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Teil 1

Algebraische Strukturen

1 Gruppen

1.1 Permutationen

Fiir eine beliebige Menge M bezeichnen wir mit Per(M) die Gruppe der
Permutationen von M, d.h., die Menge aller bijektiven Abbildungen

0 : M - M mit der Hintereinunderausfiihrung als
Gruppenmultiplikation. Fiir eine natiirliche Zahl n sei dann Per(n) die
Gruppe Per({1,...,n}). Wir nennen Per(n) auch die Gruppe der

Permutationen in n Buchstaben.

Die Elemente der Permutationsgruppe Per(n) schreibt man zB in der

123
Form 7 = 531 ) wobei wir das Bild jeweils unter das Element

schreiben, also in diesem Beispiel 7(1) =2, 7(2) =3 und 7(3) = 1. Eine
undere Schreibweise fiir dasselbe Element ist die Zykelschreibweise:

t=(1,2,3)

was soviel bedeutet wie 1 geht auf 2 geht auf 3 geht auf 1. Das Element,
das 1 und 2 vertauscht, schreibt sich dann als (1,2). Nicht jedes Element

von Per(n) ist als ein einziger Zykel schreibbar, so ist zum Beispiel in

1234
Per(4) das Element ( 5143 ) in der Zykelschreibweise gleich

(1,2)(3,4).

Definition 1.1.1. Ein Zykel in Per(n) ist ein Tupel (j1, j2, ..., jr), 7 22

von verschiedenen nattirlichen Zahlen 1 < jy, jp, ..., j; < n. Ein Zykel



reprasentiert eine Permutation, die j, auf j,,; und j, auf j; wirft und alle
underen Zahlen festhilt. Der Zykel (ji, ..., jr) reprasentiert dieselbe
Permutation wie der Zykel (jy, js, ..., jr, j1), deshalb kann man den
Zykel stets durch einen ersetzen, fiir den j; die kleinste der Zahlen

Jji, .-, Jk ist. Ein Zykel in dieser Form heisst kanonisch.

Zwei Zykel (ji,..., jx) und (i1, ..., 1) heissen disjunkt, falls sie keine

gemeinsamen Zahlen haben, also falls
{jl""’jk} N {ill"'/is} = .

1234567
Beispiel 1.1.2. Wir schreiben die Permutation ( ) als

1675243
Produkt kanonischer Zykel:

(2,6,4,5)(3,7).

Satz 1.1.3.

(a) Zwei kanonische Zykel stellen genau dann dieselbe Permutation dar,

wenn sie gleich sind.

(b) Zwei disjunkte Zykel, aufgefasst als Elemente von Per(n),

kommutieren miteinunder.

(c) Jede Permutation + 1d in Per(n) lisst sich als Produkt paarweise

disjunkter kanonischer Zykel schreiben, diese sind eindeutig bestimmt
bis auf die Reihenfolge.

Beweis. (a) Seien (j1, j2,.--,jr) und (i, iy, ...,is) zwei kanonische Zykel,
die dieselbe Permutation y darstellen. Dann ist j; das kleinste Element

von {1,...,n}, das von y tiberhaupt vertauscht wird und dasselbe gilt



von i3, also folgt j; = i3. Ferner ist j» = y(j1) = y(i1) = i» und so weiter.

(b) Seiy = (ji,..., jx) ein Zykel in Per(n) und sei 7 € Per(n). Es gilt dann

tyt = (t(j1),.- ., T(i))-

Ist 7 = (i1,...,is) auch ein Zykel, dann sind die 7, ..., i; genau die
Zahlen, die von 7 tiberhaupt verdndert werden. Ist also 7 zu y disjunkt,

so folgt tyt~1 =y.

(c) Wir geben ein Verfahren zum Finden der Zykel zu einem gegebenen
y € Per(n). Sei j; die kleinste Zahl in {1, ...,n}, die von y tiberhaupt
verdndert wird. Sei dann j, = y(j1) und so weiter. Die Folge ji, jo, . ..
kann nicht unendlich sein, also gibt es ein kleinstes k € IN und zu
diesem ein kleinstes s € IN so dass jis = j gilt. Das heisst also

V(jkss-1) = Jr- Ist k > 1, so gilt aber auch y(jx-1) = jx, woraus aber

Jk+s—1 = Jk-1 folgt, was der Minimalitdt von k widerspricht. Es ist also

k =1und damitist a = (j1,..., js) ein Zykel, der die Zahlen (i, ..., Js)
genauso abbildet wie y, so dass a~ !y sie alle festhilt. Dieser ist dann
gleich e oder nicht, in welchem Fall wir das Verfahren wiederholen und
einen zweiten Zykel  finden, der disjunkt zu « ist und so weiter. Das

Verfahren bricht wegen Endlichkeit des Problems ab. O

Beispiel 1.1.4. Wir konnen die Elemente von Per(3) als Zykel
hinschreiben: ¢, (1,2), (1,3),(2,3),(1,2,3),(1,3,2).

1.2 Ordnung

Definition 1.2.1. Ist G eine endliche Gruppe, so nennt man die Anzahl

|G| der Elemente die Ordnung der Gruppe G,
ord(G) = |G|.

Wir schreiben auch 1 fiir das neutrale Element e einer Gruppe.



Ist a € G, so bezeichnet (a) die von a erzeugte Gruppe, also die kleinste

Untergruppe von G, die a enthélt. Diese beschreibt man einmal als

(@)= (1 H

H Untergruppe
H>a

wobei man sich klarmachen muss, dass dies wieder eine Untergruppe

ist. Andererseits kann man (a) konstruktiv beschreiben:
(a) = {d": ke Z)}.

Ist (a) eine endliche Gruppe, so nennt man die Ordnung von (a) auch

die Ordnung des Elements 4 und man schreibt
ord(a) = ord((a)) = |(a).
Ist (a) nicht endlich, so setzt man ord(a) = oo.
Beispiel 1.2.2. Ist z € Per(n) ein Zykel z = (jy, ..., jx), dann gilt
ord(z) =k.

Wir nennen k dann wahlweise die Ordnung oder die Linge des Zykels

Z.

Lemma 1.2.3. Sei a ein Element der Gruppe G. Die von a erzeugte Gruppe (a)

ist genau dann endlich, wenn es ein n € IN gibt mit a" = 1. Es gilt
ord(a) =min{neN:a" = 1}.
Ist k die Ordnung von a so gilt fiir jedes n € N
a'=1 < k|n.

Beweis. Sei (a) endlich. Da die Elemente 1,4,4?, ... nicht alle verschieden

sein konnen, gibt es ein m, n € N so dann 4™ = a"*", also 1 = a" gilt. Die



Umkehrung ist klar, da (a) genau aus den Potenzen von a besteht. Ist
schliesslich k € IN die kleinste natiirliche Zahl mit ak = 1, dann besteht

(a) genau aus den Elementen 1,a,4?,...,a"1.

Zum Schluss sei k = ord(a) und 4" = 1. Dann folgt n > k, wir konnen also

n = rk + s schreiben mit 0 < s < k. Es ist dann
1 =g" =g = (ak)ras e
so dass s = 0, also k | n folgt. Die Umkehrung ist klar. O

Lemma 1.2.4. Ist G eine abelsche Gruppe und a,b € G von endlichen

Ordnungen m,n. Sind m und n teilerfremd, dann hat ab die Ordnung mn.

Beweis. Ist 1 = (ab)* = a*b¥, also a* = b~*. Die Ordnung von a ist ein Teiler
von m, die Ordnung von b ist ein Teiler von 1, daher miissen beide
Ordnungen gleich 1 sein, also a* = 1 = b*. Damit ist k ein Vielfaches von

m und von 1, die Ordnung von ab ist also mn. O

Definition 1.2.5. Sind G, H zwei Gruppen, so wird das Produkt G x H
durch die Vorschrift

(&h)(g' h) = (g8’ hh’)

eine Gruppe. Das neutrale Element ist (1,1). Das Inverse zu (g, h) ist

(g71,h1). Fiir die Ordnungen gilt
ord(G x H) = ord(G) ord(H).

Beispiele 1.2.6. e Wir bezeichnen mit Z/mZ. oder auch Z/m die
zyklische Gruppe mit m Elementen, m € IN, also die Gruppe

{0,1,2,...,m -1} mit Verkntipfung: am b = Rest von a + b modulo m.

e Sein € N die Diedergruppe D,, der Ordnung 2# ist eine Gruppe



erzeugt von zwei Elementen ¢, T mit den Relationen

o"=1=7% und 7ot t=0"L

Insbesondere soll o die Ordnung n haben und 7 die Ordnung 2.

Das bedeutet, D», besteht genau aus den Elementen

1,0,6%...,0" Y, 1,70,..., 10"}

und die Produkte dieser Elemente rechnet man mit den Relationen aus.

Man kann sie als Untergruppe von Per(n) wie folgt darstellen. Stellen
wir uns die Elemente von {1,2,...,n} auf einem Kreis in gleichen
Abstdnden angeordnet vor. Dann ist o die Rotation um den Winkel
2nt/n und 7 ist irgendeine Spiegelung an einer Geraden, die die Menge
{1,...,n} in sich abbildet.

Es gilt D, ~ Z/2, sowie D4 = (Z/2) x (Z/2) und schliesslich
D¢ = Per(3).

Proposition 1.2.7. Ist g € Per(n) eine Permutation, die wir gemdf$ Satz 1.1.3
als Produkt disjunkter Zykel schreiben:

g - Zl...zk
und sei l; = 1(z;) die jeweilige Linge des j-ten Zykels. Dann gilt

ord(g) =kgV(lL,..., k).



Beweis. Die z; vertauschen miteinunder. Da jedes z; eine undere

Teilmenge von {1, ...,n} permutiert, folgt fiir v e N

§'=1 < zj=1flurjedesj=1,...,k
Dies ist genau dann der Fall, wenn v ein Vielfaches von ord(z;) = [; ist
fur jedes j, daher ist die Ordnung ord(g) = min{veIN: g" =1} das

kleinste gemeinsame Vielfache der Einzelordnungen. O

1.3 Nebenklassen

Definition 1.3.1. Sei G eine Gruppe und sei H c G eine Untergruppe. Ist

a € G, so ist die Linksnebenklasse von a nach H gleich der Menge

aH ={ah:heH}.

Da H eine Gruppe ist, gilt fiir 1 € H schon
hH = H.

Beispiele 1.3.2. o Ist V ein Vektorraum und U c V ein Unterraum,
dann sind die Nebenklassen nach U genau die affinen Rdume

v+ U, die U als linearen Teil haben.

e Sei G = Dy, die Diedergruppe und sei H = (7) die von t erzeugte
Untergruppe, dann ist H = {1, 7} und die H-Linksnebenklassen
sind

{1,7},{0,07},...,{c" 1, 0" 7}.
—_——

—_—— -~
:H :OH :anlH

Lemma 1.3.3. Sei G eine Gruppe und H eine Untergruppe. Zwei
Linksnebenklassen sind entweder gleich oder disjunkt, daher kann man G

disjunkt in seine Nebenklassen zerlegen, es gibt also eine Familie (x;)ie; in G so



dass
G-= |_| xiH.
iel
Beweis. Sei xH n yH # @. Wir zeigen xH c yH. Aus Symmetrie folgt dann
die undere Richtung. Sei also z € xH n yH, dann existieren hy,h; € H so
dass z = xhy = yhy. Es folgt x = yhoh; Ve yH und ist u € xH, also u = xh3, so
folgt u = xhz = yhoh'hs € yH. O
—
eH
Proposition 1.3.4. Sei G eine endliche Gruppe. Ist H eine Untergruppe, dann

ist die Ordnung |H| ein Teiler der Ordnung |G| von G. Genauer gilt
Gl = |HI|G/H]|,
wobei G/H die Menge aller Nebenklassen aH ist.
Insbesondere gilt fiir jedes Element x
ord(x) | ord(G),
d.h., die Ordnung von x teilt die Gruppenordnung. Insbesondere folgt
xord(G) _ 1.

Beweis. Wir haben G = | ;;; x;H, und da G endlich ist, muss I endlich

sein, wir finden also x1,...,x, € G so dass G = ||, x;H. Also folgt

j=
ord(G) = ) |xjH|.
=1

Die Untergruppe H bildet selbst eine Nebenklasse, wir konnen also
x1 = e annehmen. Die Abbildung & ~ x;H ist eine Bijektion von H nach

x;H, also haben alle Nebenklassen gleich viele Elemente, ndmlich



ord(H) viele, es ist also

ord(G) = zn:ord(H) =nord(H).
=1

Ist a € G ein beliebiges Element und ist H = (a) die von a erzeugte

Untergruppe, dann ist ord(a) = ord(H) ein Teiler von ord(G). O

1.4 Homomorphismen und Operationen

Definition 1.4.1. Eine Abbildung ¢ : G - H zwischen zwei Gruppen

heisst Gruppenhomomorphismus, falls

¢(ab) = ¢(a)Pp(b)
tiir alle a, b € G gilt.
Lemma 1.4.2. Ist ¢ : G — H ein Gruppenhomomorphismus, dann gilt
(1) = 1 und $(at) = p(a)"
Beweis. Ubungsaufgabe Blatt 1. O

Beispiele 1.4.3. e Ist G eine Gruppe und ist a € G, dann ist die
Abbildung

¢ x> axa’
Ein Homomorphismus von G nach G.
Beweis. Fiir x,y € G gilt ¢(xy) = axya™ = axalaya! = p(x)p(y). O

e Sind V, W Vektorrdume tiber einem Korper K, so ist jede lineare
Abbildung T : V - W ein Gruppenhomomorphismus
(V,+) = (W, ).
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e Sei G die Gruppe GL,(K) aller invertierbarer n x n Matrizen tiber
dem Korper K. Dann ist die Abbildung ¢ : G = G,

PA)=A"=(A)"=(AT)

ein Gruppenhomomorphismus.

e Ist G = Per(n) die Gruppe der Permutationen in {1,...,n}, dann ist

die Vorzeichen- oder Signumabbildung
sign : Per(n) - {1}

ein Gruppenhomomorphismus, wie in der Linearen Algebra

gezeigt wird.

Definition 1.4.4. Sei ¢ : G — H ein Gruppenhomomorphismus. Der

Kern von G ist
kerp={gG:p(g) =1}.

Es ist leicht einzusehen, dass ker(¢) eine Untergruppe von G ist.

Lemma 1.4.5. Ein Gruppenhomomorphismus ¢ : G - H ist genau dann

injektiv, wenn sein Kern trivial ist.

Proof. Ist ¢ injektiv, dann gilt fiir jedes x € G \ {1}, dass ¢(x) # 1, also ist

der Kern trivial.

Ist umgekehrt der Kern trivial und sind x, y € G mit ¢(x) = ¢(y), dann

gilt, weil ¢ ein Gruppenhomomorphismus ist, dass

P(xly) = p(x) () = 1
und daher x~ 'y e ker ¢ und also x 'y =1 oder x = . O

Definition 1.4.6. Sei G eine Gruppe und M eine Menge. Eine Operation
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von G auf M ist eine Abbildung

GxM-M
(g,m) = g.m
mit den Figenschaften
e lm=m (das neutrale Element operiert neutral)

o (ab).m=a.(b.m) (Operation und Multiplikation sind kompatibel)
Beispiele 1.4.7. e Sei G eine Gruppe. Dann definiert die Vorschrift
Q.m=gm

eine Operation der Gruppe auf sich selbst, die

Linkstranslationsoperation.

Beweis. Es gilt 1.m = 1m = m und
(ab).m = (ab)ym = a(bm) = a.(b.m). O

¢ Sei G eine Gruppe, dann operiert G durch
— o]
g.m =mg
auf sich selbst, dies ist die Rechtstranslationsoperation.

Beweis. Es gilt 1.m = m1~! = m1 = m und
(ab).m =m(ab)™! = (mbV)a ! =a.(b.m). O

¢ Sei G eine Gruppe, dann operiert G auf sich selbst durch die
Vorschrift

g-m=gmg~

dies ist die Konjugationsoperation.
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Beweis. Es gilt 1.m = 1m1-! = m und
(ab).m = abm(ab)~! = abmb~'a~! = a.(b.m). O

o (Abgeleitete Operationen.) Operiert die Gruppe G auf der Menge
M und ist S eine weitere Menge, dann operiert G auf der Menge
A = Abb(M, S) aller Abbildungen von M nach S durch

g-p(m) = p(g".m).

Beweis. Es iste.p(m) = ¢(et.m) = dp(m) und (ab).cp(m) =
d((ab)tm) = p(btatom) = b.p(at.m) = a.(b.op)(m). O

Lemma 1.4.8. Sei M # & eine Menge. Operiert die Gruppe G auf der Menge
M, dann ist die Abbildung ¢ : G - Per(M), g+~ (m — gm) ein
Gruppenhomomorphismus. Ist umgekehrt ¢ : G - Per(M) ein

Gruppenhomomorphismus, dann definiert

gm=¢(g)(m)

eine Operation. Diese Zuordnungen
(Operation)—(Gruppenhomomorphismus) und umgekehrt sind invers
zueinander. Also ist eine Operation dasselbe wie ein

Gruppenhomomorphismus nach Per(M).

Beweis. Die Gruppe G operiere auf M. Fiir g € G sei ¢(g) : M - M,

m — gm. Zundchst miissen wir zeigen, dass ¢(g) bijektiv ist, wir also
wirklich in Per(M) lunden. Wir behaupten, dass ¢(g~!) eine
Umkehrabbildung zu ¢(g) ist. Dies folgt aus

() (Pp(g ) (m)) = p(g)(g7'm) = gg 'm=1m =m

und

P& (P(g)(m)) = Pp(g7)(gm) =g~ gm =1m =m.
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Wir haben also in der Tat eine Abbildung ¢ : G - Per(M). Wir rechnen

nun nach, dass dies ein Gruppenhomomorphismus ist. Fiir g, h € G gilt

P(gh)(m) = (gh)ym = g(hm) = p(g)(hm) = (&) (p(h)(m)) = ¢(g)P(h) ().

Also ist ¢ ein Gruppenhomomorphismus. Die Umgekehrte Richtung ist
leicht nachzurechnen und die Tatsache, dass diese Zuordnungen invers

zueinunder sind, auch. O

Die Gruppe G operiere auf der Menge M. Fiir gegebenes m € M nennen
wir die Menge
[m]=Gm={gm:geG}

die Bahn oder das Orbit von m. Ferner ist
Gu={geG:gm=m}

der Stabilisator von m.

Satz 1.4.9. Die Gruppe G operiere auf der Menge M.

(a) Der Stabilisator eines Punktes m € M ist eine Untergruppe von G. Er

wird auch die Stundgruppe von m genannt.

(b) Sei H = G,, der Stabilisator von m. Die Abbildung gH ~ gm ist eine
Bijektion von G/H zum Orbit von m.

(c) Die Orbiten zweier Punkte sind entweder gleich oder disjunkt, man
kann deshalb M disjunkt in seine Orbiten zerlegen. Man schreibt G\M
fiir die Menge aller Orbiten.

(d) (Bahnengleichung) Sind G und M endliche Mengen und seien
[m1],...,[my] die Bahnen, so gilt
= |Gl

M= 2L
M ;Iij\
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Man kann Teil (c) auch so ausdriicken, dass man sagt: die Operation
von G definiert eine Aquivalenzrelation auf M, wobei m und m’
dquivalent heissen, falls sie in demselben Orbit liegen. Der Quotient

nach dieser Aquivalenzrelation wird dann mit G\M bezeichnet.

Beweis. (a) Sei H = G, dann gilt offensichtlich e € H. Sind a,b € H, dann
ist

(ab)m = a(bm) = am = m,
also liegt auch ab wieder in H. Ferner folgt aus am = m durch Anwenden

von a~! schon m = a~'m, so dass auch a~! € H folgt. Also ist H eine

Untergruppe.

(b) Sei i : G/H — Gm diese Abbildung. Zunéchst ist festzustellen, dass
sie tiberhaupt wohldefiniert ist, ist also gH = ¢'H, dann ist ¢’ = gh fiir ein
h € H und damit ist g'm = g(hm) = gm, somit ist i wohldefiniert.
Injektivitit. Sei w(aH) = (bH), dann ist am = bm also a~'bm = m, was
soviel heisst wie a~'b € H und somit bH = aH.

Surjektivitit. Sei z € Gm, also z = gm fiir ein ¢ € G, dann folgt z = p(gH).

(c) Sei Gm n Gm' # @, dann ist zu zeigen, dass Gm = Gm’ gilt. Sei

z € Gm n Gm’ dann existieren also g, ¢’ € G so dass gm =z = g¢'m’. Es folgt
m' = (g")"'gm so dass m’ e Gm und damit hm' € Gm fiir jedes h € G, was
soviel heisst wie Gm’ ¢ Gm. Aus Symmetrie folgt die umgekehrte

Inklusion.
(d) Wir haben die disjunkte Zerlegung M = |_|’]‘.=1 [m;]. Daher ist
M| = Z’;zl |[m ]]| Nach Teil (b) ist fuer jedes m € M mit Stabilisator
H =Gy,

[m]| =|G/H]|.

Es bleibt also zu zeigen |G/H| = |G|/|H| oder |G| = |H| |G/H|. Seien
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hiH, ..., yH die Nebenklassen, dann zerlegen sie G disjunkt, also

j
Gl = 3> hjH] = IH]
T

Hierbei beachte, dass die Abbildung & + mh eine Bijektion H — m;H ist.
Nach Definition ist I = |G/H|, also folgt die Behauptung. O

Lemma 1.4.10. Eine Gruppe G mit n Elementen operiere auf einer Menge M
mit m Elementen. Seien 1 =dy < --- < d, = n die Teiler von n. Dann gibt es
Zahlen kq,. .., k, € Ny, so dass

M-

m =

k; d.

j=1

Hierbei ist k]- die Anzahl der Bahnen mit dj Elementen.

Beweis. Seien [my],...,[my] die Bahnen in M. Nach der

Bahnengleichung ist

Gl
M| = Z
1 1Goy|

; . . ) Gl . )
Jedes |Gy, | ist ein Teiler von n = |G|, |‘G |.| ein Teiler von n.
Wir ordnen diese Summe nach den Teilern dl, . d und bezeichnen mit

k die Anzahl, mit der der Teiler d unter den

| G ] L auftritt. O

Beispiel 1.4.11. Operiert eine Gruppe G der Ordnung 77 auf einer
Menge M der Ordnung 5, dann gilt g.m = m fiir jedes m € M, d.h., die

Operation ist trivial.

Beweis. Der kleinste nichttriviale Teiler von 7 ist 7 und 5 ist kleiner als 7,
also sind in der Summe des Lemmas alle k; = 0 fiir j > 1. Es gibt also nur
Bahnen der Lange 1. O
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1.5 Zyklische Gruppen

Eine Gruppe G heisst zyklisch, wenn G von einem Element erzeugt ist.

Beispiele 1.5.1. e Die Gruppe (Z, +) ist zyklisch von unendlicher
Ordnung.

e Fiir jedes n € IN gibt es eine zyklische Gruppe der Ordnung n,

namlich Z/n.

Proposition 1.5.2. (a) Ist G zyklisch, dann ist G isomorph zu Z. oder zu
Z.[n, wobei n = ord(G).

(b) Ist G eine zyklische Gruppe der Ordnung n und ist d ein Teiler von n,
dann gibt es ein Element der Ordnung d.

Beweis. (a) Sei G zyklisch und sei 7 ein Erzeuger.

1. Fall. T hat endliche Ordnung n € N. Dann ist die Abbildung Z/n - G,
k ~ ¢ ein Gruppenisomorphismus.
2. Fall. T hat keine endliche Ordnung. Dann ist die Abbildung Z — G,

k — 7 ein Isomorphismus.

(b) Ist 7 ein Erzeuger und ist k = n/d, dann ist a = v von Ordnung d,
denn erstens ist @/ = 7" = 1 und zweitens, golte o/ = 1 fiirein 1 <1 < d,
dann hieBe das 1 = a! = t""/?, was einen Widerspruch ergibt, da In/d echt

kleiner ist als 7. |

Satz 1.5.3. Sei p eine Primzahl. Jede Gruppe der Ordnung p ist zyklisch,
also isomorph zu der Gruppe Z[p.

Beweis. Sei G eine Gruppe der Ordnung p. Sei e # T € G. Dann muss

ord(7) ein Teiler von p sein. Da 7 # ¢, ist die Ordnung # 1, also ist
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ord(7) = p, damit hat die zyklische Untergruppe (7), die von 7 erzeugt
wird, die Ordnung p, ist also gleich G. O

Satz 1.5.4. Jede Untergruppe einer zyklischen Gruppe ist zyklisch.

Proof. Sei G = (t) eine zyklische Gruppe und sei {1} # H c G eine
Untergruppe. Sei N die kleinste natuerliche Zahl mit y = ™V ¢ H. Wir
zeigen, dass H von y erzeugt ist. Sei hierzu h = 7" € H, dann ist

hyk = 7+kN ¢ H. Es gibt ein k € Z mit 0 <n + kN < N. Aus der
Minimalitaet von N folgt 1 + kN = 0 und daher h = y*. O

Satz 1.5.5 (Gruppen bis zur Ordnung 7).

(a) Es gibt jeweils nur eine Gruppe (bis auf Isomorphie) der Ordnung
1,2,3,5,7, nimlich die jeweils zyklische Gruppe.
(b) Es gibt zwei Gruppen der Ordnung 4, namlich Z./4 und Z|2 x Z.]2.

(c) Es gibt zwei Gruppen der Ordnung 6, namlich Z./6 und Per(3).

Beweis. (a) ist klar, da die genannten Ordnungen Primzahlen sind.

(b) Sei G eine Gruppe der Ordnung 4, die nicht zyklisch ist. Das
bedeutet, dass jedes Element # e die Ordnung 2 haben muss. Dann ist G
abelsch (nach tibungsaufgabe). Seien nun a,b zwei verschiedene
Elemente von G \ {e}. Dann liefert die Abbildung (Z/2) x (Z/2) - G,
(i, j) = a'bl einen injektiven Gruppenhomomorphismus. Das Bild hat

Ordnung 4, ist also G und G damit isomorph zur Vierergruppe.
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(c) Sei G eine Gruppe der Ordnung 6. Hat G ein Element der Ordnung
6, so ist G — Z /6. Nehmen wir also an, dass alle Elemente Ordnung 1,2,3
haben.

1. Es gibt Elemente der Ordnung 2 und der Ordnung 3.

Haben alle Elemente Ordnung 2, dann ist die Gruppe abelsch. Sind
dann a,b verschiedene Elemente. Wie im Fall der Ordnung 4 ist dann
{1,a,b,ab} eine Untergruppe der Ordnung 4, was nicht sein kann, da 4
kein Teiler von 6 ist. Daher gibt es Elemente der Ordnung 3.
Angenommen, alle Elemente haben Ordnung 3. Sei dann 4 # 1 und

H = (a). Die Gruppe G operiert auf der Menge G/H der
H-Nebenklassen. Diese Menge hat 2 Elemente. Seia € G \ H. Dann ist
aH + H, also a?H # aH, also a?H = H oder a? e H. Nun ista? =alin H
und da H eine Gruppe ist, ist a € H, Widerspruch!

Sei b € G \ H, dann vertauscht b die beiden Nebenklassen H bH, also
folgt H = b(bH) = bH, d.h., b*> € H. Waere nun b? = a oder 42, dann haette
a oder a? die Ordnung 6, Widerspruch. Also folgt b? = 1, das Element b
hat demnach Ordnung 2.

1. Fall: G ist abelsch. Seien dann 4,b € G von Odnung 2 und 3. Sei dann
T=ab. Dannist 12 =a?b? =b> + 1. Fernerist 1 =a3b® =a3 =a2a=a+ 1,

also hat T weder Ordnung 2, noch 3, also Ordnung 6 und G ist zyklisch.

2. Fall: G ist nicht abelsch. Seien 4, b der Ordnungen 2 und 3 und sei
H = (a). Dann operiert G auf der Menge G/H der Nebenklassen, diese

hat 3 Elemente, wir erhalten also einen Gruppenhomomorphismus
¢ : G - Per(G/H) = Per(3).

Wenn wir zeigen, dass ¢ injektiv ist, ist es wegen |G| = 6 = | Per(3)| ein
Isomorphismus. Da b ¢ H ist bH # H und daher b’H + H. Wiare nun
b’H = H, also b? € H, dann wire b? = 1, also b = bb3 = b* = (b?)?> =1,
Widerspruch! Damit ist auch b?H + H und die Nebenklassen sind
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H,bH, b?H. Insbesondere wird G von den beiden Elementen a und b
erzeugt. Das Element b vertauscht die Nebenklassen zyklisch und a
tixiert die Nebenklasse H. Wir wollen zeigen, dass a die Klassen bH und
b2H vertauscht. Wire abH = bH, so wire entweder ab = b, was nicht
geht, oder ab = ba. Damit vertauschen 4 und b und da sie die Gruppe
erzeugen, ist diese abelsch, Widerspruch! Es folgt also, dass a und b
beide nichttrivial operieren. Das bedeutet, dass beide nicht im Kern von
¢ liegen. Da a und b beliebig gew&hlt werden konnen, ist der Kern

trivial, also ist ¢ nach Lemma 1.4.5 injektiv. O
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2 Ringe
2.1 Definition

Definition 2.1.1. Ein kommutativer Ring mit Eins ist eine abelsche

Gruppe (R, +) mit einer weiteren Verkniipfung x, die assoziativ ist,
(ab)c = a(bc)

und kommutativ

ab = ba

und das Distributivgesetz erfiillt:
a(b+c) =ab+ac.
Ferner existiert ein Element 1z € R mit
lra=a

tiir jedes a € R. Dieses Element ist dann eindeutig bestimmt, denn ist 1’/
ein zweites, dann gilt
1"=11"=11=1.

Wenn wir im Folgenden Ring schreiben, meinen wir immer einen

kommutativen Ring mit Eins.

Ein Ring ist also dasselbe wie ein Korper, bis auf die Tatsache, dass

nicht jedes Element # 0 invertierbar sein muss.

Beispiele 2.1.2. (a) (IN, +, x) ist kein Ring, da es keine inversen
Elemente der Addition gibt.

(b) (M, (K),+, x) ist kein kommutativer Ring fiir n > 2, da

Matrixmultiplikation nicht kommutativ ist.
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(c) Jeder Korper ist ein Ring.
(d) Z ist ein Ring, der kein Korper ist.
(e) Ist K ein Korper, dann ist die Menge der Polynome K[x] ein Ring.

(f) Der einfachste Ring ist der Nullring N = {0}. In diesem Ring gilt
0 =1.Ist R ein Ring, in dem 0 = 1 gilt, dann ist R der Nullring, denn
fura e R gilt
a=la=0a=(1-1)a=a-a=0.

Der Nullring ist ein dummes Beispiel und wir werden uns im

Folgenden in der Regel auf Ringe mit 0 # 1 einschranken.

(g) Sei a = /2 € R. Dann gilt a2 = 2. Wir definieren
Z[\V2]=(k+la:k1eZ).

Wegen (k + la)(m + na) = km + 2In + (kn + Im)a ist Z[ /2] ein

Unterring von RR.

(h) Der Gauf3sche Zahlring ist definiert als

Z[i]={a+bi:abeZ}cC.

(i) Ist R ein Ring, dann definiert man den Polynomring R[x] genau wie

im Korperfall. Elemente sind formale Ausdriicke der Form
ag + -+ a,x"
und die Multiplikation ist definiert durch
(ag+---+apyx")(bo+ -+ +byux™) =co+ -+ Cppanx™",

wobei ¢ = ¥, ¢ aib;j. Insbesondere kann man also den Uebergang

von einem Ring zum Polynomring wiederholen und erhaelt den
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Polynomring in mehreren Unbekannten,
R[Xy,..., X ].

Die Elemente dieses Rings sind formale Ausdruecke der Form
Y caX®,
o

wobei a durch INj laeuft, ¢, € R ein Koeffizient ist, der nur fiir

endlich viele a nicht Null ist und
X* = XXXy
ist.
(j) Im Polynomring R[x] gilt
(ag+ax+--+a,X")(bo+bix+ -+ by x™) =co+c1x + -+ CpyomX™,

wobei Cp = ﬂobo, C1 = 610[91 + a1b0 und allgemein

ce= Y. aibj.
i+j=k

Also haengt der Koeffizient ¢, nur von den Koeffizienten ay, . .., ax
und by, ... b ab und nicht von denen hoeheren Grades. Dasselbe gilt
fiir die Addition. Daher kann man Addition und Multiplikation des
Polynomrings R[x] auch auch die Menge aller Koeffizientenfolgen
(ao,a1,...) ausdehnen, die nicht notwendigerweise endlich sind.
Alternativ kann man diese Menge R™No = Abb(Ny, R) auch als Menge

aller formalen Reihen
> ax!
j=0

beschreiben. Der so entstehende Ring wird der Ring der formalen
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Potenzreihen genannt und als

R[[x]]
geschrieben.

(k) Sei p eine Primzahl und sei Z,,) die Menge aller rationalen Zahlen
5 € Q fiir die der Nenner b zur Primzahl p teilerfremd ist, also von p

nicht geteilt wird. Dies ist ein Unterring von Q.

Beispiel 2.1.3. Sei m € IN und sei R = Z/m gleich der Menge
{0,1,...,m—-1}. Wir definieren Addition und Multiplikation wie folgt

a@b = Rest von a + b nach Division durch m.
Und die Multiplikation
a® b = Rest von ab nach Division durch m.

Man verifiziert, dass Z/m mit diesen Operationen ein Ring ist.

Zuweite Definition: Auf Z. definiert man folgende Aquivalenzrelation
a~b<a-bemZ.Sei Z/m die Menge Z/ ~ der Aquivalenzklassen. Es
ist klar, dass es genau m Aquivalenzklassen gibt [0],[1],...,[m - 1].
Addition und Multiplikation werden wie folgt definiert

[a] +[b] =[a+0b], [a][b] = [ab].

Hier ist Wohldefiniertheit zu priifen: etwa a ~ a’, b ~ b’, dann ist zu
zeigen, dass (a+ D) ~ (a’ + ') und ab ~ a'l’. Fiir die erste Aussage
betrachte

(a+b)-(a+b)=a-a"+b-b" e MZ.

Fir die zweite:

ab-a't' =ab-a'b+a'b-a'ba=(a-a")b+a'(b-b") e mZ.
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Definition 2.1.4. Ein Element 0 # a4 € R eines Rings heift invertierbar
oder Einheit des Rings, wenn es ein b € R gibt mit ab = 1. Die Menge R*
der invertierbaren Elemente ist eine abelsche Gruppe bzgl. der
Multiplikation. Fin Ring R ist genau dann ein Koérper, wenn

R* =R~ {0} gilt.

Beispiele 2.1.5. (a) Die Finheiten von Z sind +1.

(b) Sei K ein Kérper und sei R = K[x] der Polynomring. Die Einheiten
von R sind genau die konstanten Polynome # 0.

(c) Die Einheiten des Rings R = Z[i+/5] sind genau die Zahlen 1 und -1.

Beweis. Seien a,b e Rmitab =1.Daa,b ¢ C ist, gilt diese Gleichung
auch dort, also ist auch 1 = |ab|? = |a?|b[*>. Damit gilt |a|*> < 1 oder

b? < 1. Nehmen wir |a2 < 1 an. Sei a = k +i[\/5, dann ist |a? = k2 + 5I2
und da k,l e Z, folgt =0 und a = k = 1. Damit ist auch b = +1 und
die Beauptung ist gezeigt. O

(d) Die Einheiten des Rings Z/m sind genau die Zahlen 1 <x <m -1,
die zu m teilerfremd sind. Dies zeigt man mit Hilfe der Division mit

Rest (Ubungsaufgabe!)

Definition 2.1.6. Ein Element a # 0 eines Rings R heifst Nullteiler, falls
es ein b # 0 gibt mit ab = 0.

Ein Ring R mit 0 # 1 heifst nullteilerfrei, oder integer, oder

Integritdtsring, falls es keine Nullteiler in R gibt, wenn also gilt
ab=0 = a=0oderb=0.

Beispiele 2.1.7. (a) Der Nullring ist kein Integritdtsring.

(b) Korper sind Integritédtsringe.
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(c) Jeder Unterring eines Integritdtsrings ist ein Integritdtsring. So ist
zum Beispiel Z[i+/5] ein Integrititsring, da er ein Unterring des
Korpers C ist.

(d) Z ist ein Integritdtsring.
(e) Z/m ist nur dann ein Integritaetsring, wenn m eine Primzahl ist.

(f) Ist R ein Integritdtsring, dann auch der Polynomring R[x].

Beweis. Seien f, g € R[x], beide # 0. Wir zeigen fg + 0. Sei dazu

f(x)=ap+---+a,x",

Q(x) =bo+--- +byx™
mit a, # 0 # b,,. Dann gilt

f(x)g(x) =C+---+ Cm+nxm+n/

wobei ¢ = Y, ik a;bj. Insbesondere ist dann ¢, = a,b,, # 0, da R ein

Integritatsring ist. O

(g) Sind R, S Ringe, dann ist auch das kartesische Produkt R x S ein
Ring, indem man die Operationen Komponentenweise definiert.
Das Nullelement ist (0,0) und die Eins ist (1,1). Dieser Ring ist kein

Integritaetsring, auch wenn R und S welche sind, denn es gilt
(O/ 1) ) (110) = (010)

Definition 2.1.8. Seien R, S Ringe. Ein Ringhomomorphismus ist eine
Abbildung ¢ : R — S so dass

e ¢ ist ein Gruppenhomomorphismus (R, +) - (S, +),
. p(1) -1,
o ¢(ab) = p(a)Pp(b).
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Beispiele 2.1.9. (a) Die Inklusionen Z - Q -+ R < C sind

Ringhomomorphismen.
(b) Sei m € N. Die Projektion Z — Z/m ist ein Ringhomomorphismus.

(c) Ist R = K[x] ein Polynomring und ist « € K. dann ist die Abbildung
0q : K[x] = K, die f(x) auf f(«) schickt, ein Ringhomomorphismus.

Satz 2.1.10. Ein Ring R ist genau dann ein Integritaetsring, wenn R ein

Unterring eines Korpers ist.

In dem Fall gibt es bis einen Korper Quot(R), der R enthaelt und von R
erzeugt wird. (D.h. es gibt keinen Korper, der zwischen R und Quot(R)
liegt.) Er heifit der Quotientenkorper von R.

Beweis. Ist R Unterring eines Korpers, dann ist er offen sichtlich integer.
Sei umgekehrt R ein Integritaetsring. Wir wollen einen Korper

K = Quot(R) konstruieren. Dieser soll aus den Quotienten j bestehen,
mit a,b e Rund b # 0, so dass die ueblichen Rechenregeln, also

a , ¢ _ ad+bc ac _ ac : :
5+ 3= "7 und ;5 = ;7 gelten. Man konstruiert K genauso, wie man Q

aus Z konstruiert: Auf der Menge R x R \ {0} definiert man eine

Aequivalenzrelation durch
(a,b) ~(c,d) :<= ad-=bc.

Man sieht leicht, dass dies eine Arquivalenzrelation ist, der schwerste
Teil ist die Transitivitaet: Seien also (a,b) ~ (c,d) und (c,d) ~ (e, f), dann
gilt also

ad=bc und cf =de.

Damit folgt afcd = becd, also cd(af — be) = 0 und da wir in einem
Integritaetsring sind und cd # 0, folgt af = be, also (a,b) ~ (¢, f), d.h. es

gilt Transitivitaet.
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Sei K = (R x R~ {O}) | ~. Wir schreiben die Aequivalenzklassen als
Brueche, also § = [(a,b)]. Wir definieren dann die Addition und
Multiplikation durch

a ¢ ad+bc ac ac

b d- bd bd  bd

Hierbei ist natuerlich Wohldefiniertheit zu pruefen. Wir tun das fiir die

Addition. Sei also ; = ; und 5 = 5. Wir muessen dann zeigen, dass

adbtibc = ”ldb',;llflcl gilt. Wir wollen also zeigen
ab'dd’ + bb'cd' = a'bdd’ + bb'c'd. *)
Wir haben

ab' =a'b und cd =cd.

Durch direktes Anwenden dieser beiden Formeln folgt allerdings die
Behauptung (*) und damit die Wohldefiniertheit der Addition. Die
Multiplikation geht aehnlich und der Nachweis, dass es sich um einen
Korper hundelt, ist leicht. Der interessante Punkt ist hier nur, warum
jedes Element # 0 invertierbar ist: Sei ; # 0, dann ist insbesondere b # 0,

also liegt auch 2 in K und es gilt 22 = % = 1 ynd dies ist die Eins in K.

Wir muessen nun zeigen, dass R durch die Abbbildung x - § in K

eingebettet wird. Wegen

§+%:x+y und Xy _ Yy

1 1 11 1

ist diese Abbildung ein Ringhomomorphismus. Er ist injektiv, denn
1 = 1 ist aequivalent zu der Identitaet 1-x = 1 -y in R. Also koennen wir
R als einen Unterring von K auffassen und K besteht komplett aus

Elementen, die Quotienten von Elementen aus R sind. O
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2.2 Das Lemma von Zorn

Definition 2.2.1. Eine partielle Ordnung auf einer Menge M ist eine

Relation < auf I so dass fiir alle x, y,z € M gilt

(@) x<x (Reflexivitat)
b) x<y,y<x = x=y (Antisymmetrie)
(c)x<y,y<z = x<z (Transitivitat)

Beispiele 2.2.2. (a) Aufjeder Menge ist die Identitdt “=" eine partielle
Ordnung.

(b) Auf der Menge IN der natiirlichen Zahlen ist die tibliche “kleiner
gleich” Relation eine partielle Ordnung. Desgleichen fiir Z, Q, R.

(c) Ist X irgendeine Menge. Auf der Potenzmenge P(X) liefert die

Mengeninklusion eine partielle Ordnung.

Definition 2.2.3. Eine partiell geordnete Menge (M, <) heifdt
vollstindig geordnet oder linear geordnet, wenn je zwei Elemente
vergleichbar sind. Also wenn fiir je zwei Elemente x, y mit x # y

entweder x < y oder y < y gilt.

Beispiele 2.2.4. (a) Die Identitdt “=" auf M ist genau dann linear, wenn

die Menge hochstens ein Element hat.
(b) Die natiirliche Ordnungen auf IN, Z, Q, R sind alle linear.

(c) Die Ordnung auf der Potenzmenge P (X) ist in der Regel nicht

linear. (Nur dann, wenn |X| < 1)

Lemma 2.2.5 (Lemma von Zorn). Sei (M, <) eine partiell geordnete Menge.
Existiert zu jeder linear geordneten Teilmenge L c M eine obere Schranke

s € M, dann hat M maximale Elemente.



29

Hierbei ist s € M eine obere Schranke zu L c M, wenn x < s fiir jedes

x € L gilt.

Ferner heifst ein Element m € M maximales Element, wenn

m<x = m=xgilt.

Die Bedingung, dass jede linear geordnete Teilmenge eine obere
Schranke besitzt, wird auch Kettenbedingung genannt. Diese
Sprechweise kommt daher, dass linear geordnete Teilmengen auch

Ketten genannt werden.

Man kann das Lemma von Zorn aus dem Auswahlaxiom der
Mengenlehre folgern. Dieses Axiom besagt, dass ein Produkt
nichtleerer Mengen eine nichtleere Menge ist. Genauer besagt es, dass
zu einer gegebenen Indexmenge I + @ und gegebene Mengen X; + @ das
Produkt X = [],; X; eine nichtleere Menge ist. (D.h., man kann simultan
in allen Mengen X; jeweils ein Element auswéhlen.) Man kann sogar
zeigen, dass das Lemma von Zorn, auf der Basis der underen Axiome
der Mengenlehre, zum Auswahlaxiom dquivalent ist. Es ist daher

legitim, das Lemma von Zorn selbst als ein Axiom aufzufassen.

2.3 Ideale

Definition 2.3.1. Sei R ein Ring (kommutativ mit Eins). Ein Ideal in R

ist eine Teilmenge I c R mit den folgenden Eigenschaften

e | ist eine additive Untergruppe von R und

e ist¥ € Rund a € I, dann ist ra € I. Kurz geschrieben lautet diese
Bedingung
RIcl

Beispiele 2.3.2. (a) 0 und der ganze Ring R sind Ideale.

(b) Sei I c R ein Ideal. Enthélt I ein invertierbares Element, so ist I = R.



30

(c) Ist ¢ : R — S ein Ringhomomorphismus, dann ist
ker(¢) = (x € R: ¢p(x) =0) ein Ideal.

Beweis. Da ¢ ein additiver Gruppenhomomorphismus ist, ist der

Kern eine Untergruppe. Sei also a € I und r € R. Dann folgt

d(ar) = p(a)p(r) =0p(r) =0, also ist ar € I. O

(d) Istr € R, so ist die Menge
(r)=rR=(rx:xeR)

ein Ideal. Ein solches Ideal nennt man Hauptideal.

(e) Ista € R, so ist die Menge
Ann(a):=(reR:ra=0)

ein Ideal, genannt der Annullator von a.
Definition 2.3.3. In der Regel ist nicht jedes Ideal ein Hauptideal. Ein
Hauptidealring ist ein Ring R, der
(a) nullteilerfrei ist und in dem
(b) jedes Ideal ein Hauptideal ist.

Beispiele 2.3.4. (a) Jeder Korper K ist ein Hauptidealring, denn er hat
nur zwei Ideale, {0} = (0) und K = (1).

(b) Z ist ein Hauptidealring.

Beweis. Seil c Z ein Ideal. Ist InIN = g, dann istauch I n (-IN) = &
und daher [ = {0} = (0). Ist [ nIN # @, dann gibt es eine kleinste
natiirliche Zahl m € I. Wir behaupten, dass I = (m) = mZ. Klar ist
(m) c I. Se also k € I, dann existiert ein p € (m) so dass 0 <k —p < m.

Da m minimal in I nIN ist, folgt k —p =0, also k = p € (m). O
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(c) Ist K ein Korper, so ist der Polynomring K[x] ein Hauptidealring.

Beweis. Seil # 0 ein Ideal und sei g € I \ {0} ein Polynom von
minimalem Grad. Sei f € I beliebig, dann ist grad(f) > grad(g), also

existieren nach der Division mit Rest Polynome g, r mit

f=ag+r

und grad(r) < grad(g). Dannist 7 = f — g¢ € I und da der Grad von g

minimal war, ist 7 = 0, also f = g € (). O
(d) Der Polynomring Z|[x] ist kein Hauptidealring.
Beweis. Betrachte das Ideal I, das von 2 und x erzeugt wird, also
[=27[x] + xZ][x].

Wire [ ein Hauptideal (g), so miisste g, da 2 € I, den Grad Null
haben, also gleich einer Zahl m ¢ N gewé&hlt werden konnen. Da m
dann die Zahl 2 teilt, folgte m = 2, aber x e I und x ¢ (2). O

(e) Der Ring R = Z[i\/5] ist kein Hauptidealring, denn das Ideal
I=aR +3R, das von a =iv/5 und 3 erzeugt wird, ist kein
Hauptideal. Angenommen, es wére eines, etwa I = 1R. Da «a € I, folgt
a =1z fur ein z € R. Dann ist 5 = |a]? = |a[?|z[*> = 5|z|>. Nun ist fiir jedes
(a+ba) € R das Quadrat des Betrages 4% + 5b% in Z, also ist |z| = 1 und
damit z = +1, wir kdnnen 1 = @ annehmen. Dann ist aber 3 = aw fiir
ein w € R, was zu 9 = 3| = |a|?|w|? = 5|w|? fiihrt, also ist 9 in Z ein

Vieltaches von 5, Widerspruch!

Definition 2.3.5. Ein Integritdtsring R heifit euklidischer Ring, falls es
eine Abbildung 6 : R\ 0 - INj gibt, so dass zu je zweia,b € R\ {0} zwei

Elemente g, r € R existieren mit

a=bqg+r
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und r = 0 oder 6(r) < 6(b). Man nennt 6 die Gradabbildung des
euklidischen Rings.

Proposition 2.3.6. Jeder euklidische Ring ist ein Hauptidealring.

Beweis. Seil # 0 ein Ideal und sei g € I \ {0} ein Element von minimalem
Grad, also 6(g) minimal unter allen 6(f) mit f €. Da g €I, folgt (g) c I.
Sei f € I beliebig, dann ist also 6(f) > 6(g), also existieren Elemente g, r
mit

f=aqg+r
und 6(7) <6(g). Dannistr = f — g¢ € und da der Grad von ¢ minimal
war, istr =0, also f = gg € (). O

Beispiele 2.3.7. (a) Z ist ein euklidischer Ring mit 6(k) = |k|.

(b) Sei K ein Korper, dann ist der Polynomring K[x] euklidisch mit
o(f) = grad(f).
(c) Der Ring R = Z[i] = Z & Zi aller komplexer Zahlen m + ni mit

m,n € Z ist ein euklidischer Ring mit

S(m+ni)=m*+n*, also 6(z)=|z* = zZ.

Beweis. Beachte zunaechst, dass die Funktion 6 auf ganz C definiert
ist und mutliplikativ ist, d.h., fiir z, w € C gilt stets

O(zw) = 6(z)6(w).

Wir stellen fest, dass fiir jedes z € C der Abstund zum naechsten

1 .
Punkt ¢ € R stets < NG ist.
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Mit underen Worten, zu jedem z € C existiert ein c € Rmit 6(z-¢) < 1.
Seiennuna=m+niund b =k+Iiin Z[i]~ {0} und seiz = { € C. Dann

existiert also ein ¢ € Z[i] mit 6(z - ¢) < 3. Setze r =a - bc € R. Dann ist
5(r) = 5(0)5(°% — ¢) < 5(b)2 < 6(b).
b N 2
Damit ist R = Z[i] ein euklidischer Ring, also insbesondere ein

Hauptidealring. O

Definition 2.3.8. Sei R ein Ring und I c R ein Ideal. Dan ist I eine
Untergruppe von (R, +) und wir konnen die Menge R/I der
Nebenklassen betrachten.

Satz 2.3.9. Auf der Menge R/I gibt es genau eine Ringstruktur, so dass die
Projektion 1t : R - R/I ein Ringhomomorphismus ist. Fiir diesen
Ringhomomorphismus gilt I = ker(m), also ist jedes Ideal der Kern eines

Ringhomomorphismus.

Beweis. Wir machen uns zunéchst klar, dass fiir a,b € R die Bedingung

a+1=>b+1gleichwertigistzua—-bel.

Wir definieren Addition und Multiplikation durch
(a+D)+(b+1)=(a+b)+Iund (a+1)(b+1)=ab+]1. Hier ist
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Wohldefiniertheit zu priifen. Seien a; =a’ + I und b + I = V'], also

a-a',b-"b"el, dann folgt
(a+b)—-(a"+b)=(a-a)+(b-Vb")el

also folgt (a+b) + 1= (a’+ ') + I und damit die Wohldefiniertheit der
Addition. Fiir die Multiplikation rechne

ab-a'b' =ab-ab’ +ab’ -a't’

=a(b-b)+(a-a")b el

Die Eindeutigkeit der Ringstruktur ist wegen der Surjektivitdt von 7t
klar und der Kern der Projektion R - R/I ist die triviale Nebenklasse,
also 1. O

Beispiel 2.3.10. Der Ring Z/m ist gleich Z/mZ.

Ein Ideal 7 eines Rings R heisst maximales Ideal, wenn 7 # R und m

ist maximal in der Menge aller Ideale I # R, also mit underen Worten:

(@) 1¢ mund

(b) ist I ein Ideal mit m c Iund I # R, dann ist m = I.

Satz 2.3.11. (a) Jedes Ideal I # R liegt in einem maximalen Ideal.
(b) Jedes Element von R \ R* liegt in einem maximalen Ideal.

(c) Ein Ideal ] ist genau dann maximal, wenn R/] ein Korper ist.

Proof. (a) Seil # R ein Ideal und sei S die Menge aller Ideale | mit 1 ¢ |
und | o I. Dann ist S mit der Inklusion partiell geordnet und die
Kettenbedingung ist erfiillt, denn sei @ # K c S eine Kette, also eine

linear geordnete Teilmenge und sei @ = Ujx J, dann ist g wieder ein
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Ideal und es gilt I c a, sowie 1 ¢ 4. Dieses a4 ist dann eine obere
Schranke zu K. Nach dem Lemma von Zorn gibt es ein maximales

Element m in S, also liegt I in einem maximalen Ideal.

(b) Sei r € R\ R* eine Nichteinheit und sei I = () = ¥R das Hauptideal.
Dann gilt 1 ¢ I, da r nicht invertierbar ist. Also gibt es nach Teil (a) ein

maximales Ideal, das I und damit auch r enthaelt.

(c) Sei | ein maximales Ideal und sei r € R \ J. Wegen der Maximalitaet
von | muss das Ideal 7R + | gleich dem ganzen Ring sein, also auch die
Eins enthalten, es gibt also 7" e Rund ein a € [ mit 7’ + @ = 1 oder

rr' €1+ ],sodassin R/] gilt (r+])(r'+]) =rr'+ ] =1+ ], das heisst, dass r
im Quotienten R/] invertierbar ist, also ist in R/] jedes Element # 0

invertierbar, d.h., R/] ist ein Korper.

Sei umgekehrt R/J ein Korper und sei v € R \ ], dann ist r modulo |
invertierbar, also existiert ein 7 ¢ Rmitrr' €1+ J,sodass 1€ rR+ ], also

ist | maximal. O

Beispiele 2.3.12. (a) Die maximalen Ideale von Z sind genau die

Hauptideale pZ, wobei p eine Primzahl ist.

(b) Die maximalen Ideale von R = C[x] sind genau die Hauptideale der
Form I, = (x - A)C[x] fiir A € C. Die Abbildung f(x) = f(A)

induziert einen Isomorphismus
R/ I, C.
Definition 2.3.13. Ein Ideal I # R eines Rings R heisst Primideal, falls

abel = acloderbel.

Satz 2.3.14. Ein Ideal I von R ist genau dann ein Primideal, wenn R/I

integer ist.
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Beweis. Sei I ein Primideal und seien (a +1), (b +1) € R/I mit
(a+I)(b+1)=[0], also 0 = [ab] was soviel heisst wie ab € I. Da I ein
Primideal ist, folgt a € I oder b € I, also sagen wir, es sei a ¢ I. das heisst
aber (a+1) =[0], also ist (a + I) in R/I das Nullelement, damit ist R/I

integer.

Sei umgekehrt R/I integer und seien a,b € R mit ab € I. Das bedeutet
[0] = [ab] = (a+1)(b+1I). Da R/I integer ist, folgt (a+1I) = [0] oder
(b+1I) =[0] also sagen wir (a+1I) = [0], also a € I und damit ist ] ein

Primideal. O

2.4 Teilbarkeit
Definition 2.4.1. Seien 4, b Elemente eines Rings R.

(a) Man sagt a teilt b oder ist ein Teiler von b, falls es ein c € R gibt so
dass ac = b. in diesem Fall schreibt man a | b. Ist a kein Teiler von b,

so schreibt man a + b.
(b) a und b heifien assoziiert, wenn es eine Einheit 1 € R* gibt mit a = bu.

Beispiele 2.4.2. (a) Fiir zwei natiirliche Zahlen m, n gilt m teilt n in Z

genau dann, wenn m ein Teiler im tiblichen Sinne ist.
(b) Zwei Elemente 4,b in Z sind genau dann assoziiert, wenn a = +b gilt.

Lemma 2.4.3. Fiir zwei Elemente a, b eines Integritaetsrings R sind

dquivalent
(i) a|bundb|a,
(ii) aR = bR,

(iii) a und b sind assoziiert.
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Beweis. (i)=(iii): Es gelte a = bc und b = ad. Wir nehmen an, dass a # 0, da
sonst auch b =0. Esista =bc =acd, alsoa(l-cd) =0und daa + 0 und R
integer ist, folgt cd = 1, also sind ¢, d Einheiten und 4 und b sind

assoziiert.

(iii)=(ii) Es sei a = bu mit einer Einheit u. Wegen uR = R folgt dann
aR = buR = bR.

(ii)=() Sei aR = bR, dann folgt a € bR, also gibt es ein ¢ € R mit a = bc, also
b | a. Ebenso folgt b | a. O

Definition 2.4.4. Sei R ein Integritdtsring und p ein Element, das weder

Null noch eine Einheit ist.

(a) Das Element p heifst irreduzibel, falls aus der Gleichung p = ab in R

stets folgt, dass a oder b eine Einheit ist.

(b) Das Element p heifst Primelement, falls aus p | ab stets folgt p | a oder
p|b.

Beispiele 2.4.5. (a) In R = Z sind die Primelemente genau die Elemente

der Form +p, wobei p eine Primzahl ist.

(b) In R = C[x] sind die Primelemente genau die Elemente c(x —a) mit
ceCx,aeC.

(c) In R = R[x] sind die Primelemente genau die Polynome der Form
c(x - @) fiir ein a € R oder ¢(x? + ax + b), falls dieses Polynom keine
reelle Nullstelle hat.

Proposition 2.4.6. Sei R ein Integrititsring. Dann ist jedes Primelement von

R auch irreduzibel.

Beweis. Seien p ein Primelement und sei p = ab. Dann teilt p das Produkt
ab also teilt p einen der Faktoren, sagen wir a. Das heifst a = pc = abc, also

a(1-bc) =0, also bc = 1, so dass b eine Einheit ist. O
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Beispiel 2.4.7. In dem Integrititsring R = Z[i/5] ist das Element 3

irreduzibel, aber kein Primelement.

Beweis. Sei a = i/5. Wir zeigen, dass 3 irreduzibel ist. Ist 3 = zw in R,
dann folgt 9 = 3|2 = |z]2|w|?. Ist |z]> = 1, dann ist z = +1 eine Einheit. Ist
z]2 =9, dann ist |w|*> = 1 und w ist eine Einheit. Angenommen, |z|> = 3. Sei
z=a+ba, dann ist 3 = |z]> = a® + 5b?, also ist b = 0, da der Betrag sonst zu
gross wire. Dann ist 3 = a?, aber 3 ist kein Quadrat in Z, Widerspruch!

Also ist 3 irreduzibel.

Wir zeigen, dass 3 kein Primelement ist. Hierzu beachte, dass
319=(2+a)(2-a), aber 3 teilt keinen der Faktoren, denn wiirde 3 etwa
2 + a teilen, also 2 + a = 3z, dann ist 9 = |2 + a|? = |3[?|z|?, also |z| = 1 und
damit ist z = +1, also 3 = +(2 + i\/5) was ein Widerspruch ist, da 3 den

Imaginaerteil 0 hat. O

Satz 2.4.8. Sei R ein Hauptidealring und sei p € R. Dann sind dquivalent

(a) p irreduzibel,

(b) p ist ein Primelement.

Beweis. Wir miissen nur (a)=(b) zeigen: Sei p irreduzibel und p teile ab
und p + a. Wir muessen zeigen, dass p das Element b teilt. Sei I das von
p und a erzeugte Ideal, also I = aR + pR. Dann ist dies ein Hauptideal,
also etwa I = cR. Dann folgt ¢ |a und ¢ | p, also etwa cd = p. Da p
irreduzibel ist, ist c oder d eine Einheit. Angenommen, d ist eine
Einheit, so ist pR = cR =1 =aR + pR, also ist a € pR, d.h. p teilt a, was der

Voraussetzung widerspricht.

Also ist d keine Einheit und damit muss c eine Einheit sein, d.h.,

I=cR=Rund es gibt7,s €« Rmitar+ps =1, also b = abr + psb. Nun teilt p
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das Produkt ab, also ist b = p(+' + sb) fuir ein 7’ € R, also p | b wie

verlangt. O

Korollar 2.4.9. In einem Hauptidealring R lisst sich jedes Element von
R ~ {0}, das keine Einheit ist, als endliches Produkt von Primelementen

Schreiben.

Beweis. Da jedes irreduzible Element prim ist, geniigt es, eine Zerlegung
in irreduzible zu konstruieren. Sei a € R ungleich Null und keine
Einheit. Angenommen, a lasst sich nicht als Produkt von Irreduziblen
schreiben. Dann ist a reduzibel und kann selbst als Produkt a;4] von
Nichteinheiten geschrieben werden. Da a kein Produkt von
Irreduziblen ist, gilt dasselbe fiir mindestens einen der Faktoren, sagen
wir a1, und a; kann als Produkt a,a}, zweier Nichteinheiten geschrieben

werden. Iteration liefert eine Folge von Elementen
a=apy,a1, -€R

so dass a;j,1 ein Teiler von a;, aber nicht assoziiert zu a; ist. Also folgt fiir
die Hauptideale
aR =agR ¢a1R ¢ apR ¢ ...

Man priift leicht nach, dass die Vereinigung einer aufsteigenden Folge

von Idealen wieder ein Ideal ist, also ist
I'=U(a))
jeN
wieder ein Ideal in R, also ein Hauptideal I = bR. Dann ist b € ;R fiir ein

j und daher
bR c ajR C 61]'+1R c bR,

woraus Gleichheit folgt, also a;R = a;,1R ein Widerspruch! Daher ist die
Annahme falsch, also ist jedes Element als Produkt von Irreduziblen
darstellbar. O
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Lemma 2.4.10. Gilt in einem Integrititsring R die Gleichung

pl...pr = ql...qs

fiir Primelemente p; und irreduzible Elemente q;, dann ist r = s und nach

Umnummerierung ist jedes p; assoziiert zu q;.

Beweis. Da p1 | g1---qs, gibt es ein j mit p; | ;. Nach Umnummerierung
konnen wir p; | g1 annehmen. Es folgt g1 = €1p1, wobei €1 auf Grund der
Irreduzibilitdt von g; eine Einheit ist. Da wir uns in einem

Integritdtsring befinden, folgt

pz...pr = glqz...qs.

Wir iterieren diesen Vorgang und kénnen die g; so umnummerieren,

dass p; zu q; assoziiert ist. Insbesondere folgt r < s. Ist 7 < s erhalten wir

1=eq,41--9s,

woraus folgt, dass g, eine Einheit ist, was ein Widerspruch ist, also ist

r==. O

Definition 2.4.11. Ein Integritdtsring R heifst faktoriell, falls jede
Nichteinheit in R \ {0} als Produkt von Primelementen darstellen lasst,
das heifst wenn wir eine sogenannte Primfaktorzerlegung haben. Diese

ist dann nach dem Lemma 2.4.10 eindeutig.

Proposition 2.4.12. In einem faktoriellen Ring ist jedes irreduzible Element

prim.

Proof. Sei g irreduzibel und p;---p, die Primfaktorzerlegung.
Angenommen n > 1, dann ist p; oder py---p,, einer Einheit, was nicht sein

kann. Also ist g = p;, also prim. O
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Satz 2.4.13. Jeder Hauptidealring ist faktoriell. Insbesondere ist Z.
faktoriell und fiir jeden Korper K ist der Polynomring K[x] faktoriell.

Beweis. Folgt aus Korollar 2.4.9 und Lemma 2.4.10. O

Beispiel 2.4.14. Der Ring R = Z[i+/5] is nicht faktoriell, denn wir

wissen ja schon, das es Irreduzible gibt, die nicht prim sind.

Definition 2.4.15. Sei R ein faktorieller Ring. Sei P ein Vertretersystem
der Primelemente modulo Assoziiertheit, also P enthalte zu jeder
Klasse von assoziierten Primelementen genau ein Element. Hat man ein
solches P fest gewdhlt, kann man jede Nichteinheit z € R \ {0} eindeutig

in der Form

z=e[]p"

peP
schreiben, wobei ¢ eine Einheit ist und k, € Ny, fast alle Null sind. Sind

dann

z=e[]p", w=n]]p"

peP peP
zwei solche Darstellungen, dann ist klar, dass z das Element w genau
dann teilt, wenn k, < n,, fiir jedes p € P gilt. Wir definieren wir den

grofiten gemeinsamen Teiler der Elemente z, w als

ggT(z,w) = [ pminke,
peP

sowie das kleinste gemeinsame Vielfache als

kgV(z,w) = [ [pm=
peP

Beispiele 2.4.16. (a) Im Fall R = Z kann man die Menge der

Primzahlen als P nehmen.
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(b) Im Fall R = K[x] fiir einen Korper K sind die Einheiten genau die
konstanten in K*, also ist jedes Polynom zu einem eindeutig
bestimmten normierten Polynom assoziiert. Damit kann man als P

die Menge aller normierter Primpolynome wéhlen.

(c) Im Allgemeinen hat man keine kanonische Wahl fiir P. Daher
hédngen die Begriffe ggT und kgV dann von der Wahl von P ab und

sind daher nur bis auf Assoziiertheit definiert.

Satz 2.4.17. Seien a, b,z von Null verschiedene Elemente eines

Hauptidealrings R.

(a)
(z|a, und z|b) < z|ggT(ab).

(b)
(a]z, und b|z) < kgV(ab)]|z

(c) Fiir den grofiten gemeinsamen Teiler d = ggT(a, b) gilt dann
aR + bR =dR.
Insbesondere gibt es Elemente x,y € R mit

gegT(a,b) =ax +by.

(d) Zwei Elemente r,s € R heissen teilerfremd, falls ggT(r,s) = 1. Dies ist

genau dann der Fall, wenn es x,y € R gibt mit

rx+sy=1.

Beweis. (a) und (b) sind klar, wenn man die Produktzerlegungen
betrachtet.
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(c) Das Ideal aR + DR ist ein Hauptideal, etwa aR + bR = d’R. Wegen
a,b e (d") ist d’ dann ein gemeinsamer Teiler von a und b, teilt demnach
d. Andererseits teilt d auch a und b und teilt demnach d’, so dass d und

d’ assoziiert sind.

(d) Sind 7, s teilerfremd, so gibt es x und y nach Teil (c). Umgekehrt gelte
rx +sy =1. Dann gilt akR + bR = R, also ggT(a,b) = 1. O

Korollar 2.4.18. Sei R ein Hauptidealring und p € R\ {0}. Dann sind

dquivalent;

(a) p ist ein Primelement.

(b) R/pR ist ein Korper.

Beweis. Sei p ein Primelement und sie Z € R/pR \ {0} die
Aquivalenzklasse von z € R. Dass z # 0 ist bedeutet, dass z ¢ pR ist, was
bedeutet, dass p in der Primfakorzerlegung von z nicht vorkommt und
damit ist ggT(z,p) = 1. Daher ist zR + pR = R, also gibt es x, y € R mit

zx+py =1, oder zx¥ = 1 in R/pR, so dass z invertierbar ist.

Fiir die Umkehrung sei R/pR ein Korper und p teile ein Produkt ab.
Dann ist ab = 0 und daher @ = 0 oder b =0, also p | a oder p | b. O

Beispiel 2.4.19. Z/m ist genau dann ein Korper, wenn m = p eine

Primzahl ist. In diesem Fall schreibt man IF, = Z/p.

2.5 Lokalisierung

Sei R ein Integritaetsring und sei S c R eine multiplikativ

abgeschlossene Teilmenge, d.h., wir fordern

e 0¢S5,1¢€8S,

e x,yeS = xyeSs.
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Beispiele 2.5.1. (a) Sei f e R~ {0} und sei S={1,f, f?...},dannist S

eine multiplikativ abgeschlossene Teilmenge.

(b) Ist p c R ein Primideal, dann ist das Komplement S = R \ p eine

multiplikativ abgeschlossene Teilmenge.

(c) Da R ein Integritaetsring ist, ist S = R \ {0} eine multiplikativ

abgeschlossene Teilmenge.

Definition 2.5.2. Sei S eine multiplikativ abgeschlossene Teilmenge des
Integritaetsrings R. Die Lokalisierung von R nach S ist der Unterring

S-1R des Quotientenkoerpers Quot(R), der von R und
St={sl:iseS}
erzeugt wird. Da S multiplikativ abgeschlossen ist, gilt

S‘lR:{LS—Z:aeR,seS}.

Beispiele 2.5.3. (a) Ist R=Z und S=2Z ~ {0}, dann ist 5-1Z = Q.

(b) Ist R = K[x] der Polynomring tiber einem Korper K, dann ist der
Quotientenkoerper der Korper K(x) der rationalen Funktionen
tiber K.

2.6 Der chinesische Restsatz

Definition 2.6.1. Zwei Ideale I, | in einem Ring heifSen teilerfremd, falls
I+]=Rgilt.

Beispiel 2.6.2. In R = Z sind die Hauptideale mZ und nZ genau dann
teilerfremd, wenn die Zahlen m und n keine echten gemeinsamen Teiler

haben, wenn also m und 7 teilerfremd sind.

Beweis. Seien die Ideale teilerfremd, dann ist 1 € mZ + nZ, es gibt also



45

a,b € Z mit am + bn = 1. Wuerden nun m und n von einer Primzahl p

geteilt, dann wuerde auch 1 von p geteilt, was ein Widerspruch ist.

Seien umgekehrt die Zahlen m und n teilerfremd. Das Ideal mZ + nZ. ist
ein Hauptideal, also von der Form g¢Z fiir ein g € N. Dann ist m € gZ
also folgt g|m und ebenso g|n und daher ist ¢ = 1, also sind die Ideale
mZ. und nZ. teilerfremd. O

Definition 2.6.3. Sind I und | Ideale, so definieren wir das Ideal I] als

I]Z {Zajbj:ajel, b]E]}
j=1

Sind etwa beides Hauptideale, I = (2) und | = (b), dann ist auch I] ein
Hauptideal, namlich I] = (ab).

Lemma 2.6.4. Sind die Ideale I und | teilerfremd, dann gilt

IJ=In].

" _77

Beweis. Die Inklusion “c” gilt auch ohne die Teilerfremdheit, da
I] c IR = I und ebenso fiir |.

“u_rr
D

Zum Beweis von seien also ] und ] teilerfremd, also gibt es
Elementeace Iund be Jmitl=a+b.Seidann x € [ n ], dann ist x = ax + bx

und da axund bx beide in I] liegen, ist x € I]. O

Satz 2.6.5 (Chinesischer Restsatz). Sei R ein Ring und I, ..., I, seien
parweise teilerfremde Ideale. Sei I = I1---1, = Iy n---n I, dann liefern die

kanonischen Projektionen einen Isomorphismus

v
R/I =] R/L.
v=1
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Beweis. Da I, > I tiir jedes v, gibt es kanonische Projektionen

., : R/I - R/I,, also einen Ringhomomorphismus
m:RJI > []R/L,.
v=1

Injektivitit: Sei m(X) = 0, und x € R ein Urbild von %. Dann ist x € I, fur

jedes v. Mit dem Lemma folgt dann also

xelhnlhn---nl,
2(1112)0130“~ﬂlr
= (111213)ﬂ14ﬂ---ﬂlr

= LI,

Also gilt ¥ = x + I;---I, = 0 in dem Ring R/I, also ist 7 injektiv.
Surjektivitit. Flir die Surjektivitat reicht es, zu zeigen, dass es Elemente
x; € R gibt, mit 71;(x;) = 1 und mx(x;) = 0 fiir k # j. Modulo
Umnummerierung reicht es, x; nachzuweisen. Seiena e [ und b € I---I,

mit a + b = 1. Dann ist x1 = b das gewiinschte Element. O

Korollar 2.6.6. Sei R ein Hauptidealring und sei
a= gp11/1 . p;ff

eine Primfaktorzerlequng mit einer Einheit und paaweise nicht assoziierten
Primelementen p;. Ist 1;: R - R/p/'R jeweils die kanonische Projektion, dann
ist der Homomorphismus

n:R—[]R/p'R
i1



surjektiv mit Kern aR, induziert also einen Isomorphismus
r
R/aR = []R/p!R.
i=1

Beweis. Klar nach Chinas Restsatz, da nichtassoziierte Primelemente

teilerfremd sind.

47
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3 Moduln

3.1 Definition

Definition 3.1.1. Ein Modul iiber einem Ring R ist eine abelsche

Gruppe M mit einer Abbildung

RxM - M
(A, m) —» Am,

so dass fiir alle A, 1 € R und alle m, n e M gilt

o lpm=m,

o (Ap)m = A(um),
o (A+u)m=Am+um, A(m+n)=Am+ An.

Beispiele 3.1.2. (a) Fiir einen Korper K sind die K-Moduln genau die

K-Vektorraeume.

(b) Der Ring R selbst ist ein R-Modul und eine Teilmenge T c R ist

genau dann ein Untermodul, wenn T ein Ideal ist.

(c) Jede abelsche Gruppe (M, +) ist auf genau eine Weise ein Modul
unter R = Z, denn km = m + --- + m mit k-Kopien, wenn k € N und es

ist das Inverse, wenn k < 0. Es gilt also
{abelsche Gruppen} = {Z-Moduln}}

Es gilt auch, dass ein Gruppenhomomorphismus zwischen zwei
abelschen Gruppen dasselbe ist, wie ein

Z-Modulhomomorphismus.

(d) Sei K ein Korper und R der Polynomring K[x]. Sei V ein

K-Vektorraum und T : V - V ein Endomorphismus. Dann wird V
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ein R-Modul durch
(f(x))v:=f(T)o.

Ist also f(x) =ag+--- +a,x", so ist
f(x)v=apv+mTo+---+a,T"v.

Definition 3.1.3. Eine R-lineare Abbildung oder ein
Modulhomomorphismus zwischen zwei Moduln ist ein

Gruppenhomomorphismus ¢ : M — N mit der Eigenschaft

O(rm) = rd(m)

fiir jedes m € M und jedes r € R.

Definition 3.1.4. Ein Untermodul eines R-Moduls M ist eine Teilmenge
N c M, die mit den Strukturen von M selbst wieder ein Modul ist.

Beispiel 3.1.5. Eine Teilmenge I c R ist genau dann eine Untermodul,

wenn sie ein Ideal ist.
Definition 3.1.6. Seien M, ..., M; Untermoduln eines Moduls M, dann
ist die Summe der Moduln definiert als
U=Mi++My:= (my+-+mg:mjeM;) c M.
Dies ist ein Untermodul, wie man leicht sieht. Gilt zusétzlich

m1+...+mk:mi+---+ml’{, = k:k’,m1=mi,.--,mk=m;'<

wobei m;, m; € M, fiir 1 < j <k, so sagen wir, die Summe ist direkt und
schreiben dies als
u=M;&--- oM.

Dann ist die Summe U + V zweier Untermoduln genau dann direkt,
wenn UnV =0gilt. Ist U ® V = M, sagen wir, die Moduln U und V sind

komplementir.
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Lemma 3.1.7. Ist U c M ein Untermodul, auf der Menge der Nebenklassen
M/U = {m +U:me M} definiert man eine Addition durch

(m+U)+ (n+U) =m+n+ U und eine Sklarmultiplikation

A(m+ U) = Am + U. Diese sind wohldefiniert und geben M/U eine
Modulstruktur, derart dass die Projektion M — M/U ein

Modulhomomorphismus wird.
Proof. Giltetwam + U =m’'+ Uund n+ U =n’ + U, dann folgt

m+n'+U=m"+n"+(m-mH+(n-n")+U=m+n+U.
—_— —
el el

Sowie
Am'+U=Am"+ A(m-n")+U=Am+ U

Damit folgt die Wohldefiniertheit. Die Homomorphismus Figenschaft
gilt nach Definition. O

Beispiel 3.1.8. nZ ist ein Untermodul von Z und wir haben wiederholt
Z.[nZ. betrachtet.

Definition 3.1.9. Sei M ein R=Modul. Die Lange des Moduls M,
geschrieben £(M) = {r(M) ist das Supremum der Langen ¢ von Ketten
von Untermoduln

0O¢M &---gMe=M
Beispiele 3.1.10. (a) Ist R = K ein Korper, dann ist die Lange eines

Moduls (=Vektorraums) gleich seiner Dimension.

(b) Eine abelsche Gruppe (M, +), aufgefasst als Z-Modul hat genau
dann endliche Linge, wenn sie endlich ist. Die Lange des Z-Moduls
Z|m ftir m € N ist gleich der Anzahl aller Primteiler von m, mit
Vielfachheit gezaehlt.

Lemma 3.1.11. Sei R ein Hauptidealring und seia € R\ {0} mit
Primfaktorzerlequng a = epy---p,. Dann hat der Restklassenmodul R/aR die
Linge €r(R/aR) =r.
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Beweis. Sei 1t : R - R/aR die Projektion. Die Untermoduln U c R/aR
entsprechen bijektiv ihren Urbildern unter 7w und dies sind die Ideale I
von R, die aR enthalten, so dass die Lange mit dem Supremum aller

Langen von Idealketten der Art
aR¢l1 ¢---¢=R

tibereinstimmt. Da R ein Hauptidealring ist, wird jedes I, von einem
Element a, erzeugt. Die Inklusion I, ¢ I,.; bedeutet, dass 4, ein echter
Teiler von a,.,; ist. Daher miissen die Potenzen in der
Primfaktorzerlegung absteigen und die maximale Lange einer solchen

Kette ist 7. O

Lemma 3.1.12. Ist M die direkte Summe zweier Untermoduln L und N, so gilt
t{(M) =€(L) +£(N).
Beweis. Seien

0¢L1 & - ¢ L =M,
O0EN1 &Ny =M,

echt aufsteigende Ketten von Untermoduln, dann ist
0¢(Lio0)g¢(L,@0)g(L,oN1) g ¢(L,®N,)=M

eine Kette in M, also ist £(L) + {(N) < £{(M).

Fiir die umgekehrte Richtung sei
O¢Myg--eM=M

eine echt aufsteigende Kette von Untermoduln. Seien 7;, und ny die
Projektionen auf die beiden Summanden L und N. Ist etwa

M;nL = Mj,1 nL, dann behaupten wir, dass min(M;) # mn(Mji1) ist,
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denn gilt auch hier Gleichheit, dann gibt es zu m € M, ein 1 € M; mit
nin(m) = in(1it), also ist m — 171 € ker iy n M1 = Ln Mj, = LnM; und
damit ist m € M;,1, was ein Widerspruch zu M; # M, ist. Damit wichst
bei jedem j entweder M;n L oder mn(M;) und so folgt

£ <€(L)+€(N). O

Definition 3.1.13. Sind M, N Moduln, dann ist V = M x N auch einer.
Man fasst M= M x 0 und N = 0 x N jeweils als Untermoduln von V auf
und schreibt dann V = N @ M. Entsprechend ist der Modul

k
MieM; ®--- & My = P M; definiert.
=1

Lemma 3.1.14. Sei R ein Hauptidealring und Q ein Modul mit
Q = EBR/O(]'R,
j=1

wobei aj € R\ 0 Nichteinheiten so dass a; | aj fiir 1 < j<n-1, dann sind die

a; bis auf Assoziiertheit durch den Modul Q eindeutig bestimmt.

Beweis. Aus technischen Griinden invertieren wir die Nummerierung

der a; und betrachten zwei Darstellungen
n m
Q = @R/&jl{ = G?R/‘B]‘R,
= =

mit a1 | @; und desgleichen fiir f;. Falls es einen Index k < min(m, n)
mit axR # BxR gibt, so wihle k minimal mit dieser Eigenschaft. Da

a;R = BiR fiir 1 <i <k, und da ay,s, ..., a, sdmtlich Teiler von a; sind,
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zerlegt sich o, Q zu

=

1
- (R/aiR) = . Q

1

Il
—_

= O (én?R/‘B]R)
j=
= kGBlak . (R/OéiR) @ &i&k . (R/ﬁ]R)
j=

i=1

Aus Lemma 3.1.11 und Lemma 3.1.12 folgt f(ozk : (R/ﬁjR)) =0 fur

k < j < m. Dies bedeutet aber insbesondere ay - (R/fxR) = 0, oder

xR c BrR. Analog zeigt man axR 2 frR, also axR = iR, also gibt es
solches k gar nicht. O

3.2 Der Elementarteilersatz

Definition 3.2.1. Wir betrachten Matrizen iiber einem beliebigen Ring
R. Eine Matrix A € M;;(R) heifst invertierbar, falls es eine Matrix
B e M,,(R) gibt, mit AB=BA =1

Lemma 3.2.2. Sei R ein kommutativer Ring mit Eins.
(a) Fuer A,B € M,,(R) gilt

det(AB) = det(A) det(B).

(b) Eine Matrix A € M,,(R) ist genau dann invertierbar, wenn det(A) € R
eine Einheit ist.

Beweis. (a): Die Aussage gilt fuer Matrizen ueber dem

Quotientenkoerper K des Integritaetsrings

S=27Z[X1,...,Xn],
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daher gilt sie auch fuer alle Matrizen in M,,(S). Seien r4, ..., ry alle

Eintraege von A und B. Fuer den Ringhomomorphismus

(P:S:Z[Xl,...,XN] _>R/

Xjr1i

gibt es Matrizen A, B € M,,(S) mit ¢(A) = A und ¢(B) = B. Da ¢ ein
) = AB und damit

Ringhomomorphismus ist, folgt qZ)(A B

(c) Sei A* die Komplementarmatrix. Man stellt fest, dass in dem Beweis

der Formel
AA* = A*A = det(A)I

nirgends benutzt wurde, dass man tiber einem Korper rechnet. Er gilt
also auch tiber R. Ist also det(A) € R*, so ist det(A)'A* eine Inverse zu
A.

Fiir die Umkehrung sei A invertierbar. Dann gilt
det(A) det(A1) = det(AA1) = detl =1, also ist det(A) eine Einheit. O

Beispiel 3.2.3. Eine Matrix A € M,,(Z) ist genau dann in M,,(Z)

invertierbar, wenn gilt det(A) = +1. Wir bestimmen also mal die Inverse



! i‘).Esist

121

1
0

2 1
-1 -1 1
2 1
111)
0 -1 2
1 1 -1

|
).

Wir stellen also fest, dass ( _1 i ) die gesuchte Inverse ist.
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SAT =

der Matrix A.

dq

d

und A e M,(R) eine quadratische Matrix iiber R. Dann existieren
invertierbare Matrizen S, T € GL,(R) mit

0

wobei alle d; + 0 und d; | dj,4 fiir 1 < j <k -1 gilt. Dabei sind k die d; bis
auf Assoziiertheit eindeutig bestimmt, man nennt sie die Elementarteiler

Satz 3.2.4 (Elementarteilersatz fiir Matrizen). Sei R ein Hauptidealring

Beweis. Wir betrachten die Menge aller Ideale der Form Ra, wobei a

irgendein Eintrag von A ist. In dieser Menge gibt es ein maximales

Ideal Ru. Durch Zeilen- und Spaltenvertauschung erreichen wir, dass
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u = aq 1 links oben steht. Sei nun die Matrix von der Gestalt

-]

und sei w der ggT von u und v. Dann gibt es a,b € R mit w = au + bv und

A=

wl|u, sowie wv. Sei X die Matrix

X = a b
- —ojw ulw |

Dann ist det X = 1, also ist X invertierbar und die Matrix
X o ( X 0 )
0 I

ist ebenfalls invertierbar. Die Matrix XA hat links oben ( zg ) stehen.

Man wiederholt dies mit den anderen Zeilen statt der zweiten und
sieht, dass es ein Y € GL,(R) gibt mit

YA:(w’ )
0o ...
w” 0

Ebenso findet man ein Z € GL,(R), so dass YAZ = ( 0 B

Wiederholung desselben mit der Matrix B und so fort liefert Matrizen
F,G € GL,(R) so dass FAG diagonal ist. Wir muessen nun noch die
Teilbarkeitsbedingung herstellen. Durch Zeilen und Spaltentausch

koennen wir voraussetzen, dass die Matrix von der Form D . ) ist,
wobei D eine Diagonalmatrix mit allen Diagonaleintraegen + 0 ist. Wir
verfahren aehnlich, schreiben jetzt nur den oberen linken 2 x 2 Block

auf. Sei also A = ( u 0

0 v

). Sei o = au + bu der ggT. Die Matrix
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X = ( ¢ b ) erfuellt

-v/a ula

XA:( au bv )

—uvj/a uvja

Addiert man die zweite Spalte zur ersten, was durch

Rechtsmultiplikation mit ( 1 (1) ) erreicht wird, erhaelt man ( « b )

0 wo/a
Da a|v, kann man ein Vielfaches der ersten Spalte zur zweiten addieren

und erhaelt ( a 0

), wobei nun a den Eintrag uv/a teilt. Iteration
uo/x

liefert eine Diagonalmatrix SAT, bei der der erste Eintrag alle folgenden

teilt. Iteration liefert die Existenzbehauptung.

Die Eindeutigkeitsbehauptung reduziert sich darauf, zu zeigen, dass

aus

S & - f T S TeGLy(R),

0 0
folgt k = [ und d; = f;, falls beide Diagonalmatrizen die
Teilbarkeitsbedingung erfuellen. Da det(S) und det(T) Einheiten sind,
ist di der ggT aller Eintraege links, also auch der ggT aller Eintraege
rechts und damit gilt d; = f; bis auf Assoziiertheit. Weiter ist did, der
ggT aller 2 x 2 Unterminoren links, also ist f; f, dieselbe Zahl. Iteration

mit den Minoren wachsender Dimension liefert die Eindeutigkeit. O

Definition 3.2.5. Eine Basis eines Moduls M ist eine Teilmenge b c M,

so dass jedes m € M eine Linearkombination ist

k
m = Z /\kbk
j=1

mit eindeutig bestimmten b; € b und eindeutig bestimmten A; € R. Nicht
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jeder Modul hat eine Basis, wie zB Z/nZ als Z-Modul betrachtet.

Hat M eine endliche Basis b, dann ist M = R", wobei 1 = | b|, der Beweis
geht genauso wie in LinA1l im Falle eines Korpers. Wir sprechen dann

von einem endlich-freien Modul.

Satz 3.2.6 (Elementarteilersatz fiir Moduln). Sei R ein Hauptidealring
und F ein endlich-freier Modul, sowie M c F ein Untermodul. Dann existie-
ren Elemente x1,...,xx von F, die Teil einer Basis sind, sowie Koeffizienten

ai,...,a € R mit
® q;|ajfallsl <i<k-1und
® 11X1,...,a;Xy ist eine Basis von M.

Die a; sind bis auf Assoziiertheit durch M eindeutig bestimmt, sie werden
die Elementarteiler von M genannt.

Insbesondere folgt: Ein Untermodul eines endlich-freien Moduls ist endlich-

frei!

Beweis. Sei by, ..., b, eine Basis von F. Wir zeigen durch Induktion nach
n, dass M endlich erzeugt ist, und zwar durch héchstens n Erzeuger.
Fiir n = 1 ist M ein Ideal und also durch ein Element erzeugt. Sei also
n>1.Setze F' = 27;11 Rbjund F" = Rb,. Sei rt : F — F" die Projektion. Die
Moduln M n F' und (M) sind erzeugt durch n — 1 bzw einen Erzeuger
und man zeigt wie im Korperfall, dass ein Erzeugendensystem von

M n F’ erweitert um ein Urbild eines Erzeugers von 1t(M) ein
Erzeugendensystem von M bildet, M ist also endlich erzeugt mit <n
Erzeugern. Sei zy, ..., z, ein Erzeugendensystem von M und betrachte
die Matrix A der linearen Abbildung F ~ R” - R" = F gegeben durch

b; — z;. Fasse die Matrizen S und T aus Satz 3.2.4 als Basiswechsel auf,

so folgt die Behauptung. O
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3.3 Endlich erzeugte Moduln iiber Hauptidealringen

Definition 3.3.1. Sei M ein Modul des Hauptidealrings R. Der

Torsionsuntermodul ist definiert als
T=(xeM:3,gr+0, rx=0).

Dann ist T ein Untermodul. M heifst Torsionsmodul, falls M mit T

iibereinstimmt.

Beispiele 3.3.2. (a) Ist M eine abelsche Gruppe als Z-Modul aufgefasst,
dann ist der Torsionsuntermodul genau die Menge der Elemente

endlicher Ordnung.
(b) Z/m ist ein Torsionsmodul unter Z.

(c) Ist K ein Korper und ist R = K[x]. Sei V ein R-Modul, der als
K-Vektorraum endliche Dimension hat. Dann ist V ein

Torsionsmodul.

Beweis. Sei T der Operator auf V, durch den x operiert. Sei f(x) das
charakteristische Polynom von T. Dann ist f(T)v = 0 fiir jedes v,

also ist jedes v Torsion. O

Satz 3.3.3. Sei M ein endlich erzeugter Modul iiber einem Hauptidealring
R und T c M sein Torsionsmodul. Dann gibt es einen endlich-erzeugten
freien Untermodul F ¢ M, etwa F = R%, sowie Nichteinheiten

a1,...,0, € RN O, mitaj|ajq fiir1<j<n-1und

n
M=FoT, T=z@R/aR.
j=1

Dabei ist d eindeutig bestimmt und wird der Rang von M genannt. Die

Elemente a, ..., oy sind eindeutig bestimmt bis auf Assoziiertheit.
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Es gilt ferner
N
T=@R/PIR,
v=1

wobei p1, ..., pN Primelemente sind und ey, ..., ex € IN und die
Primpotenzen p'} sind bis auf Reihenfolge und Assoziiertheit eindeutig

bestimmt.

Beweis. Da M endlich erzeugt ist, gibt es einen surjektiven
Homomorphismus ¢ : R” - M, also M = R"/ ker(¢). Nach dem
Elementarteilersatz fiir Moduln existiert eine Basis x1,...,x, von R” und
Elemente ay,...,a, e Rmitaq |...|ay,, so dass aixy, ..., a,x, eine Basis
von ker ¢ ist. Wir setzen a,,,1 = --- = @, = 0 und betrachten den

surjektiven Homomorphismus
r r
Y:R"=PR->PR/ajR.
j=1 j=1

mit Y(y1,...,7r) = (¥1,...,7r). Nach Konstruktion ist ker ¢ = ker i) und
daher

M=z=R'/ker¢ =R""e PR/ajR,
j=1

wobei wir eventuelle Summanden mit a; € R¥, also R/a;R =0
unterdriicken. Die Summe @7_; R/a;R ist genau der Torsionsmodul der

rechten Seite und daher ist die Zerlegung eindeutig.

Der Zusatz folgt, indem man die Primfaktorzerlegung der a; betrachtet
und den chinesischen Restsatz benutzt. Die Eindeutigkeit der
Primpotenzen folgt aus der Eindeutigkeit der a; und der Eindeutigkeit

der Primfaktorzerlegung. O
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3.4 Der Hauptsatz iiber endlich-erzeugte abelsche Gruppen

Satz 3.4.1. Sei G eine endlich-erzeugte abelsche Gruppe, dann gibt es eine
eindeutig bestimmte Zahl r € Ny und eindeutig bestimmte

Primzahlpotenzen g < g < --- < g5 5o dass

G2Z o DZ/qZ
j=1

Beweis. Folgt direkt aus Satz 3.3.3 fiir den Ring R = Z, denn Z-Moduln

sind dasselbe wie abelsche Gruppen. O

3.5 Jordan-Normalform

Wir betrachten nun den Fall R = K[x] fiir einen Koérper K. Ein Modul
tiber R besteht aus einem K-Vektorraum V zusammen mit einem
Endomorphismus T: V - V, wobei x € R durch T operiert. Ein
Modulhomomorphismus @ : (V,T) - (W, S) ist eine lineare Abbildung
D:V > Wmit OT = SO.

Zu A € K sei p, das Primelement p, (x) =x - A in R. Sei W = R/p" fiir ein
k e N. Dann ist W ein K-Vektorraum der Dimension k mit der Basis
v1=[(x=A) 1], =[(x-A)2],...,00=[(x = A)].Sei T : W -~ W der
durch x induzierte Operator, dann folgt (T - A)v; = v,1, wenn wir
formal vy, = 0 setzen. Mit underen Worten, in der Basis vy,..., v ist T
durch die Jordan-Matrix

(A1 )

Jr(A) =
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gegeben.

Satz 3.5.1 (Jordan-Normalform). Sei T : V — V ein Endomorphismus
des endlich-dimensionalen K-Vektorraums V. Nimm an, dass das
charakteristische Polynom xr in Linearfaktoren zerfillt. Dann hat V eine

Basis beziiglich der T durch eine Jordan-Matrix der Form

( Ji (A1) ]
]ks(/\s)

Beweis. Der R-Modul (V, T) ist Torsion, hat also eine Zerlegung der

dargestellt wird.

Form N
DR/p/R,
j=1

wobei die p j Primelemente sind. Da xr durch Null operiert, ist
XTR pj.fR fiir jedes j. Das bedeutet p; | x7. Da xr in Linearfaktoren
zerfallt, muss p; selbst einer sein, also p;(x) = x — A;. Damit folgt die

Behauptung nach unseren Vorbemerkungen. O
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Teil 11

Multilineare Algebra

4 Multilineare Algebra

In diesem Abschnitt sei K ein Korper.

41 Basen

Definition 4.1.1. Eine Teilmenge T c V eines Vektorraums V heifst
linear unabhingig, falls jede endliche Teilmenge linear unabhéingig ist,

oder, dquivalent, falls beliebige vy, ...,v, € Tund A4,..., A, € K gilt
AMor+--+A,0,=0 = A=Ar=---=0.

Definition 4.1.2. Eine Teilmenge E eines Vektorraums V heifst
Erzeugersystem, falls jeder Vektor v € V eine Linearkombination von
Vektoren aus E ist. Man schreibt das auch als V = Span(E).

Lemma 4.1.3. Fiir eine Teilmenge ‘B eines Vektorraums V sind die folgenden

dquivalent:

(@) B ist eine maximale linear unabhiingige Menge,
(b) ‘B ist ein linear unabhingiges Erzeugersystem,
(c) ‘B ist ein minimales Erzeugersystem,

(d) zu jedem v € V gibt es eindeutig bestimmte Koeffizienten Ay, b € B, fast alle
Null, so dass

0= Z /\bb
beB

Ist dies der Fall, nennen wir ‘B eine Basis von V.
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Man kann (c) auch so formulieren: zu jedem v € V gibt es eindeutig
bestimmte vy, ...,v, € B und eindeutig bestimmte A4,..., A, ¢ K~ {0},
so dass

v=MAMU1+ -+ A0,

Beweis. Der Beweis verlduft genau so wie in LinA 1. Als Beispiel soll
hier mal (a)=(b) gezeigt werden: Sei B maximal linear unabhéingig.
Wir zeigen dass ‘B ein Erzeugersystem ist. Sei hierzuv e V.
Angenommen, v ¢ Span(‘B). Wir behaupten, dass dann B’ = B u {v}
linear unabhéangig ist. Sei also Av + Ajv1 +--- + A,,0, = 0 eine
Linearkombination der Null mit v; € ‘B. Ist A # 0, dann folgt

V= ‘71(/\101 4ot /\nvn) € Span(‘B), was nicht sein kann. Daher ist also

A =0 und damit Aqv; +--- + A,,0,, = 0 und da B linear unabhéngig ist,

folgt Ay = --- = A, = 0. Damit ist also B’ linear unabhéngig, wegen
Maximalitét also B’ = B und damit v € ‘B Widerspruch! Das heif3t also,
dass B ein linear unabhéngiges Erzeugersystem ist. O

Satz 4.1.4. (a) Jeder Vektorraum hat eine Basis.

(b) Ist T c V eine linear unabhiingige Teilmenge, dann gibt es eine Basis ‘B
mit T c ‘B.

(c) Je zwei Basen eine Vektorraums haben dieselbe Miichtigkeit. Diese

nennt man die Dimension des Raums.

(d) Zwei Vektorriume gleicher Dimension sind isomorph.

Proof. (a) folgt aus (b), indem man T = @ nimmt. Sei also T c V linear
unabhingig. Die Menge S aller linear unabhingigen Teilmengen Tcv
mit T c 7 ist durch Inklusion geordnet. Sei X c S eine linear geordnete

Teilmenge. Sei dann S die Vereinigung aller Elemente von K. Dann ist S
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linear unabhédngig, denn jede endliche Teilmenge von S liegt schon in
einem Element von X, da X linear geordnet ist. Also ist S eine obere
Schranke von X . Nach dem Lemma von Zorn gibt es eine maximale
linear unabhingige Menge 7 mit T c 7. Wie in Lemma 4.1.3, (a)=(b),

sieht man ein, dass 7 auch ein Erzeugersystem ist.

(c) Seien A und ‘B Basen. Es reicht, beide als unendlich anzunehmen. In
diesem Fall gibt es eine Surjektion A4 - A4 x IN.

(Dies ist bekannt, wenn A4 abzihlbar und allgemein folgt es mit ZORN,
angewendet auf die Menge der Paare (A, ¢), wobei A ¢ 4 und

¢ : A - A x N surjektiv.)

Fiir jedes v € 4 gibt es genau eine Darstellung

V=Y Ayuw
weE,
mit einer endlichen Teilmenge E, ¢ B und A, € K~ {0}. Sei (o1, jo2,---)

eine Folge in E,, in der jedes Element vorkommt. Definiere dann

¢: AxN - B,
(0,k) & Jok

Diese Abbildung ist surjektiv. Wir erhalten Surjektionen
A - 4 xIN - ‘B. Da wir die Rollen von 4 und ‘B vertauschen kénnen,

gibt es auch eine Surjektion B - 4 und daher eine Bijektion 4 — ‘B.

(d) Sei ¢ : V - W ein Isomorphismus. Dann ist das Bild einer Basis eine
Basis und daher bleibt die Méchtigkeit derselben erhalten. Seien
umgekehrt 4 ¢ V und B ¢ W Basen gleicher Michtigkeit, dann gibt es
also eine Bijektion ¢» : 4 — ‘B. Diese kann dann zu einer linearen
Abbildung fortgesetzt werden. Die Fortsetzung von ¢! ist dann eine

Inverse der Fortsetzung von ¢. O

Beispiele 4.1.5. (a) Sei V der R-Vektorraum aller Folgen in R, die nur
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endlich viele Glieder # 0 haben. Dann ist die Menge E = {e3, ¢, ...}
mite; = (0,0,...,0,1,0,...), wobei die 1 an der j-ten Stelle steht, eine

Basis.

(b) In der Regel sind Basen fiir unendlich-dimensionale Rdume nicht so
einfach anzugeben. Der Vektorraum aller Folgen in IF, hat zum

Beispiel eine tiberabzdhlbare Dimension.

Proposition 4.1.6. Jeder Unterraum hat ein Komplement. Genauer sei U c V

ein Untervektorraum. Dann gibt es einen Unterraum W c V, so dass
V=UesW.

Proof. Sei A eine Basis von U. Setze sie zu einer Basis ‘B von V fort. Sei
dann W = Span(‘B \ 4). Wir behaupten V = U@ W. Sei hierzuve Un W
und sei v =}, g Aua + Y 5. g b die eindeutige Darstellung in der
Basis. Da v € U, folgt p;, = 0 fiir alle b € B~ 4. Da v € W folgt ebenso

Aq =0 fiir alle a. Also ist v = 0. Bleibt zu zeigen, dass V = U + W gilt. Sei
also jetzt v € V beliebig. Mit der eindeutigen Darstellung wie oben gilt

v=Y A+ Y upbel+W. O

aeA beB A4
—_—— ——
el eW

4.2 Dualraum

Definition 4.2.1. Sei V ein Vektorraum iiber dem Korper K. Eine
Linearform auf V ist eine lineare Abbildung o : V — K. Sind «,

Linearformen und sind A, u € K, so ist Aa + up, definiert durch

(A + up)(v) = Aa(v) + up(v),

wieder eine Linearform. Man sieht, dass V* ein linearer Unterraum des
Vektorraums Abb(V, K) ist.
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Beispiele 4.2.2. (a) Ist V = K, so ist jede Linearform von der Form

x — Ax fiir ein A € K.
(b) Ist V = K", so ist jede Koordinatenabbildung v + v; eine Linearform.

(c) Ist S eine Menge in V = Abb(S, K) der Vektorraum aller
Abbildungen von S nach K, so ist fiir jedes s € S die

Punktauswertung 0;: V — K; f — f(s) eine Linearform.

Definition 4.2.3. Sei vy, ...,v, eine Basis von V. Fiir j = 1,...,n sei v]* die
Linearform

07 (Ao + -+ Ayy) = A

Warnung: Die Vektoren vj, ..., v; hingen von der Wahl der gesamten

*

e
Beispiele 4.2.4. (a) Sei V = K" und ey, ..., e, die Stundard-Basis. Dann
gilt

Basis B = (vy,...,v,) ab, es sollte also besser v (P heifsen.

(b) Sei die Charakteristik von K + 2 und sei v; = ( 1 ), sowie vy = ( _11 )

Dann ist v1, v, eine Basis von K? und es gilt

| X _X+y [ X _x_y
()1 o)

Lemma 4.2.5. [st vy,...,v, eine Basis von V, so ist vj,...,v; eine Basis von

V*, genannt die duale Basis. Insbesondere ist V endlich-dimensional, falls V

dies ist.

Beweis. Sei a € V*. definiere A; = a(v;). Wir behaupten, dass
a = Ao} +--- + A,0;. Es reicht zu zeigen, dass diese beiden linearen auf

den Basisvektoren iibereinstimmen. Es ist aber gerade

(AMo] + -+ A,0) (0)) = Moi(0)) + -+ A05(07) = A = a(v;).
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damit ist also @ = A0} +---+ A,0; und vy, ..., v; ein Erzeugendensystem.
Um die lineare Unabhéngigkeit zu zeigen nimm an wir habe eine

Linearkombination der Null: p10] +--- + u,v;, = 0. Fiir 1 < j <n gilt dann
0= (p1of +--+ wn0,) (vf) = pj,

also pq ==, =0. O

Bemerkungen.

e Ist V endlich-dimensional und vy, ..., v, eine Basis, so liefert die
lineare Abbildung gegeben durch v; — v’ einen Isomorphismus
der Vektorraume V — V*. Dieser hidngt allerdings von der Wahl der

Basis ab.

e Ist V unendlich-dimensional, so ist V* nicht isomorph zu V (ohne

Beweis).

Beispiele 4.2.6. (a) Ist V = K", so ist der durch die Stundard-Basis
induzierte Isomorphismus V - V* gegeben durch x ~ x!, wobei x!
fiir die transponierte Matrix steht und damit fiir die lineare

Abbildung y ~ x'y.

(b) Die Basis v, = ( 1 ) und v, — ( ! ) von K? induziert einen
Isomorphismus K? - (K?)* gegeben durch x — (3x)*.

Lemma 4.2.7. Sei T : V - W eine lineare Abbildung, so ist T* : W* — V*,

gegeben durch
T"(a)=aoT

eine lineare Abbildung. Sie heifst die zu T duale Abbildung. Es gilt
(AT + uS)* = AT* + uS*, sowie (ToR)* =R" o T",

wobei T,S:V - W, R:U - V linear sind und A, u € K.
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Beweis. Wir miissen zuerst zeigen, dass f*(a) wieder linear ist. Hierzu

rechnen wir

T (a)(Av+ pv') = a(T(Av + po')
=a(AT(v) + uT (")
= Aa(T(v)) + pa(T(v")) = AT*(a)(v) + uT* (a)(2').

Daher ist T*(a) wieder linear und T* : W* — V* wohldefiniert. Als

ndchstes ist zu zeigen, dass a — T*(«a) linear ist. Dies sieht man durch

T*(Aa+pup)(v) = (Aa+up)(T(0)) = Aa(T(v))+up(T(v)) = AT" () (0)+uT* () (0).

SchlieSlich ist zu zeigen, dass fiir festes @ die Abbildung T — T*(«)

linear ist, was man dhnlich zeigt.

Am Ende schliefilich zur Hintereinunderausfiihrung:

(ToR) (a)=ao(ToR)=(aoT)oR=(T"(a)) oR=R*(T*(a)) =R o T*(av).
g

Lemma 4.2.8. Die Duale Abbildung wird durch die transponierte Matrix
dargestellt. Genauer, sei T : V - W eine lineare Abbildung. Sei ‘B eine Basis
von V und C eine von W. Dann gilt

* " t
MG (T = (MA(T)).
Beweis. Sei A = ‘M éB(T), das heif3t
T(U]') = Zai,]‘wi.
i=1
Damit T*(w;)(v;) = w{(T(v;)) = a;, also

n
T*(w}) = 3 a0},
j-1
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was gerade bedeutet, dass T* durch die Matrix A! dargestellt wird. O

Korollar 4.2.9. Sei T : V — W linear, wobei V und W endlich-dimensional
sind. Dann gilt

(@) dimBild T = dim Bild T,

(b) dimkerT — dimkerT* =dim V —dim W,

(c) T injektiv < T* surjektiv,

(d) T* injektiv < T surjektiv,

(e) T bijektiv < T* bijektiv.

Beweis. (a) Sei T durch die Matrix A dargestellt. Dann ist dim Bild T

gerade der Rang von A. Dieser ist gleich dem Rang von A, also gleich
dim Bild(T*).

(b) Nach den Dimensionsformeln und Teil (a) ist

dimker T - dimker T* = (dimV - dimBild T) - (dim W* - dim Bild T*)
=dim V - dim W.

(c) T ist genau dann injektiv, wenn dim ker T = 0 und dies ist nach (b)
dquivalent zu dimker T* = dim W - dim V oder dim V' = dim Bild T*
nach Dimensionsformel. (d) folgt dhnlich und (e) folgt aus (c) und

(d). O

Definition 4.2.10. Sei V ein Vektorraum. Sei V** = (V*)* der
Bidualraum. Betrachte die Abbildung 6: V - V**, v = 6, mit

Oo(a) = a(v).
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Satz 4.2.11. Ist V endlich-dimensional, dann ist 6 ein Isomorphismus.

Beweis. Wir zeigen zunéchst, dass 0 linear ist. Fiirv,w e Vund A, u € K,

sowie o € V* gilt

Ororpw(@) = a(Av + pw)
= Aa(v)a(w)
= A0y(a@) + udyw(ar),

also dpy4uw = A0y + Udy. Damit ist 6 linear. Sei vy, ..., v, eine Basis von V,
sei v},...,v; die Duale Basis und sei v;*,...,v;* die hierzu duale Basis

von V**. Wir zeigen d,, = 6(v;) = v;*. Hierzu berechne

60,(0}) = 03 (1)) = B,y = 0 (0}). -

4.3 Quotienten

Bei Vektorraumen haben wir, anders als bei Moduln, einen
Komplementdrraum. Damit konnen wir auch Quotienten besser

verstehen.

Proposition 4.3.1. Ist W ein Komplementirraum zu U, also
V=UeW,

dann ist die Abbildung v : W - V /U, w — [w] = w + U ein linearer

Isomorphismus.

Beweis. 1) ist linear, denn

Y(Aw+w') = (Aw+w' +U=Aw+U) +(w' +U) = Ap(w) + P(w').
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Die Abbildung 1) ist injektiv, denn
Y(w)=0 = wel = w=0,

da w € W. ¢ ist surjektiv, denn sei v € V, dann kann man v = u + w
schreiben mit u € U und w € W. Es folgt v + U = w + U = {(w) und daher
ist 1 surjektiv. O

Korollar 4.3.2. Ist U c V ein linearer Unterraum, so liefern die natiirlichen

Abbildungen eine exakte Sequenz
o-u-5v-Lvu-o.

Beweis. « ist die Inklusion des Unterraums, also injektiv. g ist die
Projektion des Quotienten, also surjektiv. Das Bild von «a ist U und dies

ist der Kern von . O

Proposition 4.3.3 (Universelle Eigenschaft). Sei U c V ein Unterraum
und sei P : V — V [U die Projektion. Zu jeder linearen Abbildung

T:V-W

mit T(U) = 0 gibt es genau eine linear Abbildung S : V /U — W so dass das

Diagramm

kommutiert. Diese universelle Eigenschaft induziert einen linearen

Isomorphismus
(T e Hom(V, W) : T(U) = 0) — Hom(V/U,W).
Beweis. Sei die Situation wie oben. Definiere S : V/U — W durch

S(v+U) =T(v).
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Fiir die Wohldefiniertheit sei v + U = v’ + U. Dann folgt v - v’ € U, also
T(v-v")=0oder T(v) = T(v"), was die Wohldefiniertheit zeigt. Fiir
veVgiltnun T(v) = S(v+ U) = S(P(v)), also T = S o P und damit
kommutiert das Diagramm. Zur Eindeutigkeit sei S': V/U - W eine

weitere Abbildung, die das Diagramm kommutativ macht. Es gilt dann
S'(v+U)=T(v)=S(v+U).

Sei dann ¢ : (T e Hom(V, W) : T(U) =0) - Hom(V/U, W) die
entstehende Abbildung. Eine Stundardverifikation zeigt, dass ¢ linear
ist. Fuer die Injektivitaet sei T gegeben mit S = ¢/(T) = 0. Aus der Formel
T = S o P folgt dann auch T = 0 und damit ist ¢ injkektiv. Fuer die
Surjektivitaet sei S gegeben, dann definiere T durch T = S o P, so folgt

Y(T) =S. O
Definition 4.3.4. Sei T : V — W linear. Den Quotienten W/ Bild(T) nennt

man den Cokern von T und schreibt ihn als coker(T). Dann ist die

Sequenz
0-ker(T)->V Low- coker(T) -0

exakt.

Satz 4.3.5 (Homomorphiesatz). Sei T : V - W linear, dann ist die
Abbildung T : v + ker(T) = T(v) ein Isomorphismus

V/ker(T) — Bild(T).

Beweis. Da T(ker(T)) =0, ist die lineare Abbildung T wohldefiniert. Sie

ist offensichtlich injektiv und surjektiv. O
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Satz 4.3.6. Sei V ein K-Vektorraum und seien U, W Unterraeume.

(a) Die Abbildung ¢ : u+ (Un W) — u+ W ist ein Isomorphismus

U/(UnW) - (U+W)/W.

(b) Gilt W c U, dann ist die Abbildung ¢ : (v+ W) + (U/W) » v+ U ein
Isomorphismus
(V)W) (W) - VI

Beweis. Die Wohldefiniertheit ist bei beiden Abbildungen leicht
einzusehen. Zur Injektivitaet von ¢ sei u € U mit ¢(u + (Un W)) = 0.
Dann folgt u e W, alsoue UnW, alsou+(UnW) =0+ (Un W), die
Abbildung ¢ ist also injektiv. Fuer die Surjektivitaet sei

u+w+We (U+W)/W gegeben. Dann gilt
u+w+W=u+W=0¢(u+UnW)).

Fuer die Injektivitaet von i sei v+ W + (U/W) € (V/W) /(U/W) mit

¢(v + W+ (U/ W)) = 0 gegeben. Das bedeutet, dass v € U liegt, damit
alsov+ W in U + W und daher ist v + W + (U/W) das Nullelement. Die
Surjektivitaet von 1 ist klar. O

Korollar 4.3.7 (Alternative Formulierung des letzten Satzes). Sei V ein
K-Vektorraum und seien U, W Unterraeume. Wir schreiben die Elemente von

V /U nun als Aequivalenzklassen [v]y, ve V.

(a) Die Abbildung ¢ : [u]u.w — [u]w ist ein Isomorphismus

U/(UnW) — (U+W)/W.

(b) Gilt W c U, dann ist die Abbildung ¢ : [[v]lw].w ~ [0]u ein
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Isomorphismus
(VW) (/W) - v/

4.4 Tensorprodukt

Definition 4.4.1. Fiir eine beliebige Menge S + 0 sei K[S] der

Vektorraum der formalen Summen

Y Ass,  AseK fastalle Null.
seS

Dies wird ein Vektorraum durch

Y Ass+ Y pss =Y (As+ Us)s, AY A=) AAss.

seS seS seS seS seS

Genauer kann man K[S] auch als die Menge aller Abbildungen S - K,

s = A auffassen, die fiir fast alle s verschwinden.

Definition 4.4.2. Seien U, V, W Vektorrdume tiiber K. Eine Abbildung
b:V x W — U heifst bilinear, falls

e v~ b(v,w) ist linear fiir jedes feste w ¢ W und

e w ~ b(v,w) ist linear fiir jedes feste v e V.

Wir schreiben Bil(V x W, U) fir den Vektorraum aller bilinearen
Abbildungen V x W — U.

Beispiele 4.4.3. (a) Bilinearformen sind bilineare Abbildungen.

(b) Das Matrixprodukt M., x M.y = M,y ist bilinear.

(c) Die Kommutator-Klammer [.,.|M,, - M,,, gegeben durch
[A,B] =AB-BA

ist bilinear.
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Satz 4.4.4. Zu gegebenen Vektorriumen V und W gibt es einen Vektorraum
V ® W und eine bilineare Abbildung by : V. x W — V ® W mit der folgenden
universellen Eigenschaft:

Istb: VxW — U eine bilineare Abbildung, dann existiert genau eine lineare
Abbildung ¢y, : V@ W — U so dass das Diagramm

Vx W Ve W

NG

u

kommutiert. Diese universelle Eigenschaft legt den Raum V ® W und die
universelle Bilinearform by bis auf Isomorphie eindeutig fest.

Diese universelle Eigenschaft induziert einen linearen Isomorphismus
Bil(V x W,U) — Hom(V & W, U).

Wir nennen den Raum V ® W das Tensorprodukt von V und W und
schreiben v @ w € V.® W fiir das Element by (v, w).

Proof. Betrachte den Vektorraum K[V x W] und definiere den

Unterraum M erzeugt von allen Elementen der Form

[(v+v,w)] - [(o,w)]-[(¥,0)], [(v,w+w)]-[(v,w)]-[(v,w)],
[(Av,w)] = A[(v,w)] [(v, Aw) ] = A[(v,w)].

mitv eV, we Wund A € K. Definiere dann
Ve W:=K[VxW]/M

Schreibe v ® w fiir das Bild von (v, w) in V ® W. Die Abbildung
by: VxW—->VeW,b(v,w) =vew ist erzwungenermafien bilinear. Ist

nun b: V x W - U bilinear, dann definiere eine lineare Abbildung
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~

¢ : K[V x W] - U durch

¢ (v, w) = b(v,w).

Die Bilinearitat von b impliziert, dass (M) = 0, also faktorisiert ¢ iiber

ein eindeutig bestimmtes ¢, : Vo W — U.

K[V x W]

7

VxW—=VeW

b :
NG
u

Die Kommutativitdt des Dreiecks links unten folgt aus der
Surjektivitaet von L[V x W] - V @ W und der Kommutativtit der
undren beide Dreiecke. Die Eindeutigkeit von V ® W geht wieder iiber

Trick der universellen Eigenschaft. O

Definition 4.4.5. Die Elemente der Formv®@ w mitve Vund we W

heifsen reine Tensoren oder auch einfache Tensoren.

Proposition 4.4.6. (a) Ist (e;)ic eine Basis von V, dann hat jeder Vektor von

x € V.® W eine eindeutige Darstellung der Form

X=) e ®uw
iel
mit w; € W, fast alle Null.

(b) Ist (f;)jes eine Basis von W, dann ist (e; ® f;)(i jje1<j €ine Basis von V@ W.
Insbesondere folgt

dim(V @ W) = (dim V)( dim W).

Proof. (a) Jedes Element x € V ® W hat eine Darstellung der Form
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X = Y Uk ® Wy. Dann ist v = ¥ ;¢ yie; und daher
x=> (Zyiei) QWr =Y 6® (Zyiwk) .
k=1 \iel iel k=1
Fiir die Eindeutigkeit gelte
Ye®wi=) eew,.
iel iel
Fixiere iy € I und betrachte die Bilinearform b: V x W — W gegeben

durch b (X Aie;, w) = Aj,w. Sei ¢y, die entsprechende lineare Abbildung,
dann folgt

wj, = (Pb (Zei ®wi) = (f)b (Zei@bwl’-) = wl’

iel iel
(b) folgt aus (a), denn jedes x hat eine eindeutige Darstellung >, e; ® v;

und jedes v; hate eine eindeutige Darstellung v; = 3 i A;  f;. O

Beispiele 4.4.7. (a) Wir konnen C als Vektorraum tiber R auffassen. Fiir

einen beliebigen R-Vektorraum V sei dann
Ve=CerV=(1aV)e(ieV)=V+iV.
Man nennt V¢ die Komplexifizierung von V.

(b) Allgemeiner seien L > K zwei Korper. Wir fassen L als

K-Vektorraum auf und definieren
Vi=LexV

tiir einen beliebigen K-Vektorraum V.

Satz 4.4.8. Seien V, W endlich-dimensionale K-Vektorriume und sei V*
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der Dualraum von V. Die Abbildung

: V* @ W » Hom(V, W),

(@, w) = [0~ a(v)w]

ist eine lineare Bijektion.

Beweis. Die Abbildung V* x W - Hom(V, W), (a,w) » ¢(a,w) ist
bilinear, daher verldngert sie zu einer linearen Abbildung wie im Satz.
Die Dimensionen der beiden Rdume sind gleich, daher reicht es zu
zeigen, dass die Abbildung ¢ surjektiv ist. Seien vy, ...,v, und

wy, ..., W, Basen von V und W und sei vj, ..., v;, die duale Basis von V*.
Ist T: V — W in diesen Basen durch die Matrix A = (g; ;) gegeben und ist
v =Y Ajvj dann gilt

T( z;/\]-v]-) = Z/\jai,jwi-
i

n
= j=1i=1

Nunist A; = v;?(v), also haben wir T(v) = Y7, ¥} v]*.(v)ai,]-wi oder

n m n m n m
T=53 Zai,]-v]*-wi =y Zai,jgb(v; ®wj) =P Zai,jv]*- ® wj). O
i i i

Proposition 4.4.9. Sind S:V — V' und T : W — W' lineare Abbildungen, so

induzieren sie eine lineare Abbildung
ST: VoW -V oW,

gegeben durch
(SoT)(vew)=Sve Tw.

Beweis. Die Abbildung b: V x W — V' ® W’ gegeben durch

b(v,w) = Sv® Tw ist bilinear, faktorisiert also eindeutig tiber eine lineare
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Abbildung Ve W — V' @ W’ die wir S ® T nennen und die das

Gewlinschte leistet. O

Beispiel 4.4.10. Seien in der Proposition V = W = V' = W’ = K2. Seien S
und T in der stundard Basis durch die Matrizen A = (7} ) und B = (i g)

gegeben. In der Basis e; ® 1,61 ® €3,62 ® 1,62 ® &2 von V ® W ist dann
S ® W durch die Matrix

(ac ap ba bﬁ\
a(;g) b(;g) | ay ab by bd
c(gg) d(gg) | ca B da dp

\ ¢y co dy do )

gegeben.

Definition 4.4.11. Das Kronecker Produkt zweier Matrizen A € M,,(K)
AyB Ay,B

und B € M,,(K) ist die nm x nm Matrix definiertals | : . |.Sie

ApiB ... AuuB
gibt die lineare Abbildung A ® B wieder.

Satz 4.4.12. Seien V, W endlich-dimensionale K-Vektorriume und
AA":V -V undB,B": W — W linear. Dann gilt

(A®B)(A'®B') =AA" ® BB’

sowie
tr(A® B) = tr(A) tr(B)

und
det(A ® B) = det(A)" det(B)",

wobei n =dimV und m = dim W.
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Proof. Fiirve Vund w e W gilt
(A®B)(A'9B')(vew) =(A®B)(A've B'w) = AA'(v) ® BB'(w).

Damit stimmen die beiden Seiten fiir reine Tensoren tiberein und da
beide Seiten lineare Abbildungen sind, stimmen sie iiberall {iberein. Die
Formel fiir die Spur sieht man am Kronecker-Produkt und fiir die
Determinante benutzt man

det(A®B) =det((A®I)(I®B)) = det(A ® I) det(I ® B). Man sieht etwa
det(A ®I) = det(A)™ wieder am Kronecker-Produkt. O

4.5 Die Tensorielle Algebra

Definition 4.5.1. Eine Algebra iiber dem Korper K ist ein K-Vektorraum

A zusammen mit einer bilinearen Abbildung

AxA—-A
(a,b) — ab,

die assoziativ ist, d.h., es gilt
(ab)c = a(bc)

tiir alle a, b, c € A. Wir sagen, die Algebra A hat eine Eins oder ist eine
Algebra mit Eins, oder eine unitale Algebra, falls es ein Element 1,4 in

A gibt mit der Eigenschaft
lpa=aly=a

tiir jedes a € A. In dieser Vorlesung betrachten wir nur Algebren mit
Eins! Deshalb gilt ab jetzt die Sprachkonvention, dass Algebra immer
Algebra mit Eins heissen soll. Andernfalls sprechen wir von einer

Algebra ohne Eins.
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Das Finselement ist eindeutig bestimmt, denn ist 1’ ein zweites

Einselement, dann gilt
1"=1"14 = 14.

Beispiele 4.5.2. (a) Ist A irgendein K-Vektorraum, dann macht die
Nullmultiplikation ab = 0 den Raum A zu einer Algebra ohne Eins!
(b) Der Korper K selbst ist eine K-Algebra.

() M,,(K) ist mit dem Matrixprodukt eine Algebra mit Eins.

(d) Ist V irgendein Vektorraum (auch unendlich-dimensional), dann ist
die Menge
End(V) =Hom(V,V)

eine Algebra mit der Komposition als Multiplikation.

(e) Ist S eine Menge und ist A = Abb(S, K) der Vektorraum aller
Abbildungen von S nach K. Dann ist A eine Algebra mit dem

punktweisen Produkt:

f8(s) = f(s)g(s), s€S.

(f) Uber dem Korper R der reellen Zahlen betrachtet man die
Quaternionenalgebra #, dies ist ein vierdimensionaler

R-Vektorraum mit einer Basis 1,7, j, k. Die Relationen

Ix=xl=x i?=j=-1 ij=k=-ji
definieren eine Algebrenstruktur auf . Dies ist eine Algebra mit
Eins. Diese Algebra ist nichtkommutativ, aber dennoch ist jedes
Element # 0 invertierbar, es hundelt sich also um einen sogenannten

Schiefkorper.

Beweis. Die Tatsache, dass H in der Tat die Axiome einer Algebra

erfullt, muss man nachrechnen. Bei der Assoziativitét reicht es,
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diese auf den Basiselementen nachzuweisen. Wir zeigen, dass jedes

Element # 0 invertierbar ist. Zunichst stellen wir fest, dass
tk=iij=-j und ki=iji=-iijj=]
gilt und ebenso jk =i = —kj. Fiir ein Quaternion z = a + bi + ¢j + dk sei
z =a - bi - cj — dk definiert. Es folgt
2z = (a+bi+cj+dk)(a—bi-cj-dk)
= a* — abi - acj — adk + abi + b* — bck + bdj
+acj + bck + ¢ - cdi + adk — bdj + cdi

=a% +b*+ %+ d2.

Ist z # 0, dann ist a2 + b? + ¢? + d? # 0 und also ist dann

1 _
I I
a2 +b?+c%+d

ein Inverses zu z. O

Definition 4.5.3. Sind A, B Algebren tiber einem Korper K, dann ist ein
Algebrenhomomorphismus von A nach B eine lineare Abbildung
¢ : A - B, fiir die

$(ab) = p(a)p(b) und (1) =1

gilt. Das heifst also, ein K-linearer Ringhomomorphismus.

Beispiele 4.5.4. (a) Der Algebrenhomomorphismus M, (K) - My, (K),
A (4y)

(b) Ist S + @ eine Menge und A4 = Abb(S,K) die Algebra aller
Abbildungen von S nach K mit punktweiser Addition und
Multiplikation. Sei sy € S, dann ist die Abbildung ¢ : 4 - K,

f = f(s0) ein Algebrenhomomorphismus.

Lemma 4.5.5. Sei ¢ : 4 — ‘B ein Algebrenhomomorphismus. Ist ¢ bijektiv, so
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ist die Umkehrabbildung ¢~ : ‘B — A ebenfalls ein
Algebrenhomomorphismus. In diesem Fall heisst ¢ ein

Algebrenisomorphismus.

Beweis. Wir wissen bereits, dass ¢! linear ist. Seien also b, b’ ¢ ‘B, so gilt

G(¢7 (bb')) = bb" = p(¢™ (D)) p(7 (1)) = (@~ (B)p™" (1))

Da ¢ injektiv ist, folgt
¢~ () = ¢~ (D)~ V),

also ist ¢! ein Algebrenhomomorphismus. Aus ¢(1) = 1, folgt durch
Anwenden von ¢! auch ¢~1(1) = 1. Die Umkehrung folgt durch
Vertauschung der Rollen von ¢ und ¢1. O

Ist I eine Indexmenge und ist fiir jedes i € I ein K-Vektorraum V

gegeben, so ist

v=T]Vv:

iel
ein K-Vektorraum, wobei die Addition und die skalare Multiplikation

komponentenweise erklaert sind. Wir betrachten den Unterraum

PVi= {ve []Vi:vi=0 fiir fast alle i}.
iel iel

Man macht sich leicht klar, dass dies in der Tat ein Unterraum ist und
dass fiir endliche Indexmengen diese Notation mit der bisherigen
®-Notation fiir Unterraeume kompatibel ist, wenn man jedes V; als
Teilraum von V =[], V; auffasst. Es ist der Teilraum der Elemente des
Produktes, die nur an der j-Koordinate einen Eintrag ungleich Null

haben duerfen.
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Sei nun V ein K-Vektorraum und sei

T(V)=KeVe(VeV)s(VeVeVeV)a...
:@V@)n,
n=0

wobei V@Y = K und
Ver-vVeVe---9V

n mal

ftir n > 1 ist. Die Vorschrift
(01® - ®0,) (W1 @ ®Wy) =01 @V ®W @ ® Wy,

macht T (V) zu einer Algebra, die man die tensorielle Algebra von V

nennt.

Satz 4.5.6 (Universelle Eigenschaft der tensoriellen Algebra). Sei V
ein K-Vektorraum, ¢ = ¢y : V - T(V) die Abbildung, die V auf die erste
Tensorpotenz schickt. Dann hat ¢ folgende universelle Eigenschaft:

Fiir jede K-Algebra A und jede lineare Abbildung o : V — A existiert genau
ein Algebrenhomomorphismus  : T(V) - A, der « fortsetzt, d.h., so, dass

das Diagramm

v—LT(v)
A

kommutiert.

Beweis. Sei eine lineare Abbildung o : V — A in die Algebra A gegeben.
Wir definieren eine lineare Abbildung ¢ : T(V) - A durch (1) =1 und

V(01 ®---®vy) =a(v))a(vr)-a(vy,),

wobei rechts das Produkt in A4 genommen wird. Nach Definition ist ¢

multiplikativ auf den Basiselementen, damit aber auch schon insgesamt
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multiplikativ. Nach Konstruktion gilt ¢(¢(v)) = a(v) und damit
kommutiert das Diagramm. Sei nun 1)’ ein weiterer
Algebrenhomomorphismus, fiir den das Diagramm kommutiert, dann

gilt
P (01®--®0,) =Y (01) Y (vn) = a(v1)a(v,) = P(v, ® - ®Vy)

und damit ¢’ = . O

Bemerkung 4.5.7. Sei ¢ : 4 — B ein Algebrenhomomorphismus und
sei I = ker(¢) der Kern. Dann gilt

e ] ist ein Untervektorraum von 4 und

e JA cIund Al c I, wobei
IA=Spann{ya:yel, ae 4}
geschrieben wurde.
Die zweite Eigenschaft schreibt man auch so
yel,baeA = ayyacl

Eine Teilmenge I c A4 mit diesen beiden Eigenschaften nennt man ein

(zweiseitiges) Ideal von 4.

Beispiel 4.5.8. Ist M c 4 eine Teilmenge, dann ist der Untervektorraum
[=4AMA = Spann{amb ca,be 4, m eM}

ein Ideal. Dies ist das kleinste Ideal, das M enthaelt, man nennt es das

von M erzeugte Ideal.

Beweis. Ist M leer, so ist I das Nullideal. Sei also M # @. Die Menge

AMA ist nach Definition ein Untervektorraum. Ist nun y e lund a € 4,
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dann kann man y schreiben als
n
y = ajmib;
=1

mit bj, b; € A und m; € M. Also sind ay = 27:1 aajm;b; und

ya=Yja;m;bja wieder in I. O

Satz 4.5.9. Ein Unterraum I einer Algebra A ist genau dann ein Ideal,
wenn der Quotientenraum A/ eine Algebrenstruktur traegt, so dass die
Projektion P : A4 — A1 ein Algebrenhomomorphismus ist. Diese

Algebrenstruktur ist dann eindeutig bestimmt.

Beweis. Sei I ein Ideal. Wir definieren eine Multiplikation auf dem

Quotientenraum A4 /I durch
(a+D)(b+1)=ab+1.

Hier ist die Wohldefiniertheit zu pruefen. Seien also /, b’ € 4 mit

a+I=a"+Tund b’ +1=0+1,dasheissta-a’ ¢ und b -V’ € I. Dann gilt

ab-a'b' =ab-a'b+a'b-a't’
=(a-a")b+a (b-1")€l,

~—— S——
el el

alsoab +1=a't’ + I, d.h., die Multiplikation ist wohldefiniert. Wegen der
Surjektivitdt der Projektion P : 4 — A/I ist diese Multiplikation
eindeutig festgelegt. O
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Satz 4.5.10 (Homomorphiesatz). Ist ¢ : 4 — B ein
Algebrenhomomorphismus, dann ist das Bild eine Unteralgebra von ‘B und
es gilt

Bild(¢p) = A/ ker(¢),

wobei eine Isomorphie als Algebren gemeint ist.

Beweis. Der Kern ker(¢) ist ein Ideal, so dass die Algebra A4/ker(¢)
wohldefiniert ist. Die besagte Isomorphie ist uns als eine Isomorphie
von Vektorraeumen bereits bekannt. Sie ist durch ¢ induziert und da

ein Algebrenhomomorphismus ist, ist die Isomorphie auch einer. O

Beispiele 4.5.11. (a) Sei S eine Menge und A4 = Abb(S,K), sowie T c S

eine Teilmenge und sei

I={feA: flr=0}.
Dann ist T ein Ideal und A4 /I 2 Abb(T,K).

(b) Sind A und ‘B Algebren, so ist auch A4 x B eine Algebra mit der

komponentenweisen Multiplikation, also
(a,b)(a’,b") = (aa’,bl").

Die Projektion P : A x B > 4 istein Algebrenhomomorphismus mit
Kern

I:{O}x@.

(c) Seil<k<nund sei A4 die Menge aller Matrizen in M,,(K) der
Gestalt (4 B), also der untere linke (1 - k) x k-Block ist Null. Dann
ist 4 eine Unteralgebra mit Eins von M,,(K) und die Abbildung
A - Mi(K), (4 B) » A ist ein Algebrenhomomorphismus dessen

Kern das Ideal I aller Matrizen der Form (° B) ist.
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Satz 4.5.12. Jede Algebra A mit Eins ist Quotient einer tensoriellen

Algebra, d.h. es gibt einen Vektorraum V und ein Ideal I von T(V') so dass
A=T(V)/L

Beweis. Als Vektorraum kann man V = A selbst nehmen. Die lineare
Abbildung A — A4, die durch die Identitaet gegeben ist, induziert nach
der universellen Eigenschaft einen Algebrenhomomorphismus

Y :T(V) - A, der surjektiv ist, weil die Einschraenkung nach V= 4
schon surjektiv ist. Sei I = ker(), so folgt 4 = T(V)/LI. O

4.6 Die duflere Algebra

Definition 4.6.1. Sei V ein K-Vektorraum. Die duf3ere Algebra A"V ist
definiert als
ANV=T(V)/(vev:veV)

Man schreibt das Bild von v ® w als v A w. Es gilt dann
VAW =-WATD,
denn
O0=(W+wW)A(V+W) =VAV+VAWHWAV+WAW=TVAW+ W AD.

Die duflere Algebra ist ein Quotient der tensoriellen Algebra, es gibt

also einen surjektiven Algebrenhomomorphismus
¢:T(V)->N\"V.

Der Kern von ¢ ist das zweiseitige Ideal erzeugt von allen Elementen

der Formoveuov fliirveV.
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Beispiele 4.6.2. (a)

(b) Sei V =Ry ein eindimensionaler IR-Vektorraum. Man kann C als
Quotienten der R-Algebra T (V') schreiben. Der Kern ist das Ideal

erzeugt von vy ® vy + 1.

Satz 4.6.3. Ist vy, ...,v, eine Basis von V, dann ist
(0 Ao A Uz'k)lsz'1<---<iksn

eine Basis von N\ V. Insbesondere ist

dim/\kV:(Z)

und damit insbesondere NV =0 falls k > n und dim A* V = 27,

Beweis. Da die Tensoren v;, ® --- ® v;, den Raum V& aufspannen, bilden
die genannten Vektoren ein Erzeugersystem. Es reicht also, die

Dimensionsaussage zu zeigen. Fiir n = 0 ist die Behauptung klar. Sei sie
also fiir n bewiesen. Sei W = V @ Kwy mit einem neuen Vektor wy. Dann
ist \W=(AV)ea (AV Awy), woraus die Behauptung folgt. O

Beispiele 4.6.4. (a) Sei V = K, dann hat A V die Basis 1,e¢ und die
Multiplikation ist gegeben durch e? = 0.

(b) Sei V = K2. Dann hat A V die Basis 1,e;,¢5,e1 A es.

(c) Sei V = K3. Dann hat A V die Basis

1,e1,e2,e3,61 Nex,e1 Nes,ex Aes, e Aey Aes.
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4.7 Die symmetrische Algebra

Sei V ein K-Vektorraum und sei I das Ideal von T (V') erzeugt von der

Teilmenge
M={vew-wev:v,weV}.

Sei
Sym(V) =T(V)/L.

Man nennt Sym(V') die symmetrische Algebra tiber V. Man schreibt

das Bild von v; ® --- ® v, in Sym(V) als v;---v,,.

Satz 4.7.1. Die Algebra Sym(V') ist kommutativ. Die kanonische Abbildung
sym : V — Sym(V) ist injektiv. Sym(V') ist die universelle kommutative
Algebra mit einer linearen Abbildung von V, genauer heisst das: Ist a : V —
A eine lineare Abbildung in eine kommutative Algebra, so existiert genau

ein Algebrenhomomorphismus ¢ : Sym(V) — A der das Diagramm

V—2".Sym(V)
- T
A

kommutativ macht.

Beweis. Der kanonische Algebrenhomomorphismus T(V) — A tiber
den a faktorisiert, annulliert das Ideal I, da 4 kommutativ ist. Daher

existiert genau ein ¢, welches das Diagramm kommutativ macht. O

Satz 4.7.2. Sei V # 0 endlich-dimensional, dann ist die Algebra Sym(V)

unendlich-dimensional. Sie kann geschrieben werden als

Sym(V) = DSym,(V),
!
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wobei Sym (V') das Bild von V" ist. Es gilt
Symy (V) Sym, (V) ¢ Symy_ (V).

Isteq,...,e, eine Basis von V, dann ist

(67191 .. .eZ” >p1+~~+pn:j

eine Basis von Sym,(V), wobei die pj in Ny liegen. In diesem Fall definiert
die Vorschrift

Sym(V) - K[Xy,..., Xu],

ej > X;

einen Algebrenisomorphismus.

Beweis. Schreibe Sym(V') = T(V)/I wie oben. Dann wird Sym(V) von
den Elementen der Form v;---v,, genannt Monome, aufgespannt, da
T(V) von den reinen Tensoren aufgespannt wird. Dann ist Sym ].(V) der
Spann der Monome der Laenge j und Sym(V) ist die Summe aller

Sym ].(V). Es ist zu zeigen, dass Sym ;NSym, =0 tir k # j gilt. Dies folgt
allerdings automatisch, wenn wir die Aussage tiber die Basis zeigen. Es

ist nun
VI®  QUQUps1 @ ®Upy — V1 @+ @ Uy1 @ Vpey. ® -+ @ Uyyy

in I, hier wurden zwei aufeinunderfolgende Faktoren vertauscht. Das
bedeutet, dass man in Sym(V) in einem Monom v;---v,, ebenfalls zwei
aufeinunderfolgende Faktoren vertauschen kann. Ist nune;, ..., e, eine
Basis von V, dann kann man in einem gegebenen Monom v;---v,, jdes v;
in der Basis entwickeln und alles ausdistribuieren, so dieht man , dass

Sym(V) von den Monomen der Gestalt e; ---¢;, erzeugt wird. Indem
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man benachbarte Faktoren vertauscht, kann man ein solches Monom
immer in die Form €/"---¢}" bringen, so dass die behauptete Basis schon
einmal ein Erzeugendensystem ist. Um die lineare Unabhéngigkeit zu
zeigen betrachten wir die lineare Abbildung a: V — K[x3, ..., x,]
definiert durch a(e;) = xj, so induziert diese nach der universellen
Eigenschaft einen Algebrenhomomorphismus

¢ :Sym(V) - K[xy,...,x,] dessen Bild von x, ..., x, erzeugt wird, der
also surjektiv ist. Da die Monome der Form ét'---¢l" gerade auf die
Monome im Polynomring abgebildet werden, die bekanntermafien eine
Basis von K[x1, ..., x,] bilden, ist ¢ ein Algebrenisomorphismus und die

Monome eine Basis von Sym(V') wie behauptet. O

4.8 Multilineare Abbildungen

Seien Vi, ..., Vi, W Vektorrdume tiber K. Eine Abbildung
m:Vyx---xVie->W

heifst multilinear, falls fiir jedes 1 < j <7 und fiir fest gewdhlte Vektoren
v; € V fiir i # j die Abbildung

v = m(01,...,0i-1,70,0j41, -+, 0n)

linear ist.

Beispiele 4.8.1. (a) Sei V = K", dann ist die Determinante
det: Vx---xV->K

eine multilineare Abbildung.
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(b) Die Abbildung

Vix - xVi=>VieV,®---® Vi

(Ul,...,Uk)'—>01®-'-®Uk

ist multilinear.

Satz 4.8.2. Seien V1, ..., Vi, W Vektorriume. Zu jeder multilinearen Abbil-
dung
m:Vyx---xViy—->W

gibt es genau eine lineare Abbildung meg : V1 ® ---® Vi, > W, so dass das
Diagramm
Vl X oo X VkLV1®®Vk

Nﬂ! m®
W

kommutiert. Die Abbildung m — mg ist eine lineare Bijektion

Mult(Vy x -+ x Vi, W) — Hom(V; ® --- ® Vi, W).

Beweis. Man wiederholt die Konstruktion aus dem Produkt zweier

Raume. O

Definition 4.8.3. Eine multilineare Abbildung m : Vk > U heifdt

symmetrisch, falls

T’H(Ua(l),. . .,’(Jg(k)) = M(Ul, .. .,Uk)

tiir jede Permutation o € Per(n) gilt.

Sie heifst alternierend, wenn
m(vy,...,v¢) =0,

falls v; = vj fiir ein i und ein j # 1.
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Lemma 4.8.4. Ist m alternierend, dann gilt

M(Ua(l),...,’(')g(k)) = Sig].’l(O)ﬂl(’Ul,...,Z)k) (*)

fiir jede Permutation ¢ € Per(n). Ist Char(K) # 2, so folgt aus (*) fiir alle o

schon, dass m alternierend ist.
Beweis. Ist 0 = 1;; eine Transposition so gilt

0=m(v,..., Vi+0j,..., O +0j,..., V)
—— —
i—te Stelle j—te Stelle

=m(v1,...,0...,0j,...,0) +m(V1,...,0j,..., V..., ).

Damit folgt die Behauptung falls o eine Transposition ist. Fiir die
allgemeine Aussage schreibt man o als Produkt von Transpositionen

und zieht bei jeder Transposition einen Faktor (-1) heraus. O

Beispiele 4.8.5. (a) Ist V = K", so ist die Determinante det: V" —» K

alternierend.

(b) Ist V = K, so ist die Abbildung m : V¥ - K, gegeben durch

m(ay,...,ax) = ay---a symmetrisch.

Satz 4.8.6. Zu jeder alternierenden Abbildung m : V¥ — W existiert eine
eindeutig bestimmte lineare Abbildung m, : A\*V — W, so dass das
Diagramm

k5 ARV

Jrima
2

W

kommutiert. Die Abbildung m — m, ist ein linearer Isomorphismus

Al (VE, W) = Hom(AFV, W).
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Beweis. Analog zum Beweis von Satz 4.7.2. O

4.9 Lineare Abbildungen

Sei T : V — V linear. Die Abbildung

m: V- AV
(v1,...,0¢) » Tog A=+ ATy
ist alternierend. Nach der universellen Eigenschaft existiert eine lineare

Abbildung
AT : NV > ARV,

so dass

A T(v1 A AvE) =Tog A A Ty

Beispiel 4.9.1. Sei die lineare Abbildung A : K*> - K3® durch die Matrix

gegeben. Wir bestimmen die Matrix von A? A in der Basis

e1 Aey,e1 Aes, e Aes. Wir rechnen

N> A(e; Aey) = (Aer) A (Aey)
= (aey +dey + ges) A (bey + eey + hes)

= (ae—bd)ey Aexy+ (ah —bg)es nes + (dh —eg)ex A es.

Ebenso rechnet man die underen Terme durch und erhilt am Ende die
Matrix

det(1?) det(35) det(25)
det(2}) det(g5) det(}e) |
det(47) det(§]) det(;])
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Satz 4.9.2. IstdimV =nund T : V - V linear, so gilt

A'T = det(T)Id.

Beweis. Sei v, ...v, eine Basis von V. Der eindimensionale Raum A"V

wird von v; A --- A v, aufgespannt. Sei (a; ;) die Matrix von T, d.h.

TU]‘ = Zai,]-vi.
i-1
es folgt
N' T(vyA---Anvy)=TorA---AToy,

n
= Z ail,l“'ain,nvil Ao A vin

i =1
= > gy Aa(myn Vo) A A Vi
oePer(n) ~
=sign(o)viA-ADy,
=det(T) vy A-+- A Dy, O

Lemma 4.9.3. (a) Fuer lineare Abbildungen A,B:V -V gilt
N(AB) = (A°A)(A°B).
Insbesondere Folgt A*(S71) = AY(S)~! und tr(AF(STS™) = tr AX(T).

(b) Ist A =D + N eine obere Dreiecksmatrix, wobei D diagonal ist und N nur

Nullen auf der Diagonale hat. Dann gilt

tr AF(A) = tr AK(D).
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Beweis. (a) Fuer beliebige vy, ...,vr € V gilt

N(AB)vy A+ Avg = (ABoy) A+ A (AByy)
= N(A)(Bvy) A+ A (Bo)
= AN(A) A¥(B)vy A -+ A

Damit gilt auch A*(S) A*(S71) = AF(I) = L.

(b) Sei ey, ..., e, die Standard-Basis und sei B die Basis von A"V, die aus

den Vektoren e A--- Ag;, mitiy <ip <--- < besteht. Definiere
F(ei1 /\'--/\eik) =20 4... 42k eN.

Die Funktion F : ‘B — IN ist injektiv. Alle Elemente von ‘B sind

Eigenvektoren von D und es gilt

AY(D +N)e;j, A---nei. = N¥(D)ej, A---nej + Nej A+ nej,
=N (D)ei, n--nei+ Y. Ryey A A Rey,

wobei die Summe ueber verschiedene Tupel (Ry, ..., Ry) laeuft, wobei
jedes Ry gleich D oder N ist, wobei bei jedem Summanden mindestens
ein Ry gleich N ist. Wir setzen F(Ab) = F(b), falls 0 # A e Kund b € ‘B. Ist
N(e;) # 0, dann ist N(e;) = ¢;1 und daher folgt

F(Ryej, -+~ ARye;)) < F(ej, A---Ae;,). Ist Fy = F1({1,2,...,n}) dann folgt
N(%,) c F.-1. Das bedeutet, dass N ind er Basis ‘B durch eine obere
Dreiecksmatrix mit Nullen auf der Diagonale gegeben ist. Da A<D
gleichzeitig durch eine Diagonalmatrix gegeben ist, folgt die
Behauptung. O
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Satz 4.9.4. IstdimV =nund T : V - V linear, so gilt

det(1-T) = znj(—l)ktr/\kT.
k=0

Beweis. Beide Seiten der Gleichung aendern sich nicht, wenn wir den
Korper K durch einen algebraischen Abschluss ersetzen, wir koennen
also den Korper als algebraisch abgeschlossen annehmen. Da beide
Seiten der Gleichung sich nicht aendern, wenn man T durch eine
konjugierte ersetzt, kann man annehmen, dass T in Jordan-Normalform
ist, also T'= D + N, wobei D eine Diagonalmatrix ist. Es gilt dann
det(1-T) =det(1-D - N) =det(1 - D). Nach dem Lemma ist

tr ANKT = tr/\k(D+N) =tr AKD.

Insgesamt kann man also T durch D ersetzen und annehmen, dass T
eine Diagonalmatrix ist. Diese habe die Diagonaleintrdge A4, ..., A,.

Dann ist

k <ip<<ix<n

=Y (-1)Ftr AFT. O

det(1-T) = (1-A)-(1-A) =3 3 (-1)A;-A;
=01
O
k=0

5 Kategorien

5.1 Kategorien

Definition 5.1.1. Eine Kategorie ist ein Tripel (Ob, Hom, o), wobei Ob
eine Klasse ist, deren Elemente Objekte der Kategorie genannt werden.

Hom ist eine Familie von Mengen (Hom(X, Y))x veob. Die Elemente von
Hom(X, Y) heifsen Morphismen oder Pfeile von X nach Y. SchliefSlich
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ist o, die Komposition eine Familie von Abbildungen: fuer je drei
Objekte X, Y, Z:

Hom(X,Y) x Hom(Y,Z) - Hom(X, Z)
(f,8)=8ef

so dass

® go(foh)=(gof)ohwenn die Pfeile komponierbar sind.

e Fuer jedes Objekt X gibt es einen Pfeil 1x ¢ Hom(X, X) mit
folx=fund1xog=gfuerralle f, g, fuer die die jeweilige

Komposition existiert.

Bemerkung 5.1.2. (a) Der Einsmorphismus 1y ist eindeutig bestimmt,

denn, sei 1}, ein weiterer, dann gilt
1x = 1x1} = 14.
(b) Wie bei Abbildungen aendert die Komposition die Reihenfolgt, also

muss g o f als “gnach f” gelesen werden.

Beispiele 5.1.3. (a) SET ist die Kategorie der Mengen und
Abbildungen.

(b) AB ist die Kategorie der abelschen Gruppen und

Gruppenhomomorphismen.

(c) RING ist die Kategorie der Ringe mit Eins und unitalen

Ringhomomorphismen.

(d) T ist die Kategorie der topologischen Raeume und stetigen
Abbildungen.

(e) SET, ist die Kategorie der punktierten Mengen, d.h., Objekte sind
Paare (X, xp) wobei X eine Menge ist und x( € X ein Element.
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Morphismen von (X, x) nach (Y, yo) sind Abbildungen f: X - Y
mit f(xo) = yo.

(f) Sei C eine Kategorie. Dann ist C°PP die entgegengesetzte oder
duale Kategorie in der alle Pfeile umgedreht sind. Sie hat dieselben
Objekte, aber

Hom rop (X, Y) = Hom (Y, X).

(g) Eine Gruppe kann als Kategorie verstenden werden mit nur einem
Objekt. Das bedeutet, eine gegebene Gruppe G definiert eine
Kategorie G mit nur einem Objekt X und Homg(X, X) := G. Die

Komposition ist dann die der Gruppenstruktur.

(h) Sei (A, >) eine partiell geordnete Menge. Man definiert dann eine
Kategorie mit Ob = A, wobei Hom(x, y) hat genau ein Element hat,
falls x < y und sonst gilt Hom(x, y) = @.

(i) Seien A und ‘B Kategorien. Die Produktkategorie 4 x B hat als
Objekte die Paare (X,Y), wobei X € 4 und Y € ‘B. Ferner sei

Hom g, 5 ((A,B),(X,Y)) =Hom(A, X) x Hom(B,Y)

und die Komposition geht koordinatenweise.

Definition 5.1.4. Morphismen werden visualisiert durch Diagramme
wie dieses
f

X —

hN

Z
Ein Diagramm heisst kommutativ, falls je zwei Wege, die von einem
Punkt zu einem andern fiihren, gleich sind. Das obige Diagramm ist

also genau dann kommutativ, wenn i = go f.

Definition 5.1.5. Ein Pfeil f : X - Y heisst Isomorphismus, falls es
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einen Pfeil ¢ : Y — X bibt, so dass
g0f=1X und f0g=1y.

Beispiele 5.1.6. (a) Die Isomorphismen in der Kategorie der Mengen

sind die Bijektionen.

(b) IsoMorphismen in der Kategorie der Gruppen sind

Gruppenisomorphismen.

Definition 5.1.7. Sei A eine Kategorie. Eine Unterkategorie ist eine
Kategorie B, so dass Ob(‘B) c Ob(A) und

Homg(X,Y) c Hom (X, Y)

fuer alle X, Y € B, sowie die Kompositionen und Einheiten von B sind
die von 4. Eine Unterkategorie B heisst eine volle Unterkategorie,
falls fuer je zwei X, Y € B gilt Homg(X,Y) = Hom 4(X, Y). Jede

Teilklasse von Ob(A4) definiert genau eine volle Unterkategorie.

Beispiel 5.1.8. Die Kategorie der endlichen Gruppen ist eine volle

Unterkategorie der Kategorie GRP aller Gruppen.

Definition 5.1.9. Eine volle Unterkategorie D c A4 heisst dicht, falls es
zujedem X € 4 ein Y € D gibt, so dass X isomorph zu Y ist.

Beispiel 5.1.10. Sei K ein Koerper und A die Kategorie der
endlich-dimensionalen K-Vektorraeume und linearen Abbildungen.
Dann ist die volle Unterkategorie D mit den Objekten {0}, K, K% K3, ...

eine dichte Unterkategorie.
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5.2 Epis, Monos und Produkte

Definition 5.2.1. Ein Morphismus f : X — Y heist Epimorphismus oder

Epi, falls fuer jedes (nichtkommutative!) Diagramm der Form

XLY%Z
gilt
af =pf = a=p

Beispiele 5.2.2. (a) In SET sind die Epis genau die surjektiven
Abbildungen.

(b) In der Kategorie der Gruppen sind die Epis genau die surjektiven

Gruppenhomomorphismen.

Beweis. Jeder surjektive Pfeil ist offensichjtlich ein Epi. Fuer die
Umkehrung sei f : G = H ein Epi in GRP. Sei Hy ¢ H das Bild von f.
Sei X = {w} uH/H,, wobei w ein neuer Punkt ist. Sei xg = 1H, die
triviale Nebenklasse. Sei a : H - Per(X) der
Gruppenhomomorphismus, der durch die Linkstranslation

definiert wird, genauer

hx, xeH/H,,

w X =w.

a(h)(x) = {

Der Stabilisator des Punktes x ist H. Sei T € Per(X) die Permutation,
die w und x( vertauscht und alle anderen Elemente unveraendert
laesst, d.h.,

w X =X,

T(x) =1x x=0w,

X  sonst.

Ein gegebenes I € H kommutiert genau dann mit 7, wenn es trivial
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auf xj operiert, d.h., wenn es in Hy liegt. Sei : H - Per(X) der

Gruppenhomomorphismus gegeben durch

B(h) = ta(h)t.

Fiir hy € Hy gilt a(hp)w = w sowie a(hg)xo = xo, so dass

a(ho) = B(ho).

Also af = ff. Da f ein Epi ist, folgt a = B, d.h., jedes Element von H
kommutiert mit 7, also Hy = H, d.h., f ist surjektiv. O

(c) In der Kategorie RING ist die Inklusion Z — Q ein Epi.

Definition 5.2.3. Ein Morphismus f : X - Y heisst a Monomorphismus

oder Mono, falls fuer jedes Diagramm der Form

f

VX
gilt
fa=fp = a=§
Beispiele 5.2.4. (a) Eine Abbildung in SET is genau dann Mono, wenn

sie injektiv ist.

(b) Ein Morphismus f ist genau dann Mono in einer Kategorie C°PP,

wenn f ein Epi in C ist.

5.3 Terminale und initiale Objekte

Definition 5.3.1. Ein terminales Objekt einer Kategorie ( ist ein
Objekt X, so dass es von jedem anderen Objekt A genau einen Pfeil

nach X gibt, also wenn gilt

|Hom(A, X)| =1
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fuer jedes Objekt A.

Beispiele 5.3.2. (a) In der Kategorie SET ist eine Einpunktmenge

terminal.
(b) In der Kategorie der Gruppen ist die triviale Gruppe {1} terminal.
(c) In der Kategorie der Ringe ist der Nullring terminal.

(d) in der Kategorie (IN, <) gibt es kein terminales Objekt.

Satz 5.3.3. Ein terminales Objekt ist bis auf Isomorphie eindeutig
bestimmt.

Beweis. Seien S, T terminale Objekte in C. Da T terminal ist, gibt es
genau einen Pfeil @ : S — T. Da S terminal ist, gibt es genau einen Pfeil
B:T - S.DaT terminal ist, gibt es genau einen Pfeil T — T, naemlich

die Eins 1r. Damit folgt
0(‘8 = 1T-

Ebenso folgt fa = 15 und damit sind a und  Isomorphismen. O

Definition 5.3.4. Ein initiales Objekt I in C ist ein terminales Objekt in
Corp,

Das heisst also: I ist genau dann initial, wenn

|Hom(I,A)|=1

fuer jedes A € C gilt.
Beispiele 5.3.5. (a) In SET ist die leere Menge initial.
(b) In GRP ist die triviale Gruppe initial.

(c) In RING ist Z initial.
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Bemerkung 5.3.6. Ein initiales Objekt ist ebenfalls bis auf Isomorphie
eindeutig, was man entweder ebenso beweist wie den Satz, oder sich
darauf zurueckzieht, dass Isomorphismen in (PP dasselbe sind wie

Isomorphismen in C.

5.4 Produkte und Coprodukte

Definition 5.4.1. Seien X, Y Objekte einer Kategorie C. Ein Produkt von
X und Y ist ein Objekt P, zusammen mit Morphismen p; : P - X und
p2: P =Y, so dass die folgende univeselle Eigenschaft gilt: Fiir jedes
Objekt Z und Morphismen a: Z - X und : Z — Y gibt es genau einen

Morphismus Z — P, so dass das Diagramm

SN,
N

kommutiert. Das bedeutet, dass die Morphismen von Z nach X und Y

ueber die universellen Morphismen von P nach X und Y faktorisieren.

Proposition 5.4.2. Falls es existiert, ist ein Produkt eindeutig bestimmt bis
auf Isomorphie. Genauer ist ein Produkt (P, px, py) ein terminales Objekt in
der Kategorie aller Tripel (Z,a, B) wie oben, wobei ein Morphismus

(Z,a,B) = (W,y,0) ein Morphismus Z — W ist, der das Diagramm

Z

N
N

4

Y

kommutativ macht.
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Proof. Klar. O

Definition 5.4.3. Da das Produkt eindeutig bestimmt ist, kann man es
als X x Y schreiben.

Beispiele 5.4.4. (a) In SET ist das kartesische Produkt ein Produkt.
Dasselbe gilt in GRP, RING.

(b) In FIELD gibt es nicht immer ein Produkt, da es zum Beispiel
keinen Korper K gibt, der sowohl nach Q als auch nach IF,

abgebildet werden kann.

Die universelle Eigenschaft liefert eine Bijektion
Hom(Z, X xY) 2 Hom(Z, X) x Hom(Z,Y).

Definition 5.4.5. Ein Coprodukt von X und Y ist ein Product in CPP.

Das bedeutet, es ist ein Objekt K mit Pfeileni; : X - Kund i, : Y - K, so
dass die folgende universelle Eigenschaft gilt: Fiir jedes objekt Z und
Morphismenp: X - Zund q: Y — Z gibt es genau einen Pfeil K - Z, so

dass das Diagramm

SN,
N

kommutiert. Es ist eindeutig bestimmt, wenn es existiert und wir
schreiben es dann als K= X[ Y oder C = X @ Y. Die universelle

Eigenschaft liefert Bijektionen:
Hom(X & Y,Z) * Hom(X,Z) x Hom(Y, Z).

Beispiele 5.4.6. (a) In der Kategorie SET ist das Copruduct X ][ Y gleich
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der disjunkten Vereinigung also

Xuy=X]]Y

(b) In der Kategorie der Gruppe ist das Coprodukt gleich dem freien

Produkt von Gruppen, also

G H H=G=*H.
(c) In der Kategorie RING ist das Coprodukt gleich dem
Tensorprodukt iiber Z.

(d) In der Kategorie FIELD gibt es im Allgemeinen kein Corpodukt,

nimm etwa wieder zwei Koerper verschiedener Charakteristik.
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