3.8. For any two coverings (Ui)i∈I and V j) j∈J there is a common refinement
(Ui ∩ V j)(i, j). So the set of all coverings forms a directed set. On the union

⊔
U Hp(U,F )

one defines an equivalence relation by

s ∼ vU
V(s)

if s ∈ Hp(U,F ) and V is finer than U. The quotient becomes a group with the addition
of Hp and is called the direct limit. It is written as

lim
−→
U

Hp(U,F ).

Definition 4.3.9. The Cech-cohomology group of the sheaf F is defined by

Hp(S,F ) = lim
−→
U

Hp(U,F ).

In the case when F is a sheaf of C-vector spaces, the cohomology groups are C-vector
spaces, too and we write

hp(S,F ) = dimp
H

(S,F ).



Riemann Surfaces 55

Proposition 4.3.10. Let S be a Riemann surface and let C∞ be the sheaf of all infinitely
differentiable functions f : U→ C. Then

H1(S,C∞) = 0.

Proof. By Analysis 3 there is a partition of unity, i.e., for every locally finite covering
(Ui)i∈I there is a family (ui)i∈I of smooth functions ui : S→ [0, 1] with

• supp(ui) ⊂ Ui,

• for every x ∈ S there is a neighborhood U, such that ui|U = 0 for all but finitely
many i ∈ I,

•
∑

i∈I ui = 1.

Let s ∈ Z1(U,C∞), so ďs = 0, which means that

0 = s( j, i) − s(k, i) + s(k, j)

on Uk ∩U j ∩Ui. The function uis(i, j) ∈ C∞(Ui ∩U j) has support in Ui. The extension
by zero to U j still is infinitely differentiable, so uis(i, j) ∈ C∞(U j). For every j ∈ I we set
g j =

∑
k∈I uks(k, j) ∈ C∞(U j). Then g ∈ C0(U,C∞) and

ďg(i, j) = g( j) − g(i) =
∑
k∈I

uk(s(k, j) − s(k, i)) = −
∑
k∈I

uks( j, i) = −s( j, i),

so ď(−g) = s and therefore the cohomology vanishes. □

Proposition 4.3.11. Let Ω1 be the sheaf of all C-valued, smooth 1-differential forms on th
Riemann surface S. Then

H1(S,Ω1) = 0.

Proof. Up to trivial reformulation the same proof as in the last proposition applies. □

Theorem 4.3.12. The first cohomology groups with constant coefficients Z and C vanish
on a simply connected surface S, i.e.,

H1(S,C) = H1(S,Z) = 0.
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Proof. Let s ∈ Z1(U,C) be given. Since locally constant functions are infinitely
differentiable we can view s as an element of Z1(U,C∞). By Proposition 4.3.10 there is
g ∈ C0(U,C∞) with ď(g) = s. Every gi is a smooth function on Ui. The derivatives
dgi ∈ Ω

1(Ui) coincide on the intersections, as

dgi|Ui∩U j − dg j|Ui∩U j = ds(i, j) = 0.

Therefore there is a globally defined differential form ω ∈ Ω1(S) with ω|Ui = dgi. The
form ω is exact and so it is closed. Since S is simply connected, by Proposition 3.8.4
there is a primitive to ω, so a smooth function f with d f = ω. The function gi − f has
derivatie zero on Ui, so it is locally constant and so (gi − f )i∈I ∈ C0(U,C). The
coboundary of this is ď(gi − f ) = ď(g) = s, so s yields the trivial cohomology class.

For the case of integer cohomology let b ∈ Z1(U,Z) be given. As Z ⊂ C, by the first
part there is g ∈ C0(U,C) with ďg = b, so b(i, j) = g( j) − g(i). This means that g j is
locally constant on U j and gi − g j is integer valued on Ui ∩U j. Write e(z) = e2πiz. The
locally constant functions e(g j) coincide on the intersections, so e(gi) = e(g j) on Ui ∩U j,
such that there exists a locally constant function E on S with E|Ui = e(gi). Since S is
connected, the function E is constant. Let f ∈ C such that e( f ) = E. Then gi − f is
integer-valued, as e(gi − f ) = 1. So (gi − f )i ∈ C0(U,Z) and ď(gi − f ) = b. □

Theorem 4.3.13 (Leray). Let F be a sheaf and U = (Ui)i∈I an open covering with the
property H1(Ui,F ) = 0 for every i ∈ I. Then the natural map

H1(U,F )→ H1(S,F )

is an isomorphism.

Such a covering is called a Leray-covering.

Proof. It is enough to show that for every finer covering V = (Vν)ν∈J the comparison
map H1(U,F )→ H1(V,F ) is an isomorphism. So let τ : J→ I be a map with Vν ⊂ Uτ(ν)

for every ν ∈ J. Let f ∈ Z1(V,F ) be a cocycle. We have to show that there is a cocycle
F ∈ Z1(U,F ), such that

τcF − f

lies in B1(V,F ). Let i ∈ I. Then V|Ui is an open covering of Ui. By assumption we have
H1(Ui,F ) = 0 and since the map H1(V|Ui ,F )→ H1(Ui,F ) is injective by Lemma 4.3.7,
we get H1(V|Ui ,F ) = 0. This means that for every ν ∈ J there is a g(i, ν) ∈ F (Ui ∩ Vν,
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such that
f (ν, µ) = g(i, ν) − g(i, µ) on Ui ∩ Vν ∩ Vµ.

On the intersection Ui ∩U j ∩ Vν ∩ Vµ one has

g( j, ν) − g(i, ν) = g( j, µ) − g(i, µ).

So there exists an F(i, j) ∈ F (Ui ∩U j) such that

F(i, j) = g( j, ν) − g(i, ν) on Ui ∩U j ∩ Vν.

This F satisfies the cocycle relation and lies in Z1(U,F ). Let hν = g(τ(ν), ν)|Vν ∈ F (Vν).
On Vν ∩ Vµ one has

F(τ(ν), τ(µ)) − f (ν, µ) = (g(τ(µ), ν) − g(τ(ν), ν)) − (g(τ(µ), ν) − g(τ(µ), µ))

= g(τ(µ), µ) − g(τ(nu), ν) = hµ − hν. □

Example 4.3.14. We show
H1(C×,Z) = Z.

Proof. Let U1 = C× ∖ R− and U2 = C× ∖ R+, where R+ and R− is the positive, resp.
negative real axis. Since Ui is star-shaped, we have H1(Ui,Z) = 0 by Theorem 4.3.12.
By Leray’s Theorem we therefore get H1(C×,Z) = H1(U,Z). Let a ∈ Z1(U,Z) be a
cocycle, so a( j, k) − a(i, k) + a(i, j) = 0. Then with i = j = k, we get a(i, i) = 0 and with
k = i, that a(i, j) = −a( j, i). Therefore a is completely determined by a(1, 2) and so
Z1(U,Z) � Z(U1 ∩U2) � Z ×Z, as U1 ∩U2 decomposes in two components. As Ui is
connected, one has Z(Ui) = Z and so C0(U,Z) � Z ×Z. The coboundary operator is,
via these isomorphisms, given by

Z ×Z→ Z ×Z,

(b1, b2) 7→ (b2 − b1, b1 − b2).

The claim follows. □

Analogously one gets H1(C×,C) � C.

4.4 The long cohomology sequence

Definition 4.4.1. Let F and G be sheaves on S. A sheaf homomorphism ϕ consists of
a group homomorphism ϕ(U) : F (U)→ G(U) for every open U ⊂ S, which are
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compatible with the restriction homomorphisms, so for all U ⊂ V ooen in S, the
diagram

F (V)
ρV

U //

ϕ(V)
��

F (U)

ϕ(U)
��

G(V)
ρV

U

// G(U)

commutes.

Examples 4.4.2. • The inclusion of the constant sheaf C into the sheaf C∞ is a sheaf
homomorphism.

• The exterior derivative d : C∞ → Ω is a sheaf homomorphism.

• Let O be the structure sheaf and let O× be the sheaf defined by

O
×(U) =

{
f ∈ O(U) : f has no zero

}
Then the map f 7→ e( f ) = e2πi f (z) is a sheaf homomorphism O → O×.

Definition 4.4.3. Let ϕ : F → G be a sheaf homomorphism. Then the kernel ker(ϕ) is
a sheaf defined by

ker(ϕ)(U) := ker(ϕ(U)).

Example 4.4.4. Let e : O → O× be the exponential map. Then the image
Im(e)(U) = Im(e(U)) defines a pre-sheaf, but generally not a sheaf. As an example let
S = C×, let U1 = C ∖ (−∞, 0] and U2 = C ∖ [0,+∞). As the Ui are simply connected, the
map e(Ui) is surjective, so, for instance the map f (z) = z lies in the image of each e(Ui).
These functions glue to give f (z) = z, but thie map is not in the image of the
exponential map, as on C× there is no holomorphic logarithm.

Proposition 4.4.5. Let F be a presheaf. Then there exists a sheaf F + and a presheaf
homomorphism θ : F → F + with the property that every presheaf homomorphism
ϕ : F → G, where G is a sheaf, factors uniquely over θ. So for each ϕ there is a uniquely
determined sheaf homomorphism ψ such that the diagram

F
θ //

ϕ
  

F
+

∃! ψ
��

G

commutes. The pair (F +, θ) is unique up to isomorphy. One calls F + the sheafification of
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F . So for every sheaf G one has

Hom(F ,G) � Hom(F +,G).

The homomorphism θ induces isomorphisms of all stalks

θx : Fx
�
−→ F

+
x .

Proof. We construct the sheaf F + as followst. For an open set U ⊂ S let F +(U) be the
set of all maps s from U to the disjoint union of stalks

⊔
x∈U Fx such that

• for every x ∈ U one has s(x) ∈ Fx and

• for every x ∈ U there is an open neighborhood V ⊂ U and a t ∈ F (V), so that for
every y ∈ V we have t(y) = s(y).

The properties of F + are immediate. The uniqueness follows formally from the
universal property. For x ∈ S the map θ induces an isomorphism of the stalk Fx to the
stalk F +x . In the case when F already is a sheaf, the map θ is an isomorphism. □

Definition 4.4.6. We define the image sheaf of a sheaf homomorphism ϕ : F → G as
the sheafification of the presheaf U 7→ ImϕU and we write this sheaf as Im(ϕ).

Definition 4.4.7. A sequence of sheaf homomorphisms

F
f
−→ G

g
−→ H

is called exact, if g f = 0 and the induced homomorphism Im( f )→ Ker(g) is an
isomorphism of sheaves.

Proposition 4.4.8. A sequence of sheaf homomorphisms

F
f
−→ G

g
−→ H

is exact, if and only if for every x ∈ S the induced si=equence of stalks

Fx
fx
−→ Gx

gx
−→ Hx

is an exact sequence of groups.

Proof. Let F
f
−→ G

g
−→ H be exact and let x ∈ S. Then (g f )x = gx fx, so gx fx = 0 and

therefore Im( fx) ⊂ ker(gx). Let α ∈ ker(gx) and let (αU,U) be a representative of α, i..e.,
U is an open neighborhood of x and αU ∈ G(U) with g(U)αU = 0. By definition of the
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image sheaf there is an open neighborhood V ⊂ U of x, such that the restriction of α to
V is of the form f (V)βV for some βV ∈ F (U). Then fx(β) = α.

The converse direction is proven similarly. □

Example 4.4.9. The inclusion and the exponential map e( f (z)) = exp(2πi f (z)) yield an
exact sequence

0→ Z→ OS → O
×

S → 0.

Definition 4.4.10. A sheaf homomorphism α : F → G yields a group homomorphism
Cp(U,F )→ Cp(U,G) for every p and every covering U. The coboundary operator ď by
definition is a linear combination of restriction maps. As these commute with α, we
get ďα = αď and α maps kernel and image ď to kernel and image of ď. Hence we get
induced maps αp : Hp(U,F )→ Hp(U,G) and so

αp : Hp(S,F )→ Hp(S,G).

Note that for two sheaf homomorphisms α and β which can be composed, we have

(β ◦ α)p = βp ◦ αp.

Lemma 4.4.11. Let 0→ F α
−→ G

β
−→ H → 0 be an exact sequence of sheaves over S. Then

for every open U ⊂ S the sequence

0→ F (U)
αU
−→ G(U)

βU
−→ H(U)

is exact. But for each h ∈ H(U) there is a covering (Vi)i∈I of U such that h|Vi lies in the image
of βVi for every i. Consequently, for each covering U of S the sequence

0→ Cp(U,F )
αU
−→ Cp(U,G)

βU
−→ Cp(U,H)

is exact. But for each h ∈ Cp(U,H) there exists a refinement V of U such that the image of h in
Cp(V,H) lies in the image of βV.

Proof. For s ∈ F (U) with α(s) = 0 we have sx = 0 in every x ∈ U and therefore s = 0 by
the local uniqueness. If t ∈ G(U) satisfies β(t) = 0, then for every x ∈ U one has
tx = αx(sx) for some sx ∈ Fx. So there is an open neighborhood V of x and sV ∈ F (V)
with tV = α(V)sV. Since α is locally injective, the different sV are compatible and
together define a section s over U. This section satisfies α(U)s = t.

For the second assertion repeat the same argument with β instead of α. This works up
to the point where the different sV should be compatible. Now they are not, but the V
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form a covering which satisfies the claim.

The assertions about the cochain sets Cp follow by applying the first part to the
intersections Ui0 ∩ . . . ,∩Uip . □

Theorem 4.4.12 (The long exact cohomology sequence). Let

0→ F α
−→ G

β
−→ H → 0

be an exact sequence of sheaves. Then there are morphisms, called connection
morphisms

δp : Hp(S,H)→ Hp+1(S,F ),

such that the sequence

0→ H0(S,F )
α0
−→ H0(S,G)

β0
−→ H0(S,H)

δ0
−→ H1(S,F )

α1
−→ H1(S,G)→ . . .

. . .Hp(S,F )
αp
−→ Hp(S,G)

βp
−→ Hp(S,H)

δp
−→ Hp+1(S,F )

αp+1
−→ Hp+1(S,G)→ . . .

is exact.

Proof. Let h ∈ Hp(S,H) and choose a representative h ∈ Zp(U,H). We can choose the
covering U so fine that surjectivity of the stalk maps βx guarantees the existence of
g ∈ Cp(U,G) with β(g) = h. In order to construct an element of Hp+1(S,F ) from this, we
apply the coboundary operator ď(g). Because of ď2 = 0 we have ď(g) ∈ Zp+1(U,G). By
βď = ďβ one has β(ď(g)) = 0, since h is a cocycle. By Lemma 4.4.11, applied to all
p + 2-folds intersections of the sets Ui, there is f ∈ Cp+1(U,F ) with α( f ) = ď(g). As
0 = ď2(g) = ďα( f ) = α(ď( f )) and by the injectivity in Lemma 4.4.11, applied to all
(p + 3)-fold intersections, we get d( f ) = 0. Therefore f ∈ Zp+1(U,F ) and we take its
class in Hp+1(S,F ) to define δ(g).

We write this as h→ g→ f with

β(g) = h and α( f ) = ďg.
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and then we have δ([h]) = [ f ]. So we get δ(h) when in the diagram

Cp(G)
β
//

ď
��

Cp(H)

Cp+1(F ) α // Cp+1(G)

we first take a preimage under β, then apply ď and again take a preimage, this time
under α.

It remains to check, that δ does not depend on the choice of pre-images g and f . We
don’t have to worry about f here, as α is injective. Let g̃ = (g̃io...ip) on a covering Ũ,
consisting of open sets Ũi, be another pre-image. We change to a covering V, which is
finer than U and Ũ and we consider g and g̃ as elements of Cp(V,F ). We have to show
that the image δ(h) ∈ Hp+1(V,F ) does not depend on whether one has used g to
construct f or if one has used g̃ to construct f̃ . By construction we have β(g − g̃) = 0.
By exactness of the sheaf sequences, every point x ∈ S has a neighborhood W(x), on
which there exists an element u with α(u) = (g − g̃)|U. By choosing finer coverings we
can assume that V contains these W(x), so that there is an element u ∈ Cp(V,F ) with
α(u) = g − g̃. Then we have

α(h − h̃) = ď(g − g̃) = ď(α(u)) = α(ď(u))

and by injectivity of α this difference is a coboundary, the class of h in Hp(S,F ) is
well-defined. By construction, δ is a group homomorphism.

We now show the exactness of the sequence. For the exactness at Hp(S,G) we first
observe that 0 = β ◦ α implies 0 = βp ◦ αp and so Im(αp) ⊂ ker(βp). For the converse
inclusion let [g] ∈ ker(βp). So g ∈ Cp(U,G) with ďg = 0 and β(g) = ďh for some
h ∈ Cp−1(U,H). By refining the covering U we find some g̃ ∈ Cp−1(S,G) with h = β(g̃).
The class of g is the same as the class of g′ = g − ďg̃ and we have

β(g′) = β(g) − ďβ(g̃) = ďh − ďh = 0.

By further refining the covering there is f ∈ Cp(U,F ) with α( f ) = g′. Now
α(ď f ) = ďg′ = 0 and as α is injective, ď f = 0 and it follows that αp([ f ]) = [g].

For the inclusion Im(β) ⊂ ker(δ) it suffices to reconsider the proof of well-definedness
of δ.
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Recall the construction of δ as h→ g→ F with

β(g) = h and α( f ) = ďg.

and then we have δ([h]) = [ f ]. In order to show ker(δ) ⊂ Im(β) let [h] ∈ ker(δ). Then
there is u ∈ Cp(U,F ) with ď(u) = f .

We change the chosen pre-image g ∈ Cp(U,F ) by −α(u), i.e., g′ = g − α(u). Then
ď(g′) = ď(g) = ď(α(u)) = ď(g) − α( f ) = 0, so g′ is, a cocycle and
β(g′) = β(g) − β(α(u)) = β(g) = h.

The inclusion Im(δ) ⊂ ker(α) is clear from the construction of δ. For the converse
inclusion let f ∈ ker(α) be given, so α( f ) = ď(g) for some cochain g ∈ Cp−1(U,F ). Set
h = β(g). Then ď(h) = β(ď(g)) = β(α( f )) = 0, and so h ∈ Zp−1(UH), which implies
δ(h) = f . □

Corollary 4.4.13. Let

0→ F
f
−→ G

g
−→ H → 0

be an exact sequence of sheaves on a topological space X with H1(G,X) = 0. Then

H1(F ,X) = H(X)/gH(X).

Proof. Clear by the exact sequence. □

Examples 4.4.14.

• Let
Z = ker(Ω2 d

−→ Ω2)

be the sheaf of closed forms. The sequence

0→ C→ C∞ →Z→ 0

is exact by the Poincaré Lemma.

• The sequence
0→ C→ O→ Ωhol → 0

is exact, since locally, every holomorphic function has a primitive.
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4.5 The Cohomology of the structure sheaf, first examples

It is clear that
dimCO(P1) = 1

and

dimC

 f ∈ M(P1) :
holomorphic outside zero
at most simple pole at zero

 = 2.

Generally, these dimensions are connected to the cohomology of the structure sheaf O.

Theorem 4.5.1. (a) Let S =
{
z ∈ C : |z| < R

}
for some 0 < R ≤ ∞. Then H1(S,O) = 0.

(b) One has H1(P1,O) = 0.

We later will show that for a compact connected Riemann surface S we have

dim H1(S,O) = g(S)

the genus.

Proposition 4.5.2. Let S =
{
x ∈ C : |z| < R

}
, 0 < R ≤ ∞ and g ∈ C∞(S). Then there is

f ∈ C∞(S) such that
∂ f
∂z
= g.

Proof. Let 0 < R0 < R1 < · · · < R be a sequence with limit R and set

Sn =
{
z ∈ C : |z| < Rn

}
.

Let ψn ∈ C
∞(S) with supp(ψn) ⊂ Sn+1 and ψn|Sn ≡ 1. Since ψng has compact support,

there is fn ∈ C
∞(S) with

∂ fn = ψng,

where we have written ∂ = ∂
∂z . We change the sequence fn inductively to a sequence f̃n

such that

(i) ∂ f̃n = g on Sn and

(ii)
∥∥∥ f̃n+1 − f̃n

∥∥∥
Sn−1
≤

1
2n .

Here
∥∥∥ f

∥∥∥
K
= supx∈K | f (x)| is the supremum norm. For this set f̃1 = f1. Let f1, . . . , fn be
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constructed already. Then we have

∂( fn+1 − f̃n) = 0 auf Sn,

and so fn+1 − f̃n is holomorphic in Sn. Therefore there is a polynomial P such that∥∥∥ fn+1 − f̃n − P
∥∥∥

Sn−1
≤

1
2n .

We set f̃n+1 = fn+1 − P. Then (ii) holds. On Sn+1 one has

∂ f̃n+1 = ∂ fn+1 − ∂P = ∂ fn+1 = ψn+1g = g,

so (i) holds, too. Set
f (z) = lim

n
f̃n(z).

This is a continuous function on S. On Sn one has

f = f̃n +

∞∑
k=n

(
f̃k+1 − f̃k

)
.

For k ≥ n the functions f̃k+1 − f̃k are holomorphic on Sn, since there one has
∂
(

f̃k+1 − f̃k

)
= 0. The sum

∑
∞

k=n

(
f̃k+1 − f̃k

)
converges uniformly on Sn and therefore is

holomorphic. So f is infinitely differentiable on Sn and so on all if S. Further one has
∂ f = ∂ f̃n = g on Sn and so this equation holds on all of S. □

Proof of Theorem 4.5.1, part (a). H1(S,O) = 0
Let U = (Ui)i∈I be an open covering of S and let f ∈ Z1(U,O) be a cocycle. as
Z1(U,O) ⊂ Z1(U,C∞) and H1(S,C∞) = 0, there is g ∈ C0(U,C∞) such that

f (i, j) = g j − gi on Ui ∩U j.

Since ∂ f (i, j) = 0, one has ∂gi = ∂g j on Ui ∩U j and so there is G ∈ C∞(S) such that
G|Ui = ∂gi. By Proposition 4.5.2 there is h ∈ C∞(S) with ∂h = G. Set

si = gi − h.

Then si is holomorphic on Ui, since ∂si = ∂gi − ∂h = ∂gi − G = 0 and therefore
s ∈ C0(U,O). On Ui ∩U j we also have

s j − si = g j − gi = f (i, j),

so ďs = f . □
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Proof of Theorem 4.5.1, part (b). H1(P1,O) = 0
Let U1 = P1 ∖ {∞} and U2 = P1 ∖ {0}. Since both theses sets are � C, we get
H1(Ui,O) = 0 and by Leray’s Theorem we get H1(P1,O) = H1(U,O). Let f ∈ Z1(U,O).
We must find holomorphic functions fi ∈ O(Ui), such that

f (1, 2) = f2 − f1 on U1 ∩U2 = C
×.

For this let

f (1, 2)(z) = f1,2(z) =
∞∑

n=−∞

cnzn

be the Laurent series of f1,2. The functions f1(z) = −
∑
∞

n=0 cnzn and f2(z) =
∑
−1
n=−∞ cnzn

will do the job. □

Corollary 4.5.3 (Dolbeault’s Theorem). For a Riemann surface S one has

H1(S,O) � Ω0,1(S)/d′′C∞(S).

Proof. By the Dolbeault Lemma 3.10.7 one gets the exactness of

0→ O→ C∞ → Ω0,1
→ 0.

The sheaf C∞ is fine, hence H1(S,C∞) = 0, so Corollary 4.4.13 yields the claim. □

4.6 A finiteness theorem

In this section we show that for two open subsets U,V of a Riemann surface such that
U is compact and U ⊂ V, the restriction map

H1(V,O)→ H1(U,O)

has finite-dimensional image.

Let D ⊂ C be open. For a function f ∈ O(D) let the L2-Norm be defined by

∥∥∥ f
∥∥∥

L2(D)
:=

(∫
D
| f (x + iy)|2 dx dy

) 1
2

.

We call f square-integrable, if
∥∥∥ f

∥∥∥
L2(D)

< ∞. Let L2(D,O) be the vector space of all
square-integrable functions on D.
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Proposition 4.6.1. The space L2(D,O) is a Hilbert space with the inner product

〈
f , g

〉
=

∫
D

f (z)g(z) dx dy.

Proof. We have to show completeness, in other words, that L2(D,O) is a closed
subspace of the Hilbert space L2(D). Let a ∈ D and R > 0 such that BR(a) ⊂ D. Let
δa( f ) = f (a) be the evaluation functional. By Cauchy’s integral formula we get

|δa( f )| = | f (a)| =
1

2π(R − r)

∣∣∣∣∣∣
∫ R

r

∫
∂Ds

f (z)
z − a

dz ds

∣∣∣∣∣∣
=

1
2π(R − r)

∣∣∣∣∣∣
∫ R

r

∫ 2π

0
f (a + seiθ)i dθ ds

∣∣∣∣∣∣
≤ C

∫
Dr,R

| f (z)| dx dy ≤︸︷︷︸
Cauchy-Schwarz

C′
∥∥∥ f

∥∥∥
L2(Dr,R)

≤ C′
∥∥∥ f

∥∥∥
L2(D)

Here a ∈ Br(a0) and therefore the linear functional δa is bounded with a bound that
does not depend on a (locally). This implies that if a sequence fn ∈ L2(D,O) converges
fn → f in L2(D), then fn converges locally uniformly and by a theorem of Weierstraß, f
is holomorphic, so L2(D,O) is a closed subspace of the Hilbert space L2(D). □

Definition 4.6.2. For subsets A,B of a topological space S we write

A ⋐ B,

if the closure A of A is compact and A ⊂ B.

Definition 4.6.3. Let S be a Riemann surface and let (U∗i , zi), i = 1, . . . ,n be charts such
that every zi(U∗i ) is a disk. We do not insist this family to be a covering. Let Ui ⊂ U∗i be
open subsets and set U = (Ui)1 ≤ i ≤ n.

(i) For f ∈ C0(U,O) let ∥∥∥ f
∥∥∥2

L2(U)
:=

∑
i

∥∥∥ fi

∥∥∥2

L2(Ui)
.

(ii) For g ∈ C1(U,O) let ∥∥∥g
∥∥∥2

L2(U)
:=

∑
i, j

∥∥∥gi j

∥∥∥2

L2(Ui∩U j)
.
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The norms of fi and gi j are computed with the help of the charts zi, i.e.,∥∥∥ fi

∥∥∥
L2(Ui)

:=
∥∥∥ fi ◦ z−1

i

∥∥∥
L2(zi(Ui))

,∥∥∥gi j

∥∥∥
L2(Ui∩U j)

:=
∥∥∥gi j ◦ z−1

i

∥∥∥
L2(zi(Ui∩U j))

.

Let Cq
L2(U,O) ⊂ Cq(U,O) be the space of cochains of finite norm. These are Hilbert

spaces. The cocycles in C1
L2(U,O form a closed subspace, which we denote by

Z1
L2(U,O).

Lemma 4.6.4. Let Vi ⋐ Ui be relatively compact open subsets and V = (Vi)1≤i≤n. We write
this as V ⋐ U. For every cochain f ∈ Cq(U,O we have

∥∥∥ f
∥∥∥

L2(V)
< ∞. Then for every ε > 0

there is a closed subspace A ⊂ Z1
L2(U,O) of finite codimension, such that∥∥∥ f

∥∥∥
L2(V)
≤ ε

∥∥∥ f
∥∥∥

L2(U)
for every f ∈ A.

Proof. As the families of charts are finite, it suffices to show that for open subsets
C ⋐ D of C and every ε > 0 there is a closed linear subspace A ⊂ L2(D,O) of finite
codimension, such that ∥∥∥ f

∥∥∥
L2(C)
≤ ε

∥∥∥ f
∥∥∥

L2(D)
for every f ∈ A.

The set C is compact and in D. So there is r > 0 and finitely many points a1, . . . , ak ∈ D
such that

(i) Br(a j) ⊂ D for j = 1, . . . , k,

(ii) C ⊂
⋃k

j=1 Br/2(a j).

Choose n so large, that 2−n−1k ≤ ε. Let A be the set of all functions f ∈ L2(D,O), which
at each point a j vanish at least to order n. Then A is a closed subspace of L2(D,O) of
co-dimension ≤ kn.

Let f ∈ A and let

f (z) =
∞∑
ν=n

cν(z − a j)ν

be the Taylor-series of f around a j. Applying polar coordinates, one sees from the
corresponding fact on Fourier-series, that

(a − a j)ν ⊥ (z − a j)µ
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if ν , µ in L2(Br(a j)). Therefore, for ρ ≤ r we have

∥∥∥ f
∥∥∥2

L2(Bρ(a j))
=

∞∑
ν=n

πρν+1

ν + 1
|cν|2,

such that ∥∥∥ f
∥∥∥

L2(Br/2(a j)
≤ 2−n−1

∥∥∥ f
∥∥∥

L2(Br(a j))
≤ 2−n−1

∥∥∥ f
∥∥∥

L2(D)
.

We get

∥∥∥ f
∥∥∥

L2(C)
≤

k∑
j=1

∥∥∥ f
∥∥∥

L2(Br/2(a j))
≤ k2−n−1

∥∥∥ f
∥∥∥

L2(D)
≤ ε

∥∥∥ f
∥∥∥

L2(D)
. □

Lemma 4.6.5. Let S be a Riemann surface and U∗ a finite family of charts as in Definition
4.6.3. Let there be further families with W ⋐ V ⋐ U ⋐ U∗. Then there is a constant C > 0
such that for every ξ ∈ Z1

L2(V,O) there are w ∈ Z1
L2(U,O) and η ∈ C0

L2(W,O) such that

w = ξ + ďη on W

and
max

(
∥w∥L2(U) ,

∥∥∥η∥∥∥
L2(W)

)
≤ C ∥ξ∥L2(V) .

Proof. (a) Let ξ ∈ Z1
L2(V,O) be given. First we ignore the assertions on norms and

construct ζ ∈ Z1
L2(U,O) and η ∈ C0

L2(W,O) such that ζ = ξ + η̌ holds on W. By
Proposition 4.3.10 we have H1(S,C∞) = 0, so there exists a cochain g ∈ C0(V,C∞) such
that

ξi j = g j − gi on Vi ∩ V j.

As d′′ξi j = 0 we get d′′gi = d′′g j on Vi ∩ V j and so there is a differential form
ω ∈ Ω0,1(|V|) with ω|Vi = d′′gi. Here |V| =

⋃n
i=1 Vi is the support of V. Since |W| ⋐ |V|,

there is a function ψ ∈ C∞(S) with

supp(ψ) ⊂ |V| and ψ||W| = 1.

So one can view ψω as an element of Ω0,1(|U∗|). By Proposition 4.5.2 there are
functions hi ∈ C

∞(U∗i ) such that

d
′′

hi = ψω on U∗i .

In particular one has d′′hi = d′′h j on U∗i ∩U∗j. Hence

ζi j := h j − hi ∈ O(U∗i ∩U∗j).
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As U ⋐ U∗, one has ζ ∈ Z1
L2(U,O). On Wi we have d′′hi = ψω = ω = d′′gi, so the

function hi − gi is holomorphic on Wi.

Since hi − gi also is bounded on Wi, one has

ηi = (hi − gi)|W ∈ C0
L2(W,O).

On Wi ∩W j one has ζi j − ξi j = (h j − g j) − (hi − gi) and therefore

ζ − ξ = ďη on W.

(b) To get the assertions on norms, consider the Hilbert space

H := Z1
L2(U,O) × Z1

L2(V,O) × C0
L2(W,O)

with the norm ∥∥∥(ζ, ξ, η)
∥∥∥2

H
:= ∥ζ∥2L2(U + ∥ξ∥

2
L2(V) +

∥∥∥η∥∥∥2

L2(W)
.

Let L ⊂ H be the subspace

L :=
{
(ζ, ξ, η) ∈ H : ξ = ζ + ďη auf W

}
.

Since L is closed in H, it is a Hilbert space itself. By part (a) the continuous linear map

π : L→ Z1
L2(V,O), (ζ, ξ, η) 7→ ξ

is surjective. By the open mapping theorem, π is open. So there is a constant C > 0,
such that for every ξ ∈ Z1

L2(V,O) there is an x = (ζ, ξ, η) ∈ L with π(x) = ξ and
∥x∥H ≤ C ∥ξ∥L2(V). The claim follows. □

Lemma 4.6.6. Under the conditions of Lemma 4.6.5 there is a finite-dimensional linear
subspace L ⊂ Z1(U,O) with the following property: for every ξ ∈ Z1(U,O) there are elements
σ ∈ L and η ∈ C0(W,O) such that

σ = ξ + ďη on W.

The lemma says that the restriction map

H1(U,O)→ H1(W,O)

has finite-dimensional image.

Proof of the lemma. Let C be the constant of Lemma 4.6.5 and set ε = 1
2C . By Lemma
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4.6.4 there is a closed linear subspace A ⊂ Z1
L2(U,O) of finite codimension such that

∥ξ∥L2(V) ≤ ε ∥ξ∥L2(U) for every ξ ∈ A.

Let L be the orthogonal complement of A in Z1
L2(U,O), so A ⊕ L = Z1

L2(U,O). Let
ξ ∈ Z1

L2(U,O) be arbitrary. Because of V ⋐ U one has

M := ∥ξ∥L2(V) < ∞.

By Lemma 4.6.5 there are ζ0 ∈ Z1
L2(U,O) and η0 ∈ C0

L2(W,O) such that

ζ0 = ξ + ďη0 on W

and ∥ζ0∥L2(U) ≤ CM, as well as
∥∥∥η0

∥∥∥
L2(W)

≤ CM. We write the orthogonal decomposition
as

ζ0 = ξ0 + σ0, ξ0 ∈ A, σ0 ∈ L.

We inductively construct elements

ζν ∈ Z1
L2(U,O), ην ∈ C0

L2(W,O), ξν ∈ A, σν ∈ L

with the following propertues:

(i) ζν = ξν−1 + ďην on W,

(ii) ζν = ξν + σν,

(iii) ∥ζν∥L2(U) ≤ 2−νCM. M = ∥ξ∥L2(V)

The induction step ν→ ν + 1 is done as follows: As ζν = ξν + σν is an orthogonal
decomposition, one has

∥ξν∥L2(U) ≤ ∥ζν∥L2(U) ≤ 2−νCM.

So that
∥ξν∥L2(V) ≤ ε ∥ξν∥L2(U) ≤ 2−νεCM ≤ 2−ν−1M.

By Lemma 4.6.5 there are elements ζν+1 ∈ Z1
L2(U,O) and ην+1 ∈ C0

L2(W,O), such that

ζν+1 = ξν + ďην+1 on W

and
max

(
∥ζν+1∥L2(U) ,

∥∥∥ην+1

∥∥∥
L2(W)

)
≤ 2−ν−1CM.

Now there is an orthogonal decomposition ζν+1 = ξν+1 + σν+1, where ξν+1 ∈ A and
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σν+1 ∈ L and then the induction step is complete.

The equations (i) and (ii) imply

ξk +

k∑
ν=0

σν = ξ + ď

 k∑
ν=0

ην

 on W. (*)

By (ii) and (iii) one gets

max
(
∥ξν∥L2(U) , ∥σν∥L2(U) ,

∥∥∥ην∥∥∥L2(W)

)
≤ 2−νCM.

So limk→∞ ξk = 0 and the series

σ :=
∞∑
ν=0

σν ∈ L

η :=
∞∑
ν=0

ην ∈ C0
L2(W,O)

converge. By (*) it follows that σ = ξ + ďη on W. □

Definition 4.6.7. Let S be a topological space, Y ⊂ S open and F a sheaf on S. For
everyopen covering U = (Ui)i∈I of S the restriction U|Y is an open covering of Y and the
restriction map Z1(U,F )→ Z1(U|Y,F ) induces a homomorphism
H1(U,F )→ H1(U|Y,F ). In this way one gets the restriction homomorphism on
cohomology,

H1(S,F )→ H1(Y,F ).

Theorem 4.6.8. Let S be a Riemann surface and U ⋐ V ⊂ S open subsets. Then the
restriction homomorphism

H1(V,O)→ H1(U,O)

has finite-dimensional image.

Proof. There are finite families of charts W ⋐ V ⋐ U ⋐ U∗ such that

(i) U ⊂
⋃n

i=1 Wi =: Y′ ⋐ Y′′ :=
⋃n

i=1 Ui ⊂ V,

(ii) the sets zi(U∗i ), zi(Ui) and zi(Wi) are disks in C.

By Lemma 4.6.6 the restriction homomorphism H1(U,O)→ H1(W,O) has
finite-dimensional image. By Theorem 4.5.1 we have H1(Ui,O) = 0 = H2(Wi,O) and by
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the Theorem of Leray 4.3.13 one has H1(U,O) = H1(Y′′,O) and H1(W,O) = H1(Y′,O).
As the restriction homomorphism H1(V,O)→ H1(U,O) can be factorized:

H1(V,O)→ H1(Y′′,O)→ H1(Y′,O)→ H1(U,O),

the claim follows. □

Corollary 4.6.9. For a compact Riemann surface S the space H1(S,O) is finite-dimensional.

Proof. Apply the theorem to the case Y1 = Y2 = S. □

Definition 4.6.10. The cohomological genus of a Riemann surface S is by definition

gcoh(S) := dim H1(S,OS).

Later we will see that the cohomological genus equals the topological genus.

Theorem 4.6.11. Let S be a Riemann surface and U ⋐ S an open subset. Then for every
p ∈ U there exists a meromorphic function f ∈ M(U) which has a pole at p and is
holomorphic on U ∖ {p}.

Proof. By Theorem 4.6.8,

k = dim im
(
H1(S,O)→ H1(U,O)

)
< ∞.

Let (U1, z) be a chart around p with z(p) = 0. Let U2 = S ∖ {p}. Then U = {U1,U2} is an
open covering of S. For j ∈N the function z− j is holomorphic on U1 ∩U2 and thus is
an element of Z1(U,OS). As H1(U,O)→ H1(S,O) is injective, the elements
z−1, . . . , z−(k+1) in H1(U,O) are linearly dependent. This means that there are
( f1, f2) ∈ C0(U,O) and complex numbers c1, . . . , cgcoh+1, such that

f2 − f1 =

gcoh+1∑
j=1

c jz− j on U1 ∩U2,

or f2 = f1 +
∑gcoh+1

j=1 c jz− j. So the function, defined by f2 on U2 has a pole of order ≤ k + 1
in p and is holomorphic otherwise. □

Corollary 4.6.12. Let U ⋐ S be open. Then there exists a holomorphic function f : U→ C
which is not constant on any connected component of U.
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Proof. Choose a domain D with U ⋐ D ⋐ S and a point p ∈ D ∖U. Now apply
Theorem 4.6.11 to p and D. □

Theorem 4.6.13. Let S be a non-compact Riemann surface and U ⋐ V ⊂ X open sets.
Then

L = Im
(
H1(V,O)→ H1(U,O)

)
= 0.

Proof. By Theorem 4.6.8 this is a finite-dimensional space. Choose classes
ξ1, . . . , ξn ∈ H1(V,O), such that their restrictions to U span L. By Corollary 4.6.12 there
is f ∈ O(V) which is non-constant on every connected component of V. Note that
H1(V,O) is a O(V) module. By the choice of the ξν there are constants cν,µ ∈ C such that

fξν =
n∑
µ=1

cν,µξµ (∗)

for ν = 1, . . . ,n. Set F = det( fδν,µ − cν,µ)ν,µ. Then F is a holomorphic function on V
which is non-zero on any connected component of V. By (∗) it follows that

Fξν|U = 0 (∗∗)

for ν = 1, . . . ,n. An arbitrary cohomology class ζ ∈ H1(V,O) can be represented by a
cocycle ( fi, j) ∈ Z1(U,O), where U = (Ui)i∈I is an open covering of V such that each zero
of F is contained in at most one Ui. So for i , j one has F|Ui∩U j ∈ O

×(Ui ∩U j). Hence
there exists a cocycle (gi, j) ∈ Z1(U,O) such that fi, j = Fgi, j. Let ξ ∈ H1(V,O) be the
cohomology class of (gi, j). Then ζ = Fξ. Hence from (∗∗) one gets ζ|U = Fξ|U = 0. □

Corollary 4.6.14. Let S be a non-compact Riemann surface and U ⋐ V ⊂ S open sets. Then
for every differential form ω ∈ Ω0,1(V) there exists a function f ∈ C∞(U) such that d′′ f = ω|U.

Proof. By Dolbeault’s lemma 3.10.7, the problem has local solutions. So there exists an
open covering U = (Ui)i∈I of V and functions fi ∈ C∞(Ui) such that d′′ fi = ω|Ui . The
differences fi − f j are holomorphic on Ui ∩U j and thus define a cocycle in Z1(U,O). By
Theorem 4.6.13 this cocycle is cohomologous to zero on U, and so there exist
holomorphic functions gi ∈ O(Ui ∩U) such that

fi − f j = gi − g j on Ui ∩U j ∩U.
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This implies that there exists a function f ∈ C∞(U) such that

f = fi − gi

on Ui ∩U for every i ∈ I. But then the function f satisfies d′′ f = ω|U. □
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5 The Theorem of Riemann-Roch

5.1 Divisors

Definition 5.1.1. Let S be a Riemann surface. A divisor on S is a map

D : S→ Z,

which is locally-finite in the following sense: for every p ∈ S there is an open
neighborhood U, such that D(u) = 0 for all but finitely many u ∈ U. One writes a
divisor as formal sum

D =
∑
p∈S

D(p)p.

One can add divisors, they form an abelian group Div(S), the divisor group of S.

Examples 5.1.2. • Let f ∈ M(S) be a meromorphic function. Then

( f ) = div( f ) =
∑
p∈S

ordp( f )p

is the divisor of f . Every divisor of this form is called a principal divisor.

• Let ω be a meromorphic differential form on S. If in local coordinates around the
point p the form writes as ω = f dz, then we set

ordp(ω) = ordp( f ).

This number does not depend on the choice of the coordinates. The divisor of ω
is defined as

div(ω) =
∑
p∈S

ordp(ω)p.

Lemma 5.1.3. For a compact Riemann surface S every divisor is finite, i.e., a finite formal
sum. So we have

Div(S) =
⊕

p∈S

Zp.

Proof. Let D be a divisor. For every point p ∈ S there is an open neighborhood Up, on
which D is finite. As S is compact, it can be covered by finitely many Up, so D is
finite. □

Definition 5.1.4. Two divisors D,E ∈ Div(S) are called equivalent, if D − E is a
principal divisor.
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A divisor of the form div(ω) with a meromorphic differential form ω is called a
canonical divisor.

Lemma 5.1.5. Any two canonical divisors are equivalent.

Proof. Let ω, η be meromorphic differential forms. Then one has η = fω for some
f ∈ M(S). This means

div(η) = div( f ) + div(ω). □

Definition 5.1.6. Let S be a compact Riemann surface. The degree of a divisors D is
defined by

deg(D) =
∑
p∈S

D(p).

Example 5.1.7. Let S be a compact Riemann surface of genus 1. Then S = Λ\C for
some lattice Λ = Za ⊕Zb ⊂ C. Integrating over the boundary of a fundamental mesh,
one sees that for every pricipal divisor D = div( f ) one has deg(D) = 0. Hence not
every divisor is principal.

Proposition 5.1.8. Let S be a compact Riemann surface.

(a) For a meromorphic function f , 0 on S one has

deg(div( f )) = 0.

(b) Let ω , 0 be a meromorphic differential form on S and g = g(S) the (topological) genus.
Then one has

deg(div(ω)) = 2g − 2.

Proof. (a) If f is constant, the claim is clear. Otherwise, the function f defines a
ramified covering f : S→ P1

C
. Since the degree map given by f is constant on P1, it

takes the same value at 0 and at∞. We have deg(div( f )) = deg( f , 0) − deg( f ,∞) = 0.

(b) Any two forms are equivalent. So it suffices to show the claim for one particular
form. First we consider the case S = P1. In this case we take ω = dz in one of the two
charts. In the other chart z̃ = 1

z we then have ω = d(1
z ) = − 1

z2 dz̃ and so deg div(ω)) = −2,
as was to be shown.

For arbitrary S let f : S→ P1
C

be a holomorphic non-constant map. After applying
some element of Aut(P1

C
) we can assume that f is unramified over∞ and we set

ω = d f . Then locally we have ω = f ′dz, so, if f (p) , ∞, then ordp(ω) = ordp( f ) − 1. In
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the case f (p) = ∞, the unramifiedness implies that f has the form f (t) = c1t−1 + c0 + . . .

with c0 , 0 in a chart (U, t) around p with t(p) = 0. So the vanishing order of the
derivative at t = 0 equals −2 and so ordp(ω) = 2. As there are deg( f ) many such
points, we get

deg(div(ω)) =
∑
p∈S

(ordp( f ) − 1) − 2 deg( f ) = 2g − 2

according to the Riemann-Hurwitz formula of Theorem 3.5.1. □

Definition 5.1.9. For a divisor D on S let

L(D) :=
{
0
}
∪

{
f : S→ P1

C : holomorphic with div( f ) +D ≥ 0
}

and
ℓ(D) = dimCL(D).

So for instance if D = p, then f ∈ L(D) may have a simple pole at p, but must be
holomorphic otherwise.

Examples 5.1.10. • For D = 0 we haveL(D) = O(S). In particular for S compact, the
space L(D) with D = 0 only consists of the constant functions.

• For C ≤ D, one has L(C) ⊂ L(D).

• If deg(D) < 0, then L(D) = 0.

Theorem 5.1.11 (Riemann-Roch). Let S be a compact Riemann surface of genus g, let
ω , 0 a meromorphic differential form and K = div(ω). Then for every divisor D on S we
have ℓ(D) < ∞ and

ℓ(D) − ℓ(K −D) = deg(D) + 1 − g.

In particular if deg(D) > deg(K) = 2g − 2, then

ℓ(D) = deg(D) + 1 − g.

Recall the cohomological genus gcoh = dim H1(S,OS). Later we will show that gcoh = g,
the topological genus.

The proof of the theorem will take the rest of the chapter.
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Corollary 5.1.12. In the case D = 0 the theorem says:

ℓ(K) = g

Corollary 5.1.13. Let D be a divisor on the compact Riemann surface S.

(a) If deg(D) = 0, then 0 ≤ ℓ(D) ≤ 1.

(b) If deg(D) = deg(K) = 2g − 2, then g − 1 ≤ ℓ(D) ≤ g.

Proof. (a) Suppose that deg(D) = 0 and let f ∈ L(D), i.e., div( f ) +D ≥ 0. Since
deg(div( f )) = 0 = deg(D) it follows that div( f ) = −D. So any other g ∈ L(D) has the
same poles and zeros as f and so f/g is holomorphic, i.e. constant. So L(D) can at
most be one-dimensional.

(b) If deg(D) = deg(K), then deg(K −D) = 0, so (a) and the Riemann-Roch Theorem
imply the claim. □

5.2 The cohomological version of Riemann-Roch

Definition 5.2.1. For a divisor D let the sheaf OS(D) be defined by

OS(D)(U) =
{

f : U→ P1
C holomorphic with div( f ) ≥ −D|U

}
∪ {0}.

The axioms of a sheaf are easily verified.

Definition 5.2.2. A divisor D is called effective, if D(p) ≥ 0 for every p ∈ S.

Definition 5.2.3 (skyscraper sheaf). Let E =
∑

p∈S E(p)p be an effective divisor on S.
Then

CE(U) =
⊕
p∈U

CE(p)

defines a sheaf CE, called the skyscraper sheaf of E.

Let f ∈ OS(E)(U) and p ∈ U arbitrary. Then f has a power series expansion around p of
the form f =

∑
i≥−E(p) cizi. Mapping f to its principal part

∑
−1
i=−E(p) cizi, and this to the

vector (c−1, c−2, . . . , c−E(p)), one gets a sheaf homomorphism OS(E)→ CE. It is easy to
see that the sequence 0→ OS → OS(E)→ CE → 0 is exact. More generally for every
divisor D the sequence

0→ OS(D)→ OS(D + E)→ CE → 0
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is exact, where the arrow to CE maps to the principal part of f , translated by the
coefficient of D.

Lemma 5.2.4. Let E be an effective divisor. For a sheaf F of complex vector spaces write
hk(S,F ) for dim Hk(S,F ). Then

(a) One has
h0(S,CE) = deg(E) und h1(S,CE) = 0.

(b) For an arbitrary divisor D, the map induced by the inclusion O(D) ⊂ O(D + E),

H1(S,O(D))→ H1(S,O(D + E))

is surjective.

Proof. (a) The first assertion is trivial. For the second let U be a covering of S, which is
such that every point x with ax , 0 is in contained in only one of the Ui. Then any
intersection of atleast two of the Ui will contain no such point. So if f ∈ Z1(U,CD) is a
cocycle, then by definition f = 0.

(b) The exact sequemce 0→ OS(D)→ OS(D + E)→ CE → 0 induces the exact
cohomology sequence

· · · → H1(S,O(D))→ H1(S,O(D + E))→ H1(S,CE) = 0. □

Recall gcoh = h1(S,O).

Theorem 5.2.5 (Riemann-Roch, cohomological version). Let D be a divisor on the
compact Riemann surface S. Then H0(S,O(D)) and H1(S,O(D)) are finite-dimensional
C-vector spaces and one has

h0(S,O(D)) − h1(S,O(D)) = deg(D) + 1 − gcoh.

Proof. If D = 0, then h0(S,O(D)) = 1 and the claim follows from the definition of gcoh.
We set D′ = D+ [p] and then we show that the claim for D implies the claim for D′ and
vice versa. For this we consider the exact sequence

0→ OS(D)→ OS(D′)→ C[p] → 0
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and the ensuing exact cohomology sequence

0→ H0(S,O(D))
α0
−→ H0(S,O(D′))

β0
−→ C

δ0
−→ H1(S,O(D))

α1
−→ H1(S,O(D′))→ 0.

By exactness, the dimensions of the spaces added up with alternating signs, give zero,
so 0 = h0(S,O(D)) − h0(S,O(D′)) + 1 − h1(S,O(D)) + h1(S,O(D′)) or

h0(S,O(D) − h1(S,O(D)) = h0(S,O(D′)) − h1(S,O(D)) − 1.

As 1 = deg(D′) − deg(D), the claim follows. □

Corollary 5.2.6. For an arbitrary divisor D on a compact Riemann surface we have

h0(S,O(D)) ≥ deg(D) + 1 − gcoh.

5.3 Serre-Duality

Definition 5.3.1. For a divisor D consider the sheaf Ω(D) given by

Ω(D)(U) =
{
ω ∈ Ωmer(U) : div(ω) +D ≥ 0

}
.

Theorem 5.3.2 (Serre-Duality). For a compact Riemann surface S one has

h0(O(K −D)) = h1(S,O(D)).

Note that Serre-Duality together with the cohomological Riemann-Roch implies the
classical Riemann-Roch with g replaced by gcoh.

Lemma 5.3.3. Let K be a canonical divisor. One has

h0(O(K −D)) = h0(Ω(−D)).

Proof of the corollary. Fix some ω0 ∈ Ωmer(S) and let K be its divisor. The map

M(S)→ Ω(S),

f 7→ fω0

is a C-linear bijection. As div( fω0) = div( f ) + K, we get

div( fω0) −D ≥ 0 ⇔ div( f ) + K −D ≥ 0,
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so this bijection maps O(K −D)(S) to Ω(−D)(S), hence the claim. □

Proof of Serre-Duality. By Lemma 3.10.7 for every g ∈ C∞c (C) there exists f ∈ C∞(C)
such that

∂

∂z
f = g.

Let (Ui) be a holomorphic atlas und (ui) be a partition of unity. Let η ∈ Ω2(S) be a
smooth 2-form. In holomorphic local coordinates we have η = gdz∧ dz. So for ui being
part of the partition of unity, there exists f ∈ C∞(C) with

∂( fidz) = uiη.

Choose another partition of unity vi with vi|supp(ui) = 1 and set ω =
∑

i vi fidzi. Then
∂ω = η. We have shown that the sequence of sheaves

0→ Ωhol → Ω
1,0 ∂
−→ Ω2

→ 0

is exact. As in Proposition 4.3.11 one shows that H1(S,Ω1,0) = 0. So the cohomology
sequence shortens to

0→ H0(S,Ωhol)→ H0(S,Ω1,0) ∂
−→ H0(S,Ω2) δ

−→ H1(S,Ωhol)→ 0.

We define a linear map

Res : H1(S,Ωhol)→ C,

δ(ω) 7→
1

2πi

∫
S
ω.

In order to show well-definedness, we note that for η ∈ H0(S,Ω1,0) Stokes’s Theorem
implies that

∫
S
∂η =

∫
S

dη =
∫
∂S
η = 0. This means that the map Res, defined on

H0(S,Ω2), vanishes on the image of ∂. This image is the kernel of δ, so Res factors over
δ, hence is well-defined as written above. The map

Ωhol(−D)(U) × O(D)(U)→ Ωhol(U),

(ω, f ) 7→ fω

induces a bilinear map

b̃ : H0(S,Ωhol(−D)) ×H1(S,O(D))→ H1(S,Ωhol)
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We define a bilinear form

b = Res ◦ b̃.

We claim that b is a perfect pairing, i.e., That it identifies either space with the dual of
the other. This in particular implies that both spaces have the same dimension, i.e.,
Serre Duality.

Definition 5.3.4. Let U = (Ui)i∈I be an open covering of S. A Mittag-Leffler cochain
with respect to U is a cochain µ ∈ C0(U,Ωmer), i.e., a family (µi)i∈I of meromorphic
differential forms µi ∈ Ωmer(Ui), with the property that µi − µ j is holomorphic on
Ui ∩U j.

Let µ be a Mittag-Leffler cochain. Then ďµ ∈ Z1(S,Ωhol), hence defines a cohomology
class which we denote by ďµ ∈ H1(S,Ωhol).

If µi is locally of the form fidz and if p ∈ Ui, we define

Resp(µi) = Resp f .

This number is well-defined and we set

Res(µ) =
∑
p∈S

Resp(µi(p),

where i(p) ∈ I is any index with p ∈ Ui(p). We now have two maps which we denote by
Res.

Lemma 5.3.5. If µ is a Mittag-Leffler cochain, then

Res(µ) = Res(ďµ).

Proof. Consider the exact cohomology sequence

0→ H0(S,Ωhol)→ H0(S,Ω1,0) ∂
−→ H0(S,Ω2) δ

−→ H1(S,Ωhol)→ 0.

Let η ∈ Ω2(S) be a 2-form with δ(η) = ďµ. Since dµ is a cocycle of Ωhol, and so of Ω1,0

and since H1(S,Ω1,0) = 0, there is a g ∈ C0(U,Ω1,0) with ďg = ďµ. The exterior
derivative of the holomorphic form µi − µ j vanishes. But it coincides with the exterior
derivative of gi = g j. So these exterior derivatives glue to a global 2-form η, which by
the definition of the connecting homomorphism satisfies δ(η) = ďµ. Therefore we have
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to show:
Res(µ) =

1
2πi

∫
S
η.

We first show that only neighborhoods of the poles of µ contirbute to the integral. Let
{p1, . . . , pn} the poles of µ and let Y = S ∖ {p1, . . . , pn}. On Y ∩Ui ∩U j we have
gi − µi = g j − µ j. So the hi = gi − µi glue to a global h ∈ Ω1,0(Y) with h|Ui∩Y = hi.

For every point pk we schoose an index i(k) with pk ∈ Ui(k). Around these points we
choose charts (Vk, zk) with Vk ⊂ Ui(k) and zk(pk) = 0. We decrease these neighborhoods
so that they become pairwise disjoint. We also construct fk ∈ C

∞(S), which are
constantly 1 on an even smaller neighborhood V′k ⋐ Vk and are supported inside Vk.
Let f c = 1 −

∑n
k=1 fk. As the support of f c is disjoint with the set of poles, we can apply

Stokes’s Theorem and we get
∫

S
d( f ch) = 0. We now consider the neighborhoods V′k.

Outside of pk we have d( fkh) = d(h) = dgi(k). As the gi are defined on all of V′k, the same
holds for the derivatives. So we can integrate η or d(hk) over all of S. Therefore∫

S
η =

n∑
k=1

∫
Vk

d( fkh) =
n∑

k=1

d( fkgi(k) − d fkµi(k)) =
n∑

k=1

∫
Vk

− f ( fkµi(k),

where we have applied Stokes once again. The residue Theorem gives∫
Vk

−d( fkµi(k) =

∫
V′k

−d(µi(k) =

∫
∂V′j

−µi(k) = 2πiResp jµi(k).

Adding up thiese contributions yields the lemma. □

Lemma 5.3.6. The map

b∗ : H0(S,Ωhol(−D))→ H1(S,O(D))∗

defined by the bilinear form b is injective.

Proof. For every ω ∈ H0(S,Ωhol(−D)) we have to find a suitable covering U and a
cocycle f ∈ Z1(U,O(D)), such that Res( fω) , 0. Let p ∈ S be a point not in the support
of the divisor D and let (U0, z) be a chart around p with z(p) = 0. In the chart we write
ω = f (z)dz with a holomorphic function f . We can shrink U0 so that f has no zeros
except possibly at z = 0. Let f0 = (z f (z))−1, so f0(z)ω = dz/z on U0.

Let U1 = S ∖ {p}. Then µ = (dz/z, 0) is a Mittag-Leffler cochain with respect to
U = (U0,U1), and we have Res(µ) = 1. So we are looking for ( fi j) ∈ C1(U,O(D)), such
that fω = dµ. The cocycle given by f01 = f0|U0∩U1 does just this. □
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To finish the proof of the Serre-Duality Theorem, we need to show the surjectivity of b∗.

Let B be an arbitrary divisor and 0 , g ∈ H0(S,O(B)). The multiplication map f 7→ f g
is a sheaf homomorphism O((D − B)→ O(D) and so a homomorphism ψ of
cohomology groups H1(S,O(D − B))→ H1(S,O(D)).

Lemma 5.3.7. The map

ψ : H1(S,O(D − B))→ H1(S,O(D))

is surjective.

Proof. If A = div(g), then multiplication by g gives an isomorphism O(D + A)→ O(D)
and ψ is the composition of the inclusion O(D − B)→ O(D + A) with this
isomorphism. Since sheaf isomorphisms induce isomorphisms on cohomology, it
suffices to show that the map H1(S,O(D − B))→ H1(S,O(D + A)) is surjective. This is
done in Lemma 5.2.4, part (b). □

Definition 5.3.8. Let B ≥ 0 and D′ = D − B, as well as g ≡ 1. In this case we write

cD
D′ : H1(S,O(D))∗ → H1(S,O(D′))∗

for the map dual to ψ. Then cD
D′ is injective. By means of the definitions one sees that

the following diagram with exact rows and columns

0 // H1(S,O(D))∗
cD

D′ // H1(S,O(D′))∗

0 // H0(S,Ωhol(−D)) //

bD
∗

OO

H0(S,Ωhol(−D′))

bD′
∗

OO

0

OO

0

OO

commutes.

Lemma 5.3.9. Let ℓ ∈ H1(S,O(D′))∗ be in the image of cD
D′ as well as in the image of b∗(D′).

Then it lies in the image of H0(S,O(−D)). This means, if ℓ = cD
D′(ℓD) = bD′

∗
(ω), then

ω ∈ H0(S,Ωhol(−D)).

Proof. By definition we have ℓ(ξ) = b(ω, ξ) for all ξ ∈ H1(S,O(D′)).

Assume, the claim is wrong. Then there is p ∈ S with ordp(ω) < D(p). But one has
ordp(ω) ≥ D′(p). We want to construct a cohomology class ξ ∈ H1(S,O(D′)), which



Riemann Surfaces 86

maps to zero in H1(S,O(D)), such that ℓD(ξ) = 0, but on the other hand
ℓ(ξ) = b(ω, ξ) , 0 holds. Then we get a contradiction to ℓ = bD′

∗
(ω) = cD

D′(ℓD).

For this we use the same covering construction as in the proof of injectivity. Let (U0, z)
be a chart around p with z(p) = 0 and write ω = f dz with a meromorphic function on
U0. We can decrease U0 such that the support of D and D′ in U0 only consists of the
point p and that in U0 the function f has no pole or zero other than p. We consider the
covering U = (U0,U1 = S ∖ {p}) and f0 = (z f )−1. Then
ordp( f0) +D(p) = −1 − ordp(ω) +D(p) ≥ 0, so ( f0, 0) ∈ C0(S,O(D)). The coboundary of
this lies in Z1(S,O(D)) and at the same time is Z1(S,O(D′)), since U0 ∩U1 is disjoint to
the supports of both divisors. So let ξ ∈ H1(S,O(D)) be its cohomology class. By
construction we have ℓD(ξ) = 0 as claimed. Finally we have b(ω, ξ) = Res(dz/z, 0) = 1,
Contradiction! □

Proof of surjectivity of the map b∗ : H0(S,Ωhol(−D))→ H1(S,O(D))∗: Let a non-zero
linear form ℓ ∈ H1(S,O(D))∗ be given and let B = Bn = n[x], where we will determine n
later. Further let Dn = D − Bn. We now fix the element ℓ ∈ H1(S,O(D))∗ and consider
the set

Λn =
{
ℓ ◦ g : g ∈ H0(S,O(Bn)

}
⊂ H1(S,O(D − Bn))∗.

Assume we already know Λn ∩ Im(bDn
∗ ) , 0, i.e., there is g, such that gℓ = bDn

∗ (ℓn). Then
let A be the divisor of g, so 1/g ∈ H0(S,O(A)) and let D′ = Dn − A −D − (Bn + A). Then

cD
D′(ℓ) =

1
g

(gℓ) =
1
g

bDn
∗

(ω) = bD′
∗

(
1
g
ω

)
and we are in the situation of Lemma 5.3.9. This lemma says that 1

gω ∈ H0(S,Ωhol(−D))

and ℓ = bD
∗

(
1
gω

)
.

So we have to force in the non-empty intersection. For this we estimate the
dimensions. By Corollary 5.2.6 one has

dimΛn = h0(S,O(Bn)) ≥ n + 1 − gcoh.

By means of the same corollary we get

dim Im(bDn
∗

) = h0(S,Ωhol(−Dn)) ≥ n − deg(D) + 2g − 2 + 1 − gcoh.

The ambient space, in which these subspaces intersect, has dimension

h1(S,O(D − Bn)) = g − 1 − deg(D) + n.
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These dimension grow linearly in n and the leading coefficient of this asymptotic is 1.
For large n the spaces Λn and Im(bDn

∗ ) have non-trivial intersection. □

Theorem 5.3.10. Let S be a compact Riemann surface. Then

g(S) = gcoh(S).

Together with Serre’s Duality Theorem, this finishes the proof of the Riemann-Roch
Theorem.

Proof. The Cohomological Theorem of Riemann-Roch, together with Serre-Duality,
says for the divisor D = 0,

ℓ(0) − ℓ(K) = 1 − gcoh.

For the divisor D = K is says

ℓ(K) − ℓ(0) = deg(K) + 1 − gcoh.

Together this gives
deg(K) = 2gcoh − 2.

By Proposition 5.1.8 part (b) we have deg(K) = 2g − 2, so g = gcoh. □

* * *
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6 Non-compact surfaces

6.1 The Dirichlet problem

Definition 6.1.1. Let U be an open subset of a Riemann surface S. Recall that a smooth
function u ∈ C∞(S) is harmonic, iff d′d′′u = 0. In any holomorphic coordinate z = x + iy
this is equivalent to

∆u =
(
∂2

∂x2 +
∂2

∂y2

)
u = 0.

Lemma 6.1.2. Let D ⊂ S be a simply connected domain and let u be a harmonic function on D.

(a) The function u is the real part of a (uniquely determined) holomorphic function.

(b) (Maximum principle) If u attains a local maximum in D, then u is constant.

Proof. (a) By Theorem 3.10.6, the harmonic differential form du equals Re(ω) for some
holomorphic form ω. As D is simply-connected, we have du = ω = d f for some
holomorphic function f . Therefore u = f + const.

(b) let u = Re( f ) for a holomorphic f . By
∣∣∣e f

∣∣∣ = eu, the holomorphic function e f attains a
local maximum in D, hence is constant. □

Definition 6.1.3. The Dirichlet-problem for an open set U ⊂ S is the following:
Suppose that ∂U , ∅ and let f : ∂U→ R be a continuous function. Find a continuous
function u : U→ R which is harmonic on U and satisfies u ≡ f on ∂U.

If U is compact, then a solution, if it exists, is unique, since for two solutions u1,u2 the
harmonic function u1 − u2 has boundary values zero. By the maximum principle it
equals zero throughout.

Theorem 6.1.4. Let BR(0) be the open disk around zero of radius R > 0 and let
f : ∂BR(0)→ R be continuous. Let

u(z) =
1

2π

∫ 2π

0

R2
− |z|2

|Reiθ − z|2
f
(
Reiθ

)
dθ (∗)

for |z| < R and u(z) = f (z) for |z| = R. Then u is continuous on BR(0) and harmonic in
BR(0).
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Proof. To simplify the notation, we apply the biholomorphic map z 7→ Rz to reduce to
the case R = 1. For z , w let

P(z,w) =
|w|2 − |z|2

|w − z|2
, F(z,w) =

w + z
w − z

.

Then P(z,w) = Re
(
F(z,w)

)
. So (∗) reads

u(z) =
1

2π

∫ 2π

0
Re

(
F(eiθ, z)

)
f
(
eiθ

)
dθ

= Re
(

1
2πi

∫ 2π

0
F(eiθ, z) f

(
eiθ

)
dθ

)
= Re

(
1

2πi

∫
|w|=1

F(w, z) f (w)
dw
w

)
.

Therefore u is the real part of a holomorphic function and thus harmonic. It remains
top show continuity on the boundary.

For f = 1 and |z| < 1 the residue theorem yields

Re
(

1
2πi

∫
|w|=1

F(w, z)
dw
w

)
= Re

(
1

2πi

∫
|w|=1

w + z
w − z

dw
w

)
= 2 − 1 = 1.

For z0 ∈ ∂D, letting w = e−θ one gets

u(z) − f (z0) =
1

2π

∫ 2π

0
P(w, z)

(
f (w) − f (z0)

)
dθ.

Let ε > 0 and choose δ > 0 such that |w − z0| < 2δ implies | f (w) − f (z0)| < ε. Let

M = sup
|z|≤R
| f (z)| + sup

|z|<R, |w|=R
P(w, z)

and let A ⊂ [0, 2π) be the set of all θ such that |eiθ
− z0| < 2δ and let B be the rest. Let

|z| < 1 such that |z − z0| < α < δ for some α with 0 < α < εδ2. Then

|u(z) − u(z0)| ≤
ε

2π

∫
A

P(w, z) dθ︸              ︷︷              ︸
≤εM

+
M
2π

∫
B

P(w, z) dθ

Now for w = eiθ with θ ∈ B we have on the one hand |w − z| ≥ δ and on the other
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1 − |z| < α, so

P(w, z) =
1 − |z|2

|w − z|2
=

(1 − |z|)(1 + |z|)
|w − z|2

≤
2α
δ2

and hence

|u(z) − u(z0)| ≤ εM +
M
2π

2α
δ2 2π

< ε3M.

The claim follows. □

Corollary 6.1.5. Let u : BR(0)→ R be a harmonic function. Then

u(z) =
1

2π

∫ 2π

0

r2
− |z|2

reiθ − z|2
u(reiθ dθ

for all |z| < r < R. In particular, u satisfies the Mean Value Principle:

u(0) =
1

2π

∫ 2π

0
u(reiθ) dθ.

Proof. This follows from the theorem because of the uniqueness of the solution of the
Dirichlet problem. □

Corollary 6.1.6. Let un : BR(0)→ R, n ∈N be a sequence of harmonic functions converging
locally uniformly to a function u. Then u is harmonic, too.

Proof. For |z| < r < R one has

un(z) =
1

2π

∫ 2π

0
P(reiθ, z) un(reiθ) dθ.

Since un converges uniformly on the integration path, the same integral equation
holds for u, which therefore is harmonic by the theorem. □

Theorem 6.1.7 (Harnack’s theorem). Let M ∈ R and let (un) be a sequence of harmonic
functions satisfying

u1 ≤ u2 ≤ · · · ≤M.

Then (un) converges locally uniformly to a harmonic function u.
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Proof. It suffices to show uniform convergence on Bρ(0) for a given 0 < ρ < R. Choose
a ρ < r < R. Let ε > 0 and set ε′ = ε(r − ρ)/(r + ρ). Since the sequence un(0) is
increasing and bounded, there exists m0 ∈N such that

un(0) − um(0) < ε′ for every m0 ≤ m ≤ n.

We apply the integral formula to the positive harmonic function un − um. Let |z| ≤ ρ.
Since

0 ≤ P(reiθ) ≤
r + |z|
r − |z|

≤
r + ρ
r − ρ

,

it follows

un(z) − um(z) =
1

2π

∫ 2π

0
P(reiθ, z)

(
un(reiθ) − um(reiθ)

)
dθ

≤
r + ρ
r − ρ

1
2π

∫ 2π

0

(
un(reiθ) − um(reiθ)

)
dθ

=
r + ρ
r − ρ

(
un(0) − um(0)

)
< ε.

So the sequence converges locally uniformly and the limit is harmonic by Corollary
6.1.6. □

Definition 6.1.8. For an open set Y ⊂ S let Reg(Y) denote the set of all subdomains
D ⋐ Y such that the Dirichlet problem for D can be solved for every given continuous
function on the boundary. If (U, ϕ) is a holomorphic chart with U ⊂ Y, then any set
D ⋐ U, such that ϕ(D) is a disk, lies in Reg(Y).

For a continuous function u : Y→ R and D ∈ Reg(Y), let PDu be the unique
continuous function, which coincides with u on Y ∖D and is harmonic in D.

Lemma 6.1.9. Let Y ⊂ S be open and D ∈ Reg(Y). The map PD : C(Y,R)→ C(Y,R) is
R-linear and monotonic, i.e., for u, v ∈ C(Y,R) one has

u ≤ v ⇒ PD(u) ≤ PD(v).

A given function U ∈ C(Y,R) is harmonic iff PD(u) = u for every D.

Proof. Linearity is clear and monotonicity follows from Theorem 6.1.4. □

Definition 6.1.10. A function U ∈ C(Y,R) is called subharmonic, if

u ≤ PD(u)

holds for every D ∈ Reg(Y).
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A function u ∈ C(Y,R) is calle locally subharmonic, if every point y ∈ Y possesses an
open neighbourhood U ⊂ Y, such that u is subharmonic on U.

Lemma 6.1.11. If u, v are subharmonic and λ ≥ 0, then u + v, λu and max(u, v) are
subharmonic.

Proof. Only the maximum is non-trivial. First, u, v ≤ max(u, v) implies that
PDU,PDv ≤ PD(max(u, v) and hence

max(PDu,PDv) ≤ PD

(
max(u, v)

)
.

Next u ≤ PDu and v ≤ PDv imply max(u, v) ≤ max(PDu,PDv). Together this yields

max(u, v) ≤ PD

(
max(u, v)

)
,

as claimed. □

Theorem 6.1.12 (Maximum Principle for subharmonic functions). Let Y ⊂ S be a
domain and u : Y→ R a locally subharmonic function. If u attains its maximum at some
point y0 ∈ Y, the u is constant.

Proof. Let c = u(y0) and
A = {x ∈ Y : u(x) = c}.

If A , Y, there exists a point a ∈ ∂A ∩ Y. Since u is continuous, u(a) = c. In every
neighbourhood of a there is x such that u(x) < c. Using a local chart which maps a to
zero, we view u as a map BR(0)→ R for some R > 0 and we find 0 < r < R such that
with D = Br(0) we have u(0) ≤ PDu(0) = 1

2π

∫ 2π

0
u(reiθ) dθ < c = u(0), a contradiction!

We conclude that A = Y, so u is constant. □

Corollary 6.1.13. If u : Y→ R is locally subharmonic, then it is subharmonic.

Proof. Let D ∈ Reg(Y). Since PD(u) is harmonic in D, the function v = u − PD(u) is
locally subharmonic in D. Since v vanishes on the boundary, we get v ≤ 0, i.e.,
u ≤ PD(u). □

Lemma 6.1.14. If u is subharmonic on Y and B ∈ Reg(Y), then PB(u) is also subharmonic.
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Proof. Set v = PBu and suppose D ∈ Reg(Y) is arbitrary. We have to show v ≤ PDv. On
Y ∖D one has PDv = v and on Y ∖ B one has u = v and since v ≥ u one has

v = u ≤ PD(u) ≤ PD(v).

So one gets v − PDv ≤ 0 on Y ∖ (B ∩D). Since v − PDv is harmonic on B ∩D, it follows
that

v − PDv ≤ 0 on B ∩D.

Hence v ≤ PDv on all of Y. □

Lemma 6.1.15 (Perron). Suppose that M ⊂ C(Y,R) is a non-empty set of subharmonic
functions with the following properties

(a) u, v ∈M ⇒ sup(u, v) ∈M,

(b) PD(M) ⊂M for every D ∈ Reg(Y),

(c) there exists K > 0 such that u ≤ K for every u ∈M.

Then the function u∗ : Y→ R defined by

u∗(x) = sup
u∈M

u(x)

is harmonic on Y.

Proof. Let a ∈ Y and let D ∈ Reg(Y) be a neighbourhood of a. Choose a sequence
un ∈M with

lim
n

un(a) = u∗(a).

By (a) we may assume u1 ≤ u2 ≤ . . . . Let vn = Pdun, then v1 ≤ v2 ≤ . . . . By Harnack’s
theorem the sequence (vn) converges on D to a harmonic function v : D→ R and one
has

v(a) = u∗(a) and v ≤ u∗ on D.

We claim that v(x) = u∗(x) for every x ∈ D. To see this, fix some x ∈ D and let wn ∈M be
a sequence with limn wn(x) = u∗(x). Because of (a) and (b) we may assume that

vn ≤ wn = PDwn and wn ≤ wn+1

for every n ∈N. Hence the sequence (wn) converges on D to a harmonic function
w : D→ R with

v ≤ w ≤ u∗.
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Since v(a) = w(a) = u∗(a), the maximum principle applied to the harmonic function
w − v ≥ 0 implies v(y) = w(y) for every y ∈ D. In particular,

u(x) = w(x) = u∗(x).

The claim is proven. □

Definition 6.1.16. Let Y ⊂ S be a domain and f : ∂Y→ R be a bounded function. Set

K = sup
x∈∂Y

f (x).

Let P f be the set of functions u ∈ C(Y,R) such that

(i) u is subharmonic in Y,

(ii) u ≤ f on ∂Y.

P f is called the Perron class of f . By the lemma

u∗ = sup
u∈P f

u

is harmonic on Y.

Definition 6.1.17. A boundary point x ∈ ∂Y is called regular, if there is an open
neighbourhood U of x and a function β ∈ C(Y ∩U,R) such that

(i) β is subharmonic on U ∩ Y,

(ii) β(x) = 0 and β < 0 on Y ∩U ∖ {x}.

Such a function β is called a barrier at x.

Lemma 6.1.18. Let x ∈ ∂Y be a regular point, V an open neighbourhood of x and m ≤ c real
numbers. Then there exists a function v ∈ C(Y,R) with

(a) v is subharmonic on Y,

(b) v(x) = c, v ≤ c on the set Y ∩ V,

(c) v ≡ m on the set Y ∖ V.

Proof. WLOG we may assume c = 0. Let U be an open neighbourhood of x and
β ∈ C(Y ∩U,R) a barrier at x. We may shring V if necessary and so we can assume
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V ⋐ U. Then
sup

{
β(y) : y ∈ ∂V ∩ Y

}
< 0.

Hence there exists a constant k > 0 such that

kβ < m on the set ∂V ∩ Y.

let

v =

max(m, kβ) on Y ∩ V

m on Y ∖ V.

Then v is continuous on Y, locally subharmonic on Y, thus subharmonic and also
satisfies (b) and (c). □

Lemma 6.1.19. Suppose that Y is an open subset of S and f ∈ C(∂Y,R) a bounded function
and

u∗ = sup
{
u : u ∈ P},

where P f is the Perron class of f . Then for every regular boundary point x ∈ ∂Y we have

lim
y→x
y∈Y

u∗(y) = f (x).

Proof. For given ε > 0 there exists a relatively compact open neighbourhood V of x
with

f (x) − ε ≤ f (y) ≤ f (x) + ε

for every y ∈ ∂Y ∩ V. Let k,K ∈ R with k ≤ f ≤ K.

1.Step: Using Lemma 6.1.18, choose a function v ∈ C(Y,R) which is subharmonic on Y
and satisfies

v(x) = f (x) − ε,

v|Y∩V ≤ f (x) − ε,

v|Y∖V = k − ε.

Then v|∂Y ≤ f . That means that v ∈ P f and hence v ≤ u∗. Therefore

lim inf
Y∋y→x

u∗(y) ≥ v(x) = f (x) − ε.

2. Step: By Lemma 6.1.18, there exists a function w ∈ C(Y,R) which is subharmonic
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and satisfies

w(x) = − f (x),

w|Y∩V ≤ − f (x),

w|Y∖V = −K.

For every u ∈ P f and y ∈ ∂Y ∩ V one has u(y) ≤ f (x) + ε. Thus

u(y) + w(y) ≤ ε

for y ∈ ∂Y ∩ V. Also, we get

u(z) + w(z) ≤ K − K = 0

for every z ∈ Y ∩ ∂V.

Applying the maximum principle to the function u + w, which is subharmonic, one
gets

u + w ≤ ε

on Y ∩ V. Thus
u|Y∩V ≤ ε − w|Y∩V

holds for every u ∈ P f . Hence

lim sup
y→x
y∈Y

u∗(y) ≤ ε − w(x) = f (x) + ε.

The two steps imply the claim. □

Theorem 6.1.20. Suppose that for an open set Y ⊂ S all boundary points are regular.
Then for every continuous bounded function f : ∂Y→ R the Dirichlet problem can be
solved.

Proof. This follows from the last Lemma. □

Proposition 6.1.21. Let Y ⊂ C be open and a ∈ ∂Y. Suppose there exists a disk Br(m) in C
with r > 0 such that a ∈ ∂Br(m) and Br(m) ∩ Y = ∅. Then a is a regular boundary point of Y.
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Proof. Let c = (a +m)/2, then

β(z) = log(r/2) − log
(
|z − c|

)
defines a barrier at a. □

* * *
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6.2 Regularity

Lemma 6.2.1. Let S ⊂ C be open and star-shaped. Then for any given f ∈ C∞(S) there exists
g ∈ C∞(S) such that ∆g = f , where

∆ =
∂2

∂x2 +
∂2

∂y2 = 4
∂2

∂z ∂z

is the Laplace-Operator.

Proof. Choose g1 ∈ C∞(S) such that ∂
∂z g1 = f and g1 ∈ C∞(S) such that ∂

∂z g2 = g1, which
is possible by Lemma 3.10.7. Then g = 1

4 g2 does the job. □

Lemma 6.2.2. Let U ⊂ C be open and K ⊂ U compact. For an open interval I in R let
g ∈ C∞(U × I) have support in K × I and suppose that T is a distribution on U. Then the
function t 7→ T[g(z, t)] is infinitely differentiable and satisfies

∂
∂t

Tz[g(z, t)] = Tz

[
∂g(z, t)
∂t

]
.

Proof. It suffices to prove the formula, since the smoothness follows by iteration. As T
is linear, we have

∂
∂t

Tz[g(z, t)] = lim
h→0

Tz[g(z, t + h)] − Tz[g(z, t)]
h

= lim
h→0

Tz

[
g(z, t + h) − g(z, t)

h

]
For fixed t ∈ I and sufficiently small h , 0 let

fh(z) =
1
h

(
g(z, t + h) − g(z, t)

)
.

Then fh ∈ C∞(U) and tends to ∂g(·,t)
∂t uniformly with all derivatives in a fixed compact L

with K ⊂ L ⊂ U where outside L fh vanishes. Thus the continuity of the distribution T
yields the claim. □

Definition 6.2.3. Let ρ ∈ C∞(C) with

(a) ρ(z) only depends on |z|,

(b) supp(ρ) ⊂ D,

(c) ρ ≥ 0,
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(d)
∫
C
ρ(z) dx dy = 1.

For ε > 0 let ρε(z) = 1
ε2ρ

(
z
ε

)
. Then ρε is supported in εD and still satisfies (b) and (c).

Lemma 6.2.4. Let U ⊂ C be open, f ∈ C∞(U) and ε > 0. Let Uε be the set of all z ∈ U which
have distance > ε to the boundary ∂U of U.

(a) For every α ∈N2
0, on the set Uε we have

Dα( f ∗ ρε) = Dα f ∗ ρε.

(b) If z ∈ Uε and f is harmonic on Bε(z), then

f ∗ ρε(z) = f (z).

Proof. (a) follows from the interchange of integration and differentiation in Analysis 3
and for (b) one uses polar coordinates, the claim follows from the Mean Value
Property □

Theorem 6.2.5 (Regularity Theorem). Let U ⊂ C be open and lat T be a distribution on
U with ∆T = 0, where

∆ =
∂2

∂x2 +
∂2

∂y2 .

Then T is a smooth function.

Proof. For w ∈ Uε let. Let
h(w) = Tz(ρε(z − w))

denote the distribution T applied to the function z 7→ ρε(z − w). Let f ∈ C∞c (U) have
support in Uε. Then the convolution product f ∗ ρε has compact support in U and we
get

T[ f ∗ ρε] = Tw

[∫
U

f (z)ρε(w − z) dx dy
]

=

∫
Y

f (z)h(z) dx dy.

By Lemma 6.2.1 there exists ψ ∈ C∞(C) with ∆ψ = f . Then ψ is harmonic on



Riemann Surfaces 100

V = C ∖ supp f . By Lemma 6.2.4 (b) we get

ψ = ψ ∗ ρε on Vε.

Hence ϕ = ψ − ψ ∗ ρε has compact support in U and Lemma 6.2.4 (b) one has

T[ f ∗ ρε] = Tw

[∫
U

f (z)ρε(w − z) dx dy
]
.

Since T is continuous and linear, you can interchange it with integration (Just write
the integral as a limit of Riemann-sums.) So you get

T[ f ∗ ρε] =
∫

U
f (z)Tw[ρε(w − z)] dx dy

=

∫
U

f (z)h(z) dx dy.

By Lemma 6.2.1, there exists a function ψ ∈ C∞(C) with ∆ψ = f . The function ψ thus is
harmonic on V = C ∖ supp( f ). By Lemma 6.2.4 (b) it follows

ψ = ψ ∗ ρε

on Vε. This means that ϕ = ψ − ψ ∗ ρε has compact support in U and by Lemma 6.2.4
(a) satisfies

∆ϕ = ∆(ψ − ψ ∗ ρε) = ∆ψ − ∆(ψ) ∗ ρε = f − f ∗ ρε.

Since ∆T = 0, one has T[∆ϕ] = 0, hence

T[ f ] = t[ f ∗ ρε] =
∫

U
f (z)h(z) dx dy.

The theorem is proven. □

Corollary 6.2.6. Let T be a distribution on U with ∂
∂zT = 0. Then T is a holomorphic function.

Proof. Since ∆T = 4 ∂
∂z

∂
∂zT = 0, T is a smooth function by Theorem 6.2.5. But since

∂
∂zT = 0, this function is holomorphic. □

* * *
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6.3 Runge sets

Definition 6.3.1. Let S be a Riemann surface. An open subset R ⊂ Y is called a Runge
set, if none of the connected components of Y ∖ R is compact. For instance, the unit
discD ⊂ C is Runge in C, but the puncture diskD∖ {0} is not.

Theorem 6.3.2. Suppose that S is a non-compact surface. Then there exists a sequence
Y1 ⋐ Y1 ⋐ . . . of relatively compact Runge domains with

⋃
j Y j = S, so that every Y j has

regular boundary.

Proof. Since the topology of S is countably generated, there exists a sequence of
relatively open domains with regular boundary Y′1 ⋐ Y′2 ⋐ . . . with

⋃
j Y′j = S. Let Y j

be the union of Y′j with all compact components of S ∖ Y′j. □

Lemma 6.3.3. Let Z be an open subset of a Riemann surface S and Λ : Ω0,1(S)→ C be a
continuous linear mapping with Λ(d′′g) = 0 for every g ∈ C∞(S) with supp(g) ⋐ Z. Then
there exists a holomorphic 1-form σ ∈ Ωhol(S) such that

Λ(ω) =
∫

Z
σ ∧ ω

for every ω ∈ Ω0,1(S) with supp(ω) ⋐ Z.

Proof. Let z : U→ V ⊂ C be a chart on S which lies in Z. Identify U with V. For
ϕ ∈ C∞c (U), let ϕ̃ ∈ Ω0,1(S) with ϕ̃ = ϕ dz on U and zero on S ∖U. Then the mapping

ΛU : C∞c (U)→ C, ϕ 7→ Λ(ϕ̃)

is a distribution on U which vanishes on all functions of the form ϕ = ∂g
∂z with

g ∈ C∞c (U). This means one has ∂
∂zSU = 0. Hence by Corollary 6.2.6 there exists a

unique holomorphic function h ∈ O(U) with

Λ[ϕ̃] =
∫

U
h(z)ϕ(z) dz ∧ dz

for every ϕ ∈ C∞c (U). Setting σU = h dz we get

Λ[ω] =
∫

U
σU ∧ ω
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for every ω ∈ Ω0,1
c (U). If we do the same for another chart V, the uniqueness implies

that σU and σV agree on U ∩ V and so they patch together to define a form σ which
satisfies the claim. □

Theorem 6.3.4. Let R be a relatively compact open Runge subset of a non-compact
Riemann surface S. Then for every open set V with R ⊂ V ⋐ S the image of the restriction
map O(V)→ O(R) is dense in the topology of locally uniform convergence (of all
derivatives).

Proof. Let β : C∞(V)→ C∞(R) be the restriction map. We show that if T : C∞(R)→ C is
a continuous linear functional with T|β(O(V)) = 0, then T = 0. The claim will then follow
from the Hahn-Banach Theorem.

To prove this, define a linear mapping

Λ : Ω0,1(S)→ C

as follows: By Corollary 3.10.8 for given ω ∈ Ω0,1(S) there exists a function f ∈ C∞(V)
with d′′ f = ω|V. Then set

Λ(ω) = T
(

f |Y
)
.

By assumption, this map is independent of the choice of the function f , since is g is
another solution, then f − g is holomorphic on V and so T( f − g) = 0. We show that Λ
is continuous. Consider the vector space

E =
{
(ω, f ) ∈ Ω0,1(S) × C∞(V) : d′′ f = ω|V

}
.

Since d′′ : C∞(V)→ Ω0,1(V) is continuous, E is a closed subspace ofΩ0,1(S)×C∞(V) and
thus a locally convex space. Now the projection π : E→ Ω0,1(S) is surjective and thus
is an open map. Also the mapping β ◦ π : E→ C∞(R) is continuous. Since the diagram

E
β◦π
//

π
��

C∞(R)

T
��

Ω0,1(S) Λ // C

commutes, Λ is continuous, as T is. Since any continuous linear functional on C∞(R)
has compact support, there exits a compact subset K ⊂ R with

(a) T( f ) = 0 for every f ∈ C∞(R) with supp( f ) ⊂ R ∖ K
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and a compact subset L ⊂ S with

(b) S(ω) = 0 for every ω ∈ Ω0,1(S) with supp(ω) ⊂ X ∖ L.

If g is a function with supp(g) ⋐ X ∖ K, then Λ(d′′g) = T(g|R) = 0. By Lemma 6.4.3
there exists a holomorphic 1-form σ ∈ Ωhol(S ∖ K) such that

Λ[ω] =
∫

S∖K
σ ∧ ω

for every ω ∈ Ω0,1(S) with supp(ω) ⋐ S ∖ K. Because of (b) above we get σ|S∖(K∪L) = 0.
Let h(K) be the union of K and every relatively compact connected component of
S ∖ K. Then every connected component of S ∖ h(K) meets S ∖ (K ∪ L). By the Identity
Theorem this implies σ|X∖h(K) = 0, i.e.,

(c) Λ[ω] = 0 for every ω ∈ Ω0,1(S) with supp(ω) ⋐ S ∖ h(K).

Now suppose f ∈ O(R). We have to show T[ f ] = 0. Since R is Runge, H(K) ⊂ R. Hence
there is a function g ∈ C∞(S) with f = g in a neighbourhood ogf h(K) and supp(g) ⋐ R.
Then T[ f ] = T[g|R] by (a) and T[g|R] = Λ[d′′g] by the definition of Λ. Since g is
holomorphic on a neighbourhood of h(K), one has supp(d′′g) ⋐ S ∖ h(K) and thus
Λ[d′′g] = 0 by (c). Together we get T[ f ] = 0 for every f ∈ O(R). □

Theorem 6.3.5 (Runge Approximation Theorem). Let S be a non-compact Riemann
surface and Y be an open subset whose complement contains no compact connected
component. Then every holomorphic function on Y is a locally uniform limit of
holomorphic functions on S.

Proof. It suffices to consider the case when Y is relatively compact in X. Fix f ∈ O(Y), a
compact subset K ⊂ Y and some ε > 0. There exists an exhaustion Y1 ⋐ Y2 ⋐ . . . by
Runge domains of X with Y0 = Y ⋐ Y1. By Theorem 6.3.4 there is a holomorphic
function f1 ∈ O(Y1) with ∥∥∥ f1 − f

∥∥∥
K
< 2−1ε,

where ∥.∥K is the supremum norm on K. Again by Theorem 6.3.4 one gets a sequence
of functions fn ∈ O(Yn) with ∥∥∥ fn − fn−1

∥∥∥
Yn−2

< 2−nε

for every n ≥ 2. For every n ∈N the sequence ( fν)ν>n converges uniformly on Yn.
Hence there exists a function F ∈ O(X), which on each Yn is the limit of ( fν)ν>n. By
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construction we have
∥∥∥F − f

∥∥∥
K
< ε. □

* * *
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6.4 Weak solutions

Definition 6.4.1. Let D be a divisor on a surface S. A solution of D is a meromorphic
function f on S with div( f ) = D.

A weak solution is a function f : S ∖ P→ C, where P is the set of poles of D, such that
for every a ∈ S there exists a local coordinate z mapping a to zero, and a smooth
function ψ such that

f (z) = ψ(z)zk

holds in a neighbourhood of a, where k = D(a). Clearly, a weak solution is a proper
solution iff f is holomorphic on S ∖ P.

Definition 6.4.2. For a curve c : [0, 1]→ S, let ∂c denote the divisor c(1) = c(0).

Lemma 6.4.3. Let c be a curve in S and let U be a relatively compact open neighbourhood of
c([0, 1]). Then there exists a weak solution f of ∂c such that f ≡ 1 on S ∖U.

Proof. Consider first the case when U is the unit disk in C. Let a = c(0) and b = c(1).
There exists 0 < r < 1 such that c([0, 1]) ⊂ {|z| < r}. The function
log

(
(z− b)/(z− a)

)
= log(z− b)− log(z− a) has a well-defined holomorphic branch in the

annulus A = {r < |z| < 1} as the indeterminacies of the two summands cancel. Choose
a smooth function ψ on U such that ψ|{|z|≤r} = 1 and ψ|{|z|≥r′} = 0 for some r < r′ < 1. Set

f (z) =

exp
(
ψ(z) log z−b

z−b

)
r < |z| < 1,

z−b
z−a |z| ≤ r

and extend it by the constant 1 to all of S.

In the general case there exists a partition

0 = t0 < t1 < · · · < tn = 1,

And coordinates (U j, z j) for j = 1, . . . ,n such that

(a) c([t j−1, t j]) ⊂ U j,

(b) z j(U j) = D.

Letting c j denote the curve restricted to [t j−1, t j] we get a weak solution f j of the divisor
of ∂c j such that f j|S∖U j = 1. The product f = f1 · · · fn satisfies the lemma. □

Lemma 6.4.4. Every divisor D on a non-compact surface S has a weak solution.
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Proof. Choose a sequence K1,K2, . . . of compact Runge subsets of S such that K j ⊂ K̊ j+1

and S =
⋃

j K j. We claim that, given a0 ∈ S ∖ K j and the divisor A0 with A0(a0) = 1 and
A0(x) = 0 for x , a0, there exists a weak solution ϕ of A0 with ϕ|K j = 1.

Since K j is Runge, the point a0 lies in a connected component U of S ∖ K j which is not
relatively compact. Hence there exists a point a1 ∈ U ∖ K j+1 and a curve c0 in U, which
connects a0 to a1. By Lemma 6.4.3 there is a weak solution ϕ0 of the divisor ∂c0 with
ϕ0|K j = 1. Repeating the construction gives a sequence of points aν ∈ S∖K j+ν and weak
solutions ϕν of the divisors aν − aν−1 with ϕν|K j+ν−1 = 1. Thus the product

ϕ =
∞∏
ν=0

ϕν

converges, indeed, it is locally finite. This function ϕ is a weak solution of the divisor
A0.

Next suppose D is an arbitrary divisor on S. For ν ∈N set

Dν(x) =

D(x) x ∈ Kν+1 ∖ Kν,

0 otherwise,

where K0 = ∅. Since Dν is a finite divisor, there exists a weak solution ψν of Dν and then

ψ =
∏
ν

ψnu

satisfies the claim. □

Theorem 6.4.5. Let S be a non-compact Riemann surface. Then for any given
ω ∈ Ω0,1(S) there exists a function f ∈ C∞(S) with d′′ f = ω.

Proof. For every relatively compact open set U ⋐ S there exists by Corollary 4.6.14 a
function f ∈ C∞(U) with d′′g = ω|U. Suppose Y0 ⋐ Y1 ⋐ . . . is an exhaustion of S by
Runge domains. By induction on n we construct functions fn ∈ C∞(Yn) such that

(a) d′′ f = ω|Yn ,

(b)
∥∥∥ fn+1 − fn

∥∥∥
Yn−1
≤ 2−n.

First choose f0 ∈ C∞(Y0) as an arbitrary solution of the equation d′′ f0 = ω|U0 . Next
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suppose f0, . . . , fn have been constructed. There exists gn+1 ∈ C∞(Yn+1) with
d′′gn+1 = ω|Un+1 . On Yn the function gn=1 − fn is holomorphic. By Theorem 6.3.4 there
exists h ∈ O(Yn+1) such that ∥∥∥(gn+1 − fn) − h

∥∥∥
Yn−1
≤ 2−n.

Set fn+1 = gn+1 − h. Then ‘d′′ fn+1 = d′′gn+1 = ω|Yn+1 and∥∥∥ fn+1 − fn

∥∥∥ ≤ 2−n.

The fn now converge to a solution f ∈ C∞(S) of the equation d′′ f = ω. □

Theorem 6.4.6. Let S be a non-compact Riemann surface. Then

H1(S,O) = 0.

Proof. By the Dolbeault Theorem 4.5.3 one has H1(S,O) � Ω0,1(S)/d′′C∞(S). By
Theorem 6.4.5 we have Ω0,1(S) = d′′C∞(S) und daher H1(S,O) = 0. □

Theorem 6.4.7. On a non-compact Riemann surface, every divisor has a solution, i.e., is
the divisor of a meromorphic function.

Proof. Since the problem has a solution locally, there exists an open covering
U = (Ui)i∈I of S and meromorphic functions fi ∈ M(Ui) such that the divisor of fi

coincides with D on Ui. We may assume that the Ui are simply connected. Then

fi

f j
∈ O

×(Ui ∩U j)

for all i, j ∈ I. Now suppose ψ is a weak solution of D, which exists by Lemma 6.4.4.
Then ψ = ψi fi on Ui, where the function ψi has no zeros. Since Ui is simply-connected,
there exists a function ϕi ∈ C∞(Ui) with ψi = eϕi , i.e., ψ = eϕi fi on Ui. Then on Ui ∩U j

one has

eϕ j−ϕi =
fi

f j
∈ O

×(Ui ∩U j). (∗)
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This implies ϕi, j = ϕi − ϕ j ∈ O(Ui ∩U j). The family ϕi, j is a cocycle in Z1(U,O). As
H1(S,O) = 0, this cocycle splits. Thus there exist holomorphic functions gi ∈ O(Ui) with

ϕi, j = ϕi − ϕ j = gi − g j

on Ui ∩U j. By (∗) we get eg j−gi = fi/ f j, so

egi fi = eg j f j

holds on Ui ∩U j. Hence there exists a global meromorphic function f ∈ M(S) with
f = egi fi on Ui, whence the claim. □

Corollary 6.4.8. Let S be a non-compact Riemann surface. Then there exists a holomorphic
form ω ∈ Ωhol(S) which nowhere vanishes.

Proof. Let g be a non-constant meromorphic function on S and f ∈ M(S) a function
with divisor −(dg). Then ω = f dg is a holomorphic 1-form without zeros. □

* * *
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6.5 Riemann Mapping Theorem

Remark 6.5.1. Recall that if S is simply connected, every holomorphic differential
form has a primitive, that is, we have

Ωhol(S) = dO(S).

Lemma 6.5.2. Let S be a Riemann surface with Ωhol(S) = dO(S).

(a) Every holomorphic function f : S→ C× has a holomorphic logarithm and hence a
holomorphic square root.

(b) Every harmonic function u : S→ R is real part of a holomorphic function on S.

Proof. (a) 1
f d f is a holomorphic 1-form on S. Since H1

∂
(S) = 0, there exists g ∈ O(S) with

dg = 1
f d f . Then

d( f e−g) = d f e−g
− f e−g f −1d f = 0.

Hence f e−g is constant. Adding a constant to g we can assume eg = f . With h = eg/2

one has h2 = f .

(b) By Theorem 3.10.6 there exists a holomorphic form ω ∈ Ωhol(S) such that
du = Re(ω). Since Ωhol(S) = dO(S), one has du = Re(dg) = d Re(g) for some g ∈ O(S).
Thus u = Re(g) + const. □

Theorem 6.5.3. Let S be a non-compact Riemann surface and let Y ⋐ S be a domain with
regular boundary, such that Ωhol(Y) = dO(Y). Then there exists a biholomorphic mapping
Y �
−→ D.

Proof. Choose a point p ∈ Y. By Theorem 6.4.7 there exists a holomorphic function g
on X with a first order zero at p which does not vanish on S ∖ {a}. By Theorem 6.1.20
there exists a continuous function u : Y→ R, harmonic in Y with

u(y) = log |g(y)| for every y ∈ ∂Y (∗)

By Lemma 6.5.2 u is the real part of a holomorphic function h ∈ O(Y). We claim that
the function

f = e−hg ∈ O(Y)
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maps Y biholomorphically onto the unit dislD. First we show f (Y) ⊂ D. For
y ∈ Y ∖ {a} one has

| f (y)| = |eh(y)
| |g(y)| = elog |g(y)|e−u(y).

Hence the the continuous function ϕ = | f | can be extended continuously to Y which is
identically 1 on ∂Y by (∗). The Maximum Principle implies | f (y)| < 1 for every y ∈ Y,
i.e., f (Y) ⊂ D.

Next we show that the map f : Y→ D is proper. For this it suffices to show that for
every r < 1 the preimage Y(r) of the disk {|z| ≤ r} is compact in Y. But

Y(r) =
{
y ∈ Y : | f (y)| ≤ r

}
=

{
y ∈ Y : ϕ(y) ≤ r

}
,

so Y(r) is a closed subset of the compact Y, hence compact.

Since f : Y→ D is proper, each value is taken equally often by Theorem 3.4.3. But the
value zero is taken exactly once. Hence f : Y→ D is bijective and hence
biholomorphic. □

Lemma 6.5.4. Let S be a non-compact Riemann surface with Ωhol(S) = dO(S) and let Y ⊂ S
be a Runge domain. Then Ωhol(Y) = dO(Y) as well.

Proof. Let ω ∈ Ωhol(Y). By Corollary 6.4.8 there exists a holomorphic 1-form
ω0 ∈ Ωhol(S) without zeros. Then ω = fω0 for some f ∈ Ω(Y). By the Runge
Approximation Theorem 6.3.5 there exists a sequence fn ∈ O(S) converging locally
uniformly on Y to f . Since every form fnω0 has a primitive, we have

∫
γ

fnω = 0 for

every closed curve γ in Y. In the limit, this yields
∫
γ
ω = 0, hence ω has a primitive. □

Theorem 6.5.5 (Riemann Mapping Theorem). For a connected Riemann surface S the
following are equivalent:

(a) Ωhol(S) = dO(S).

(b) S is isomorphic to C, Ĉ or E.

(c) S is simply connected.

Proof. The implications (b)⇒(c)⇒(a) are clear. So it remains to show (a)⇒(b).

If S is compact, then every holomorphic function on S is constant and so dO = 0, hence
(a) implies that Ωhol(S) = 0, so S has genus 0, hence is biholomorphic to Ĉ.
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So now assume that S is non-compact. Let Y1 ⋐ Y1 ⋐ . . . be an exhaustion of X by
Runge domains with regular boundaries. By Lemma 6.5.4 we have Ωhol(Yn) = dO(Yn)
for every n. So by Theorem 6.5.3, every Yn is biholomorphic to the diskD. Choose a
point p ∈ Y0 and a coordinate neighbourhood (U, z) of p. Then there exists a real
number rn > 0 and a biholomorphic map

fn : Yn → rnD

with

fn(p) = 0 and
d fn

dz
(p) = 1.

We claim that rn ≤ rn+1. To see this let

h1 = fn+1 ◦ f −1
n : rnD→ rn+1D

and define h : D→ D by h(z) = 1
rn+1

h1(rnz). Then h(0) = 0 and by Schwarz’s Lemma we
get |h′(0)| ≤ 1. But h′(0) = rn

rn+1
and thus rn ≤ rn+1. Let

R = lim
n→∞

rn ∈ (0,∞].

We claim that there exists a subsequence ( fnk)k∈N such that for every m ∈N the
sequence ( fnk)k≥m converges locally uniformly on Ym. For fixed m one gets such a
subsequence from the Theorem of Arzela-Ascoli in the holomorphic version (Analysis
Theorem 20.4.7). Then, of this subsequece one takes a subsequence for Ym+1 and so on.
The usual diagonal argument then yields the desired subsequence ( fnk)k∈N.

Let f ∈ O(S) be the limit of this sequence, i.e., on each Ym the function f is the uniform
limit of fnk |Ym . It follows that f : S→ C is injective and thus maps S biholomorphically
to an open subset of C, which by the Riemann mapping Theorem for C (Analysis)
either equals C or is biholomorphic toD. □
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