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Teil I

Algebraische Strukturen

1 Gruppen

1.1 Permutationen

Für eine beliebige Menge M bezeichnen wir mit Per(M) die Gruppe der

Permutationen von M, d.h., die Menge aller bijektiven Abbildungen

σ ∶M→M mit der Hintereinunderausführung als

Gruppenmultiplikation. Für eine natürliche Zahl n sei dann Per(n) die

Gruppe Per({1, . . . ,n}). Wir nennen Per(n) auch die Gruppe der

Permutationen in n Buchstaben.

Die Elemente der Permutationsgruppe Per(n) schreibt man zB in der

Form τ =
⎛

⎝

1 2 3

2 3 1

⎞

⎠
, wobei wir das Bild jeweils unter das Element

schreiben, also in diesem Beispiel τ(1) = 2, τ(2) = 3 und τ(3) = 1. Eine

undere Schreibweise für dasselbe Element ist die Zykelschreibweise:

τ = (1,2,3)

was soviel bedeutet wie 1 geht auf 2 geht auf 3 geht auf 1. Das Element,

das 1 und 2 vertauscht, schreibt sich dann als (1,2). Nicht jedes Element

von Per(n) ist als ein einziger Zykel schreibbar, so ist zum Beispiel in

Per(4) das Element
⎛

⎝

1 2 3 4

2 1 4 3

⎞

⎠
in der Zykelschreibweise gleich

(1,2)(3,4).

Definition 1.1.1. Ein Zykel in Per(n) ist ein Tupel ( j1, j2, . . . , jr), r ≥ 2

von verschiedenen natürlichen Zahlen 1 ≤ j1, j2, . . . , jr ≤ n. Ein Zykel
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repräsentiert eine Permutation, die jν auf jν+1 und jr auf j1 wirft und alle

underen Zahlen festhält. Der Zykel ( j1, . . . , jr) repräsentiert dieselbe

Permutation wie der Zykel ( j2, j3, . . . , jr, j1), deshalb kann man den

Zykel stets durch einen ersetzen, für den j1 die kleinste der Zahlen

j1, . . . , jk ist. Ein Zykel in dieser Form heisst kanonisch.

Zwei Zykel ( j1, . . . , jk) und (i1, . . . , is) heissen disjunkt, falls sie keine

gemeinsamen Zahlen haben, also falls

{ j1, . . . , jk} ∩ {i1, . . . , is} = ∅.

Beispiel 1.1.2. Wir schreiben die Permutation
⎛

⎝

1 2 3 4 5 6 7

1 6 7 5 2 4 3

⎞

⎠
als

Produkt kanonischer Zykel:

(2,6,4,5)(3,7).

Satz 1.1.3.

(a) Zwei kanonische Zykel stellen genau dann dieselbe Permutation dar,
wenn sie gleich sind.

(b) Zwei disjunkte Zykel, aufgefasst als Elemente von Per(n),
kommutieren miteinunder.

(c) Jede Permutation ≠ Id in Per(n) lässt sich als Produkt paarweise
disjunkter kanonischer Zykel schreiben, diese sind eindeutig bestimmt
bis auf die Reihenfolge.

Beweis. (a) Seien ( j1, j2, . . . , jr) und (i1, i2, . . . , is) zwei kanonische Zykel,

die dieselbe Permutation γ darstellen. Dann ist j1 das kleinste Element

von {1, . . . ,n}, das von γ überhaupt vertauscht wird und dasselbe gilt
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von i1, also folgt j1 = i1. Ferner ist j2 = γ( j1) = γ(i1) = i2 und so weiter.

(b) Sei γ = ( j1, . . . , jk) ein Zykel in Per(n) und sei τ ∈ Per(n). Es gilt dann

τγτ−1 = (τ( j1), . . . , τ( jk)).

Ist τ = (i1, . . . , is) auch ein Zykel, dann sind die i1, . . . , is genau die

Zahlen, die von τ überhaupt verändert werden. Ist also τ zu γ disjunkt,

so folgt τγτ−1 = γ.

(c) Wir geben ein Verfahren zum Finden der Zykel zu einem gegebenen

γ ∈ Per(n). Sei j1 die kleinste Zahl in {1, . . . ,n}, die von γ überhaupt

verändert wird. Sei dann j2 = γ( j1) und so weiter. Die Folge j1, j2, . . .
kann nicht unendlich sein, also gibt es ein kleinstes k ∈N und zu

diesem ein kleinstes s ∈N so dass jk+s = jk gilt. Das heisst also

γ( jk+s−1) = jk. Ist k > 1, so gilt aber auch γ( jk−1) = jk, woraus aber

jk+s−1 = jk−1 folgt, was der Minimalität von k widerspricht. Es ist also

k = 1 und damit ist α = ( j1, . . . , js) ein Zykel, der die Zahlen ( j1, . . . , js)
genauso abbildet wie γ, so dass α−1γ sie alle festhält. Dieser ist dann

gleich e oder nicht, in welchem Fall wir das Verfahren wiederholen und

einen zweiten Zykel β finden, der disjunkt zu α ist und so weiter. Das

Verfahren bricht wegen Endlichkeit des Problems ab. □

Beispiel 1.1.4. Wir können die Elemente von Per(3) als Zykel

hinschreiben: e, (1,2), (1,3), (2,3), (1,2,3), (1,3,2).

1.2 Ordnung

Definition 1.2.1. Ist G eine endliche Gruppe, so nennt man die Anzahl

∣G∣ der Elemente die Ordnung der Gruppe G,

ord(G) = ∣G∣.

Wir schreiben auch 1 für das neutrale Element e einer Gruppe.
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Ist a ∈ G, so bezeichnet ⟨a⟩ die von a erzeugte Gruppe, also die kleinste

Untergruppe von G, die a enthält. Diese beschreibt man einmal als

⟨a⟩ = ⋂
H Untergruppe

H∋a

H,

wobei man sich klarmachen muss, dass dies wieder eine Untergruppe

ist. Andererseits kann man ⟨a⟩ konstruktiv beschreiben:

⟨a⟩ = {ak ∶ k ∈Z}.

Ist ⟨a⟩ eine endliche Gruppe, so nennt man die Ordnung von ⟨a⟩ auch

die Ordnung des Elements a und man schreibt

ord(a) = ord(⟨a⟩) = ∣ ⟨a⟩ ∣.

Ist ⟨a⟩ nicht endlich, so setzt man ord(a) = ∞.

Beispiel 1.2.2. Ist z ∈ Per(n) ein Zykel z = ( j1, . . . , jk), dann gilt

ord(z) = k.

Wir nennen k dann wahlweise die Ordnung oder die Länge des Zykels

z.

Lemma 1.2.3. Sei a ein Element der Gruppe G. Die von a erzeugte Gruppe ⟨a⟩
ist genau dann endlich, wenn es ein n ∈N gibt mit an = 1. Es gilt

ord(a) =min{n ∈N ∶ an = 1}.

Ist k die Ordnung von a so gilt für jedes n ∈N

an = 1 ⇔ k ∣ n.

Beweis. Sei ⟨a⟩ endlich. Da die Elemente 1, a, a2, . . . nicht alle verschieden

sein können, gibt es ein m,n ∈N so dann am = am+n, also 1 = an gilt. Die
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Umkehrung ist klar, da ⟨a⟩ genau aus den Potenzen von a besteht. Ist

schliesslich k ∈N die kleinste natürliche Zahl mit ak = 1, dann besteht

⟨a⟩ genau aus den Elementen 1, a, a2, . . . , ak−1.

Zum Schluss sei k = ord(a) und an = 1. Dann folgt n ≥ k, wir können also

n = rk + s schreiben mit 0 ≤ s < k. Es ist dann

1 = an = ark+s = (ak)ras = as,

so dass s = 0, also k ∣ n folgt. Die Umkehrung ist klar. □

Lemma 1.2.4. Ist G eine abelsche Gruppe und a, b ∈ G von endlichen
Ordnungen m,n. Sind m und n teilerfremd, dann hat ab die Ordnung mn.

Beweis. Ist 1 = (ab)k = akbk, also ak = b−k. Die Ordnung von ak ist ein Teiler

von m, die Ordnung von b−k ist ein Teiler von n, daher müssen beide

Ordnungen gleich 1 sein, also ak = 1 = bk. Damit ist k ein Vielfaches von

m und von n, die Ordnung von ab ist also mn. □

Definition 1.2.5. Sind G,H zwei Gruppen, so wird das Produkt G ×H
durch die Vorschrift

(g,h)(g′,h′) = (gg′,hh′)

eine Gruppe. Das neutrale Element ist (1,1). Das Inverse zu (g,h) ist

(g−1,h−1). Für die Ordnungen gilt

ord(G ×H) = ord(G)ord(H).

Beispiele 1.2.6. • Wir bezeichnen mit Z/mZ oder auch Z/m die

zyklische Gruppe mit m Elementen, m ∈N, also die Gruppe

{0,1,2, . . . ,m− 1}mit Verknüpfung: a⊞ b = Rest von a+ b modulo m.

• Sei n ∈N die Diedergruppe D2n der Ordnung 2n ist eine Gruppe



6

erzeugt von zwei Elementen σ, τ mit den Relationen

σn = 1 = τ2 und τστ−1 = σ−1.

Insbesondere soll σ die Ordnung n haben und τ die Ordnung 2.

Das bedeutet, D2n besteht genau aus den Elementen

1, σ, σ2, . . . , σn−1, τ, τσ, . . . , τσn−1

und die Produkte dieser Elemente rechnet man mit den Relationen aus.

Man kann sie als Untergruppe von Per(n)wie folgt darstellen. Stellen

wir uns die Elemente von {1,2, . . . ,n} auf einem Kreis in gleichen

Abständen angeordnet vor. Dann ist σ die Rotation um den Winkel

2π/n und τ ist irgendeine Spiegelung an einer Geraden, die die Menge

{1, . . . ,n} in sich abbildet.

●●

●●

●●

ττ

σ

σ

Es gilt D2 ≅Z/2, sowie D4 ≅ (Z/2) × (Z/2) und schliesslich

D6 ≅ Per(3).

Proposition 1.2.7. Ist g ∈ Per(n) eine Permutation, die wir gemäß Satz 1.1.3
als Produkt disjunkter Zykel schreiben:

g = z1⋯zk

und sei l j = l(z j) die jeweilige Länge des j-ten Zykels. Dann gilt

ord(g) = kgV(l1, . . . , lk).
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Beweis. Die z j vertauschen miteinunder. Da jedes z j eine undere

Teilmenge von {1, . . . ,n} permutiert, folgt für ν ∈N

gν = 1 ⇔ zνj = 1 für jedes j = 1, . . . , k.

Dies ist genau dann der Fall, wenn ν ein Vielfaches von ord(z j) = l j ist

für jedes j, daher ist die Ordnung ord(g) =min{ν ∈N ∶ gν = 1} das

kleinste gemeinsame Vielfache der Einzelordnungen. □

1.3 Nebenklassen

Definition 1.3.1. Sei G eine Gruppe und sei H ⊂ G eine Untergruppe. Ist

a ∈ G, so ist die Linksnebenklasse von a nach H gleich der Menge

aH = {ah ∶ h ∈ H}.

Da H eine Gruppe ist, gilt für h ∈ H schon

hH = H.

Beispiele 1.3.2. • Ist V ein Vektorraum und U ⊂ V ein Unterraum,

dann sind die Nebenklassen nach U genau die affinen Räume

v +U, die U als linearen Teil haben.

• Sei G = D2n die Diedergruppe und sei H = ⟨τ⟩ die von τ erzeugte

Untergruppe, dann ist H = {1, τ} und die H-Linksnebenklassen

sind

{1, τ}
²
=H

,{σ, στ}
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
=σH

, . . . ,{σn−1, σn−1τ}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=σn−1H

.

Lemma 1.3.3. Sei G eine Gruppe und H eine Untergruppe. Zwei
Linksnebenklassen sind entweder gleich oder disjunkt, daher kann man G
disjunkt in seine Nebenklassen zerlegen, es gibt also eine Familie (xi)i∈I in G so
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dass
G = ⊔

i∈I
xiH.

Beweis. Sei xH ∩ yH ≠ ∅. Wir zeigen xH ⊂ yH. Aus Symmetrie folgt dann

die undere Richtung. Sei also z ∈ xH ∩ yH, dann existieren h1,h2 ∈ H so

dass z = xh1 = yh2. Es folgt x = yh2h−1
1 ∈ yH und ist u ∈ xH, also u = xh3, so

folgt u = xh3 = y h2h−1
1 h3

´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
∈H

∈ yH. □

Proposition 1.3.4. Sei G eine endliche Gruppe. Ist H eine Untergruppe, dann
ist die Ordnung ∣H∣ ein Teiler der Ordnung ∣G∣ von G. Genauer gilt

∣G∣ = ∣H∣∣G/H∣,

wobei G/H die Menge aller Nebenklassen aH ist.

Insbesondere gilt für jedes Element x

ord(x) ∣ ord(G),

d.h., die Ordnung von x teilt die Gruppenordnung. Insbesondere folgt

xord(G) = 1.

Beweis. Wir haben G = ⊔i∈I xiH, und da G endlich ist, muss I endlich

sein, wir finden also x1, . . . ,xn ∈ G so dass G = ⊔n
j=1 x jH. Also folgt

ord(G) =
n

∑
j=1
∣x jH∣.

Die Untergruppe H bildet selbst eine Nebenklasse, wir können also

x1 = e annehmen. Die Abbildung h↦ x jH ist eine Bijektion von H nach

x jH, also haben alle Nebenklassen gleich viele Elemente, nämlich
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ord(H) viele, es ist also

ord(G) =
n

∑
j=1

ord(H) = n ord(H).

Ist a ∈ G ein beliebiges Element und ist H = ⟨a⟩ die von a erzeugte

Untergruppe, dann ist ord(a) = ord(H) ein Teiler von ord(G). □

1.4 Homomorphismen und Operationen

Definition 1.4.1. Eine Abbildung ϕ ∶ G→ H zwischen zwei Gruppen

heisst Gruppenhomomorphismus, falls

ϕ(ab) = ϕ(a)ϕ(b)

für alle a, b ∈ G gilt.

Lemma 1.4.2. Ist ϕ ∶ G→ H ein Gruppenhomomorphismus, dann gilt
ϕ(1) = 1 und ϕ(a−1) = ϕ(a)−1.

Beweis. Übungsaufgabe Blatt 1. □

Beispiele 1.4.3. • Ist G eine Gruppe und ist a ∈ G, dann ist die

Abbildung

ϕ ∶ x↦ axa−1

Ein Homomorphismus von G nach G.

Beweis. Für x, y ∈ G gilt ϕ(xy) = axya−1 = axa−1aya−1 = ϕ(x)ϕ(y). □

• Sind V,W Vektorräume über einem Körper K, so ist jede lineare

Abbildung T ∶ V →W ein Gruppenhomomorphismus

(V,+) → (W,+).
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• Sei G die Gruppe GLn(K) aller invertierbarer n × n Matrizen über

dem Körper K. Dann ist die Abbildung ψ ∶ G→ G,

ψ(A) = A−t = (At)−1 = (A−1)t

ein Gruppenhomomorphismus.

• Ist G = Per(n) die Gruppe der Permutationen in {1, . . . ,n}, dann ist

die Vorzeichen- oder Signumabbildung

sign ∶ Per(n) → {±1}

ein Gruppenhomomorphismus, wie in der Linearen Algebra

gezeigt wird.

Definition 1.4.4. Sei ϕ ∶ G→ H ein Gruppenhomomorphismus. Der

Kern von G ist

kerϕ = {g ∈ G ∶ ϕ(g) = 1}.

Es ist leicht einzusehen, dass ker(ϕ) eine Untergruppe von G ist.

Lemma 1.4.5. Ein Gruppenhomomorphismus ϕ ∶ G→ H ist genau dann
injektiv, wenn sein Kern trivial ist.

Proof. Ist ϕ injektiv, dann gilt für jedes x ∈ G ∖ {1}, dass ϕ(x) ≠ 1, also ist

der Kern trivial.

Ist umgekehrt der Kern trivial und sind x, y ∈ G mit ϕ(x) = ϕ(y), dann

gilt, weil ϕ ein Gruppenhomomorphismus ist, dass

ϕ(x−1y) = ϕ(x)−1ϕ(y) = 1

und daher x−1y ∈ kerϕ und also x−1y = 1 oder x = y. □

Definition 1.4.6. Sei G eine Gruppe und M eine Menge. Eine Operation



11

von G auf M ist eine Abbildung

G ×M→M

(g,m) ↦ g.m

mit den Eigenschaften

• 1.m = m (das neutrale Element operiert neutral)

• (ab).m = a.(b.m) (Operation und Multiplikation sind kompatibel)

Beispiele 1.4.7. • Sei G eine Gruppe. Dann definiert die Vorschrift

g.m = gm

eine Operation der Gruppe auf sich selbst, die

Linkstranslationsoperation.

Beweis. Es gilt 1.m = 1m = m und

(ab).m = (ab)m = a(bm) = a.(b.m). □

• Sei G eine Gruppe, dann operiert G durch

g.m = mg−1

auf sich selbst, dies ist die Rechtstranslationsoperation.

Beweis. Es gilt 1.m = m1−1 = m1 = m und

(ab).m = m(ab)−1 = (mb−1)a−1 = a.(b.m). □

• Sei G eine Gruppe, dann operiert G auf sich selbst durch die

Vorschrift

g.m = gmg−1

dies ist die Konjugationsoperation.
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Beweis. Es gilt 1.m = 1m1−1 = m und

(ab).m = abm(ab)−1 = abmb−1a−1 = a.(b.m). □

• (Abgeleitete Operationen.) Operiert die Gruppe G auf der Menge

M und ist S eine weitere Menge, dann operiert G auf der Menge

A = Abb(M,S) aller Abbildungen von M nach S durch

g.ϕ(m) = ϕ(g−1.m).

Beweis. Es ist e.ϕ(m) = ϕ(e−1.m) = ϕ(m) und (ab).ϕ(m) =
ϕ((ab)−1.m) = ϕ(b−1.a−1.m) = b.ϕ(a−1.m) = a.(b.ϕ)(m). □

Lemma 1.4.8. Sei M ≠ ∅ eine Menge. Operiert die Gruppe G auf der Menge
M, dann ist die Abbildung ϕ ∶ G→ Per(M), g↦ (m↦ gm) ein
Gruppenhomomorphismus. Ist umgekehrt ϕ ∶ G→ Per(M) ein
Gruppenhomomorphismus, dann definiert

gm = ϕ(g)(m)

eine Operation. Diese Zuordnungen
(Operation)↦(Gruppenhomomorphismus) und umgekehrt sind invers
zueinander. Also ist eine Operation dasselbe wie ein
Gruppenhomomorphismus nach Per(M).

Beweis. Die Gruppe G operiere auf M. Für g ∈ G sei ϕ(g) ∶M→M,

m↦ gm. Zunächst müssen wir zeigen, dass ϕ(g) bijektiv ist, wir also

wirklich in Per(M) lunden. Wir behaupten, dass ϕ(g−1) eine

Umkehrabbildung zu ϕ(g) ist. Dies folgt aus

ϕ(g)(ϕ(g−1)(m)) = ϕ(g)(g−1m) = gg−1m = 1m = m

und

ϕ(g−1)(ϕ(g)(m)) = ϕ(g−1)(gm) = g−1gm = 1m = m.
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Wir haben also in der Tat eine Abbildung ϕ ∶ G→ Per(M). Wir rechnen

nun nach, dass dies ein Gruppenhomomorphismus ist. Für g,h ∈ G gilt

ϕ(gh)(m) = (gh)m = g(hm) = ϕ(g)(hm) = ϕ(g)(ϕ(h)(m)) = ϕ(g)ϕ(h)(m).

Also ist ϕ ein Gruppenhomomorphismus. Die Umgekehrte Richtung ist

leicht nachzurechnen und die Tatsache, dass diese Zuordnungen invers

zueinunder sind, auch. □

Die Gruppe G operiere auf der Menge M. Für gegebenes m ∈M nennen

wir die Menge

[m] = Gm = {gm ∶ g ∈ G}

die Bahn oder das Orbit von m. Ferner ist

Gm = {g ∈ G ∶ gm = m}

der Stabilisator von m.

Satz 1.4.9. Die Gruppe G operiere auf der Menge M.

(a) Der Stabilisator eines Punktes m ∈M ist eine Untergruppe von G. Er
wird auch die Stundgruppe von m genannt.

(b) Sei H = Gm der Stabilisator von m. Die Abbildung gH ↦ gm ist eine
Bijektion von G/H zum Orbit von m.

(c) Die Orbiten zweier Punkte sind entweder gleich oder disjunkt, man
kann deshalb M disjunkt in seine Orbiten zerlegen. Man schreibt G/M
für die Menge aller Orbiten.

(d) (Bahnengleichung) Sind G und M endliche Mengen und seien
[m1], . . . , [mk] die Bahnen, so gilt

∣M∣ =
k

∑
j=1

∣G∣
∣Gm j ∣

.
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Man kann Teil (c) auch so ausdrücken, dass man sagt: die Operation

von G definiert eine Äquivalenzrelation auf M, wobei m und m′

äquivalent heissen, falls sie in demselben Orbit liegen. Der Quotient

nach dieser Äquivalenzrelation wird dann mit G/M bezeichnet.

Beweis. (a) Sei H = Gm, dann gilt offensichtlich e ∈ H. Sind a, b ∈ H, dann

ist

(ab)m = a(bm) = am = m,

also liegt auch ab wieder in H. Ferner folgt aus am = m durch Anwenden

von a−1 schon m = a−1m, so dass auch a−1 ∈ H folgt. Also ist H eine

Untergruppe.

(b) Sei ψ ∶ G/H → Gm diese Abbildung. Zunächst ist festzustellen, dass

sie überhaupt wohldefiniert ist, ist also gH = g′H, dann ist g′ = gh für ein

h ∈ H und damit ist g′m = g(hm) = gm, somit ist ψ wohldefiniert.

Injektivität. Sei ψ(aH) = ψ(bH), dann ist am = bm also a−1bm = m, was

soviel heisst wie a−1b ∈ H und somit bH = aH.

Surjektivität. Sei z ∈ Gm, also z = gm für ein g ∈ G, dann folgt z = ϕ(gH).

(c) Sei Gm ∩Gm′ ≠ ∅, dann ist zu zeigen, dass Gm = Gm′ gilt. Sei

z ∈ Gm ∩Gm′ dann existieren also g, g′ ∈ G so dass gm = z = g′m′. Es folgt

m′ = (g′)−1gm so dass m′ ∈ Gm und damit hm′ ∈ Gm für jedes h ∈ G, was

soviel heisst wie Gm′ ⊂ Gm. Aus Symmetrie folgt die umgekehrte

Inklusion.

(d) Wir haben die disjunkte Zerlegung M = ⊔k
j=1[m j]. Daher ist

∣M∣ = ∑k
j=1 ∣[m j]∣. Nach Teil (b) ist fuer jedes m ∈M mit Stabilisator

H = Gm,

∣[m]∣ = ∣G/H∣.

Es bleibt also zu zeigen ∣G/H∣ = ∣G∣/∣H∣ oder ∣G∣ = ∣H∣ ∣G/H∣. Seien
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h1H, . . . ,hlH die Nebenklassen, dann zerlegen sie G disjunkt, also

∣G∣ =
j

∑
j=1
∣h jH∣
±
∣H∣

= l∣H∣.

Hierbei beachte, dass die Abbildung h↦ m jh eine Bijektion H → m jH ist.

Nach Definition ist l = ∣G/H∣, also folgt die Behauptung. □

Lemma 1.4.10. Eine Gruppe G mit n Elementen operiere auf einer Menge M
mit m Elementen. Seien 1 = d1 ≤ ⋅ ⋅ ⋅ ≤ dr = n die Teiler von n. Dann gibt es
Zahlen k1, . . . , kr ∈N0, so dass

m =
r

∑
j=1

k j d j.

Hierbei ist k j die Anzahl der Bahnen mit d j Elementen.

Beweis. Seien [m1], . . . , [mk] die Bahnen in M. Nach der

Bahnengleichung ist

∣M∣ =
k

∑
j=1

∣G∣
∣Gm j ∣

.

Jedes ∣Gm j ∣ ist ein Teiler von n = ∣G∣, also ist auch ∣G∣
∣Gmj ∣

ein Teiler von n.

Wir ordnen diese Summe nach den Teilern d1, . . .dr und bezeichnen mit

k j die Anzahl, mit der der Teiler d j unter den ∣G∣
∣Gmj ∣

auftritt. □

Beispiel 1.4.11. Operiert eine Gruppe G der Ordnung 77 auf einer

Menge M der Ordnung 5, dann gilt g.m = m für jedes m ∈M, d.h., die

Operation ist trivial.

Beweis. Der kleinste nichttriviale Teiler von 7 ist 7 und 5 ist kleiner als 7,

also sind in der Summe des Lemmas alle k j = 0 für j ≥ 1. Es gibt also nur

Bahnen der Länge 1. □
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1.5 Zyklische Gruppen

Eine Gruppe G heisst zyklisch, wenn G von einem Element erzeugt ist.

Beispiele 1.5.1. • Die Gruppe (Z,+) ist zyklisch von unendlicher

Ordnung.

• Für jedes n ∈N gibt es eine zyklische Gruppe der Ordnung n,

nämlich Z/n.

Proposition 1.5.2. (a) Ist G zyklisch, dann ist G isomorph zu Z oder zu
Z/n, wobei n = ord(G).

(b) Ist G eine zyklische Gruppe der Ordnung n und ist d ein Teiler von n,
dann gibt es ein Element der Ordnung d.

Beweis. (a) Sei G zyklisch und sei τ ein Erzeuger.

1. Fall. τ hat endliche Ordnung n ∈N. Dann ist die Abbildung Z/n→ G,

k ↦ τk ein Gruppenisomorphismus.

2. Fall. τ hat keine endliche Ordnung. Dann ist die Abbildung Z→ G,

k ↦ τk ein Isomorphismus.

(b) Ist τ ein Erzeuger und ist k = n/d, dann ist α = τk von Ordnung d,

denn erstens ist αd = τn = 1 und zweitens, gölte αl = 1 für ein 1 < l < d,

dann hieße das 1 = αl = τln/d, was einen Widerspruch ergibt, da ln/d echt

kleiner ist als n. □

Satz 1.5.3. Sei p eine Primzahl. Jede Gruppe der Ordnung p ist zyklisch,
also isomorph zu der Gruppe Z/p.

Beweis. Sei G eine Gruppe der Ordnung p. Sei e ≠ τ ∈ G. Dann muss

ord(τ) ein Teiler von p sein. Da τ ≠ e, ist die Ordnung ≠ 1, also ist
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ord(τ) = p, damit hat die zyklische Untergruppe ⟨τ⟩, die von τ erzeugt

wird, die Ordnung p, ist also gleich G. □

Satz 1.5.4. Jede Untergruppe einer zyklischen Gruppe ist zyklisch.

Proof. Sei G = ⟨τ⟩ eine zyklische Gruppe und sei {1} ≠ H ⊂ G eine

Untergruppe. Sei N die kleinste natuerliche Zahl mit γ = τN ∈ H. Wir

zeigen, dass H von γ erzeugt ist. Sei hierzu h = τn ∈ H, dann ist

hγk = τn+kN ∈ H. Es gibt ein k ∈Zmit 0 ≤ n + kN < N. Aus der

Minimalitaet von N folgt n + kN = 0 und daher h = γ−k. □

Satz 1.5.5 (Gruppen bis zur Ordnung 7).

(a) Es gibt jeweils nur eine Gruppe (bis auf Isomorphie) der Ordnung
1,2,3,5,7, nämlich die jeweils zyklische Gruppe.

(b) Es gibt zwei Gruppen der Ordnung 4, nämlich Z/4 und Z/2 ×Z/2.

(c) Es gibt zwei Gruppen der Ordnung 6, nämlich Z/6 und Per(3).

Beweis. (a) ist klar, da die genannten Ordnungen Primzahlen sind.

(b) Sei G eine Gruppe der Ordnung 4, die nicht zyklisch ist. Das

bedeutet, dass jedes Element ≠ e die Ordnung 2 haben muss. Dann ist G
abelsch (nach übungsaufgabe). Seien nun a, b zwei verschiedene

Elemente von G ∖ {e}. Dann liefert die Abbildung (Z/2) × (Z/2) → G,

(i, j) ↦ aib j einen injektiven Gruppenhomomorphismus. Das Bild hat

Ordnung 4, ist also G und G damit isomorph zur Vierergruppe.
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(c) Sei G eine Gruppe der Ordnung 6. Hat G ein Element der Ordnung

6, so ist G −Z/6. Nehmen wir also an, dass alle Elemente Ordnung 1,2,3

haben.

1. Es gibt Elemente der Ordnung 2 und der Ordnung 3.

Haben alle Elemente Ordnung 2, dann ist die Gruppe abelsch. Sind

dann a, b verschiedene Elemente. Wie im Fall der Ordnung 4 ist dann

{1, a, b, ab} eine Untergruppe der Ordnung 4, was nicht sein kann, da 4

kein Teiler von 6 ist. Daher gibt es Elemente der Ordnung 3.

Angenommen, alle Elemente haben Ordnung 3. Sei dann a ≠ 1 und

H = ⟨a⟩. Die Gruppe G operiert auf der Menge G/H der

H-Nebenklassen. Diese Menge hat 2 Elemente. Sei a ∈ G ∖H. Dann ist

aH ≠ H, also a2H ≠ aH, also a2H = H oder a2 ∈ H. Nun ist a2 = a−1 in H
und da H eine Gruppe ist, ist a ∈ H, Widerspruch!

Sei b ∈ G ∖H, dann vertauscht b die beiden Nebenklassen H bH, also

folgt H = b(bH) = b2H, d.h., b2 ∈ H. Waere nun b2 = a oder a2, dann haette

a oder a2 die Ordnung 6, Widerspruch. Also folgt b2 = 1, das Element b
hat demnach Ordnung 2.

1. Fall: G ist abelsch. Seien dann a, b ∈ G von Odnung 2 und 3. Sei dann

τ = ab. Dann ist τ2 = a2b2 = b2 ≠ 1. Ferner ist τ3 = a3b3 = a3 = a2a = a ≠ 1,

also hat τ weder Ordnung 2, noch 3, also Ordnung 6 und G ist zyklisch.

2. Fall: G ist nicht abelsch. Seien a, b der Ordnungen 2 und 3 und sei

H = ⟨a⟩. Dann operiert G auf der Menge G/H der Nebenklassen, diese

hat 3 Elemente, wir erhalten also einen Gruppenhomomorphismus

ϕ ∶ G→ Per(G/H) ≅ Per(3).

Wenn wir zeigen, dass ϕ injektiv ist, ist es wegen ∣G∣ = 6 = ∣Per(3)∣ ein

Isomorphismus. Da b ∉ H ist bH ≠ H und daher b2H ≠ H. Wäre nun

b2H = H, also b2 ∈ H, dann wäre b2 = 1, also b = bb3 = b4 = (b2)2 = 1,

Widerspruch! Damit ist auch b2H ≠ H und die Nebenklassen sind
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H, bH, b2H. Insbesondere wird G von den beiden Elementen a und b
erzeugt. Das Element b vertauscht die Nebenklassen zyklisch und a
fixiert die Nebenklasse H. Wir wollen zeigen, dass a die Klassen bH und

b2H vertauscht. Wäre abH = bH, so wäre entweder ab = b, was nicht

geht, oder ab = ba. Damit vertauschen a und b und da sie die Gruppe

erzeugen, ist diese abelsch, Widerspruch! Es folgt also, dass a und b
beide nichttrivial operieren. Das bedeutet, dass beide nicht im Kern von

ϕ liegen. Da a und b beliebig gewählt werden können, ist der Kern

trivial, also ist ϕ nach Lemma 1.4.5 injektiv. □
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2 Ringe

2.1 Definition

Definition 2.1.1. Ein kommutativer Ring mit Eins ist eine abelsche

Gruppe (R,+)mit einer weiteren Verknüpfung ×, die assoziativ ist,

(ab)c = a(bc)

und kommutativ

ab = ba

und das Distributivgesetz erfüllt:

a(b + c) = ab + ac.

Ferner existiert ein Element 1R ∈ R mit

1Ra = a

für jedes a ∈ R. Dieses Element ist dann eindeutig bestimmt, denn ist 1′

ein zweites, dann gilt

1′ = 11′ = 1′1 = 1.

Wenn wir im Folgenden Ring schreiben, meinen wir immer einen

kommutativen Ring mit Eins.

Ein Ring ist also dasselbe wie ein Körper, bis auf die Tatsache, dass

nicht jedes Element ≠ 0 invertierbar sein muss.

Beispiele 2.1.2. (a) (N,+,×) ist kein Ring, da es keine inversen

Elemente der Addition gibt.

(b) (Mn(K),+,×) ist kein kommutativer Ring für n ≥ 2, da

Matrixmultiplikation nicht kommutativ ist.
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(c) Jeder Körper ist ein Ring.

(d) Z ist ein Ring, der kein Körper ist.

(e) Ist K ein Körper, dann ist die Menge der Polynome K[x] ein Ring.

(f) Der einfachste Ring ist der Nullring N = {0}. In diesem Ring gilt

0 = 1. Ist R ein Ring, in dem 0 = 1 gilt, dann ist R der Nullring, denn

für a ∈ R gilt

a = 1a = 0a = (1 − 1)a = a − a = 0.

Der Nullring ist ein dummes Beispiel und wir werden uns im

Folgenden in der Regel auf Ringe mit 0 ≠ 1 einschränken.

(g) Sei α =
√

2 ∈ R. Dann gilt α2 = 2. Wir definieren

Z[
√

2] = (k + lα ∶ k, l ∈Z) .

Wegen (k + lα)(m + nα) = km + 2ln + (kn + lm)α ist Z[
√

2] ein

Unterring von R.

(h) Der Gaußsche Zahlring ist definiert als

Z[i] = {a + bi ∶ a, b ∈Z} ⊂ C.

(i) Ist R ein Ring, dann definiert man den Polynomring R[x] genau wie

im Körperfall. Elemente sind formale Ausdrücke der Form

a0 + ⋅ ⋅ ⋅ + anxn

und die Multiplikation ist definiert durch

(a0 + ⋅ ⋅ ⋅ + anxn)(b0 + ⋅ ⋅ ⋅ + bmxm) = c0 + ⋅ ⋅ ⋅ + cm+nxm+n,

wobei ck = ∑i+ j=k aib j. Insbesondere kann man also den Uebergang

von einem Ring zum Polynomring wiederholen und erhaelt den



22

Polynomring in mehreren Unbekannten,

R[X1, . . . ,Xr].

Die Elemente dieses Rings sind formale Ausdruecke der Form

∑
α

cαXα,

wobei α durchNr
0 laeuft, cα ∈ R ein Koeffizient ist, der nur für

endlich viele α nicht Null ist und

Xα = Xα1
1 Xα2

2 ⋯Xαr
r

ist.

(j) Im Polynomring R[x] gilt

(a0 + a1x + ⋅ ⋅ ⋅ + anxn)(b0 + b1x + ⋅ ⋅ ⋅ + bmxm) = c0 + c1x + ⋅ ⋅ ⋅ + cn+mxn+m,

wobei c0 = a0b0, c1 = a0b1 + a1b0 und allgemein

ck = ∑
i+ j=k

aib j.

Also haengt der Koeffizient ck nur von den Koeffizienten a0, . . . , ak

und b0, . . . bk ab und nicht von denen hoeheren Grades. Dasselbe gilt

für die Addition. Daher kann man Addition und Multiplikation des

Polynomrings R[x] auch auch die Menge aller Koeffizientenfolgen

(a0, a1, . . . ) ausdehnen, die nicht notwendigerweise endlich sind.

Alternativ kann man diese Menge RN0 = Abb(N0,R) auch als Menge

aller formalen Reihen ∞
∑
j=0

a jx j

beschreiben. Der so entstehende Ring wird der Ring der formalen
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Potenzreihen genannt und als

R[[x]]

geschrieben.

(k) Sei p eine Primzahl und sei Z(p) die Menge aller rationalen Zahlen
a
b ∈ Q für die der Nenner b zur Primzahl p teilerfremd ist, also von p
nicht geteilt wird. Dies ist ein Unterring von Q.

Beispiel 2.1.3. Sei m ∈N und sei R =Z/m gleich der Menge

{0,1, . . . ,m − 1}. Wir definieren Addition und Multiplikation wie folgt

a ⊞ b = Rest von a + b nach Division durch m.

Und die Multiplikation

a ⊠ b = Rest von ab nach Division durch m.

Man verifiziert, dass Z/m mit diesen Operationen ein Ring ist.

Zweite Definition: Auf Z definiert man folgende Äquivalenzrelation

a ∼ b⇔ a − b ∈ mZ. Sei Z/m die Menge Z/ ∼ der Äquivalenzklassen. Es

ist klar, dass es genau m Äquivalenzklassen gibt [0], [1], . . . , [m − 1].

Addition und Multiplikation werden wie folgt definiert

[a] + [b] = [a + b], [a][b] = [ab].

Hier ist Wohldefiniertheit zu prüfen: etwa a ∼ a′, b ∼ b′, dann ist zu

zeigen, dass (a + b) ∼ (a′ + b′) und ab ∼ a′b′. Für die erste Aussage

betrachte

(a + b) − (a′ + b′) = a − a′ + b − b′ ∈MZ.

Für die zweite:

ab − a′b′ = ab − a′b + a′b − a′ba = (a − a′)b + a′(b − b′) ∈ mZ.
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Definition 2.1.4. Ein Element 0 ≠ a ∈ R eines Rings heißt invertierbar

oder Einheit des Rings, wenn es ein b ∈ R gibt mit ab = 1. Die Menge R×

der invertierbaren Elemente ist eine abelsche Gruppe bzgl. der

Multiplikation. Ein Ring R ist genau dann ein Körper, wenn

R× = R ∖ {0} gilt.

Beispiele 2.1.5. (a) Die Einheiten von Z sind ±1.

(b) Sei K ein Körper und sei R = K[x] der Polynomring. Die Einheiten

von R sind genau die konstanten Polynome ≠ 0.

(c) Die Einheiten des Rings R =Z[i
√

5] sind genau die Zahlen 1 und −1.

Beweis. Seien a, b ∈ R mit ab = 1. Da a, b ∈ C ist, gilt diese Gleichung

auch dort, also ist auch 1 = ∣ab∣2 = ∣a∣2∣b∣2. Damit gilt ∣a∣2 ≤ 1 oder

∣b∣2 ≤ 1. Nehmen wir ∣a∣2 ≤ 1 an. Sei a = k + il
√

5, dann ist ∣a∣2 = k2 + 5l2

und da k, l ∈Z, folgt l = 0 und a = k = ±1. Damit ist auch b = ±1 und

die Beauptung ist gezeigt. □

(d) Die Einheiten des Rings Z/m sind genau die Zahlen 1 ≤ x ≤ m − 1,

die zu m teilerfremd sind. Dies zeigt man mit Hilfe der Division mit

Rest (Übungsaufgabe!)

Definition 2.1.6. Ein Element a ≠ 0 eines Rings R heißt Nullteiler, falls

es ein b ≠ 0 gibt mit ab = 0.

Ein Ring R mit 0 ≠ 1 heißt nullteilerfrei, oder integer, oder

Integritätsring, falls es keine Nullteiler in R gibt, wenn also gilt

ab = 0 ⇒ a = 0 oder b = 0.

Beispiele 2.1.7. (a) Der Nullring ist kein Integritätsring.

(b) Körper sind Integritätsringe.
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(c) Jeder Unterring eines Integritätsrings ist ein Integritätsring. So ist

zum Beispiel Z[i
√

5] ein Integritätsring, da er ein Unterring des

Körpers C ist.

(d) Z ist ein Integritätsring.

(e) Z/m ist nur dann ein Integritaetsring, wenn m eine Primzahl ist.

(f) Ist R ein Integritätsring, dann auch der Polynomring R[x].

Beweis. Seien f , g ∈ R[x], beide ≠ 0. Wir zeigen f g ≠ 0. Sei dazu

f (x) = a0 + ⋅ ⋅ ⋅ + anxn,

g(x) = b0 + ⋅ ⋅ ⋅ + bmxm

mit an ≠ 0 ≠ bm. Dann gilt

f (x)g(x) = c0 + ⋅ ⋅ ⋅ + cm+nxm+n,

wobei ck = ∑i+ j=k aib j. Insbesondere ist dann cm+n = anbm ≠ 0, da R ein

Integritätsring ist. □

(g) Sind R,S Ringe, dann ist auch das kartesische Produkt R × S ein

Ring, indem man die Operationen Komponentenweise definiert.

Das Nullelement ist (0,0) und die Eins ist (1,1). Dieser Ring ist kein

Integritaetsring, auch wenn R und S welche sind, denn es gilt

(0,1) ⋅ (1,0) = (0,0).

Definition 2.1.8. Seien R,S Ringe. Ein Ringhomomorphismus ist eine

Abbildung ϕ ∶ R→ S so dass

• ϕ ist ein Gruppenhomomorphismus (R,+) → (S,+),

• ϕ(1) = 1,

• ϕ(ab) = ϕ(a)ϕ(b).
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Beispiele 2.1.9. (a) Die Inklusionen Z↪ Q↪ R↪ C sind

Ringhomomorphismen.

(b) Sei m ∈N. Die Projektion Z→Z/m ist ein Ringhomomorphismus.

(c) Ist R = K[x] ein Polynomring und ist α ∈ K. dann ist die Abbildung

δα ∶ K[x] → K, die f (x) auf f (α) schickt, ein Ringhomomorphismus.

Satz 2.1.10. Ein Ring R ist genau dann ein Integritaetsring, wenn R ein
Unterring eines Körpers ist.

In dem Fall gibt es bis einen Körper Quot(R), der R enthaelt und von R
erzeugt wird. (D.h. es gibt keinen Körper, der zwischen R und Quot(R)
liegt.) Er heißt der Quotientenkörper von R.

Beweis. Ist R Unterring eines Körpers, dann ist er offen sichtlich integer.

Sei umgekehrt R ein Integritaetsring. Wir wollen einen Körper

K = Quot(R) konstruieren. Dieser soll aus den Quotienten a
b bestehen,

mit a, b ∈ R und b ≠ 0, so dass die ueblichen Rechenregeln, also
a
b +

c
d =

ad+bc
bd und a

b
c
d =

ac
bd gelten. Man konstruiert K genauso, wie man Q

aus Z konstruiert: Auf der Menge R ×R ∖ {0} definiert man eine

Aequivalenzrelation durch

(a, b) ∼ (c,d) ∶⇔ ad = bc.

Man sieht leicht, dass dies eine Arquivalenzrelation ist, der schwerste

Teil ist die Transitivitaet: Seien also (a, b) ∼ (c,d) und (c,d) ∼ (e, f ), dann

gilt also

ad = bc und c f = de.

Damit folgt a f cd = becd, also cd(a f − be) = 0 und da wir in einem

Integritaetsring sind und cd ≠ 0, folgt a f = be, also (a, b) ∼ (e, f ), d.h. es

gilt Transitivitaet.
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Sei K = (R ×R ∖ {0})/ ∼. Wir schreiben die Aequivalenzklassen als

Brueche, also a
b = [(a, b)]. Wir definieren dann die Addition und

Multiplikation durch

a
b
+

c
d
=

ad + bc
bd

und
a
b

c
d
=

ac
bd
.

Hierbei ist natuerlich Wohldefiniertheit zu pruefen. Wir tun das für die

Addition. Sei also a
b =

a′
b′ und c

d =
c′
d′ . Wir muessen dann zeigen, dass

ad+bc
bd =

a′d′+b′c′
b′d′ gilt. Wir wollen also zeigen

ab′dd′ + bb′cd′ !
= a′bdd′ + bb′c′d. (*)

Wir haben

ab′ = a′b und cd′ = c′d.

Durch direktes Anwenden dieser beiden Formeln folgt allerdings die

Behauptung (*) und damit die Wohldefiniertheit der Addition. Die

Multiplikation geht aehnlich und der Nachweis, dass es sich um einen

Körper hundelt, ist leicht. Der interessante Punkt ist hier nur, warum

jedes Element ≠ 0 invertierbar ist: Sei a
b ≠ 0, dann ist insbesondere b ≠ 0,

also liegt auch b
a in K und es gilt a

b
b
a =

ab
ab =

1
1 und dies ist die Eins in K.

Wir muessen nun zeigen, dass R durch die Abbbildung x↦ x
1 in K

eingebettet wird. Wegen

x
1
+

y
1
=

x + y
1

und
x
1

y
1
=

xy
1

ist diese Abbildung ein Ringhomomorphismus. Er ist injektiv, denn
x
1 =

y
1 ist aequivalent zu der Identitaet 1 ⋅ x = 1 ⋅ y in R. Also koennen wir

R als einen Unterring von K auffassen und K besteht komplett aus

Elementen, die Quotienten von Elementen aus R sind. □
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2.2 Das Lemma von Zorn

Definition 2.2.1. Eine partielle Ordnung auf einer Menge M ist eine

Relation ≤ auf I so dass für alle x, y, z ∈M gilt

(a) x ≤ x (Reflexivität)

(b) x ≤ y, y ≤ x ⇒ x = y (Antisymmetrie)

(c) x ≤ y, y ≤ z ⇒ x ≤ z (Transitivität)

Beispiele 2.2.2. (a) Auf jeder Menge ist die Identität “=” eine partielle

Ordnung.

(b) Auf der MengeN der natürlichen Zahlen ist die übliche “kleiner

gleich” Relation eine partielle Ordnung. Desgleichen für Z,Q,R.

(c) Ist X irgendeine Menge. Auf der Potenzmenge P (X) liefert die

Mengeninklusion eine partielle Ordnung.

Definition 2.2.3. Eine partiell geordnete Menge (M,≤) heißt

vollständig geordnet oder linear geordnet, wenn je zwei Elemente

vergleichbar sind. Also wenn für je zwei Elemente x, y mit x ≠ y
entweder x ≤ y oder y ≤ y gilt.

Beispiele 2.2.4. (a) Die Identität “=” auf M ist genau dann linear, wenn

die Menge höchstens ein Element hat.

(b) Die natürliche Ordnungen aufN,Z,Q,R sind alle linear.

(c) Die Ordnung auf der Potenzmenge P (X) ist in der Regel nicht

linear. (Nur dann, wenn ∣X∣ ≤ 1)

Lemma 2.2.5 (Lemma von Zorn). Sei (M,≤) eine partiell geordnete Menge.
Existiert zu jeder linear geordneten Teilmenge L ⊂M eine obere Schranke
s ∈M, dann hat M maximale Elemente.



29

Hierbei ist s ∈M eine obere Schranke zu L ⊂M, wenn x ≤ s für jedes

x ∈ L gilt.

Ferner heißt ein Element m ∈M maximales Element, wenn

m ≤ x ⇒ m = x gilt.

Die Bedingung, dass jede linear geordnete Teilmenge eine obere

Schranke besitzt, wird auch Kettenbedingung genannt. Diese

Sprechweise kommt daher, dass linear geordnete Teilmengen auch

Ketten genannt werden.

Man kann das Lemma von Zorn aus dem Auswahlaxiom der

Mengenlehre folgern. Dieses Axiom besagt, dass ein Produkt

nichtleerer Mengen eine nichtleere Menge ist. Genauer besagt es, dass

zu einer gegebenen Indexmenge I ≠ ∅ und gegebene Mengen Xi ≠ ∅ das

Produkt X = ∏i∈I Xi eine nichtleere Menge ist. (D.h., man kann simultan

in allen Mengen Xi jeweils ein Element auswählen.) Man kann sogar

zeigen, dass das Lemma von Zorn, auf der Basis der underen Axiome

der Mengenlehre, zum Auswahlaxiom äquivalent ist. Es ist daher

legitim, das Lemma von Zorn selbst als ein Axiom aufzufassen.

2.3 Ideale

Definition 2.3.1. Sei R ein Ring (kommutativ mit Eins). Ein Ideal in R
ist eine Teilmenge I ⊂ R mit den folgenden Eigenschaften

• I ist eine additive Untergruppe von R und

• ist r ∈ R und a ∈ I, dann ist ra ∈ I. Kurz geschrieben lautet diese

Bedingung

RI ⊂ I.

Beispiele 2.3.2. (a) 0 und der ganze Ring R sind Ideale.

(b) Sei I ⊂ R ein Ideal. Enthält I ein invertierbares Element, so ist I = R.



30

(c) Ist ϕ ∶ R→ S ein Ringhomomorphismus, dann ist

ker(ϕ) = (x ∈ R ∶ ϕ(x) = 0) ein Ideal.

Beweis. Da ϕ ein additiver Gruppenhomomorphismus ist, ist der

Kern eine Untergruppe. Sei also a ∈ I und r ∈ R. Dann folgt

ϕ(ar) = ϕ(a)ϕ(r) = 0ϕ(r) = 0, also ist ar ∈ I. □

(d) Ist r ∈ R, so ist die Menge

(r) = rR = (rx ∶ x ∈ R)

ein Ideal. Ein solches Ideal nennt man Hauptideal.

(e) Ist a ∈ R, so ist die Menge

Ann(a) ∶= (r ∈ R ∶ ra = 0)

ein Ideal, genannt der Annullator von a.

Definition 2.3.3. In der Regel ist nicht jedes Ideal ein Hauptideal. Ein

Hauptidealring ist ein Ring R, der

(a) nullteilerfrei ist und in dem

(b) jedes Ideal ein Hauptideal ist.

Beispiele 2.3.4. (a) Jeder Körper K ist ein Hauptidealring, denn er hat

nur zwei Ideale, {0} = (0) und K = (1).

(b) Z ist ein Hauptidealring.

Beweis. Sei I ⊂Z ein Ideal. Ist I ∩N = ∅, dann ist auch I ∩ (−N) = ∅
und daher I = {0} = (0). Ist I ∩N ≠ ∅, dann gibt es eine kleinste

natürliche Zahl m ∈ I. Wir behaupten, dass I = (m) = mZ. Klar ist

(m) ⊂ I. Se also k ∈ I, dann existiert ein p ∈ (m) so dass 0 ≤ k − p < m.

Da m minimal in I ∩N ist, folgt k − p = 0, also k = p ∈ (m). □
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(c) Ist K ein Körper, so ist der Polynomring K[x] ein Hauptidealring.

Beweis. Sei I ≠ 0 ein Ideal und sei g ∈ I ∖ {0} ein Polynom von

minimalem Grad. Sei f ∈ I beliebig, dann ist grad( f ) ≥ grad(g), also

existieren nach der Division mit Rest Polynome q, r mit

f = qg + r

und grad(r) < grad(g). Dann ist r = f − qg ∈ I und da der Grad von g
minimal war, ist r = 0, also f = gq ∈ (g). □

(d) Der Polynomring Z[x] ist kein Hauptidealring.

Beweis. Betrachte das Ideal I, das von 2 und x erzeugt wird, also

I = 2Z[x] + xZ[x].

Wäre I ein Hauptideal (g), so müsste g, da 2 ∈ I, den Grad Null

haben, also gleich einer Zahl m ∈N gewählt werden können. Da m
dann die Zahl 2 teilt, folgte m = 2, aber x ∈ I und x ∉ (2). □

(e) Der Ring R =Z[i
√

5] ist kein Hauptidealring, denn das Ideal

I = αR + 3R, das von α = i
√

5 und 3 erzeugt wird, ist kein

Hauptideal. Angenommen, es wäre eines, etwa I = ηR. Da α ∈ I, folgt

α = ηz für ein z ∈ R. Dann ist 5 = ∣α∣2 = ∣α∣2∣z∣2 = 5∣z∣2. Nun ist für jedes

(a+ bα) ∈ R das Quadrat des Betrages a2 + 5b2 inZ, also ist ∣z∣ = 1 und

damit z = ±1, wir können η = α annehmen. Dann ist aber 3 = αw für

ein w ∈ R, was zu 9 = ∣3∣2 = ∣α∣2∣w∣2 = 5∣w∣2 führt, also ist 9 in Z ein

Vielfaches von 5, Widerspruch!

Definition 2.3.5. Ein Integritätsring R heißt euklidischer Ring, falls es

eine Abbildung δ ∶ R ∖ 0→N0 gibt, so dass zu je zwei a, b ∈ R ∖ {0} zwei

Elemente q, r ∈ R existieren mit

a = bq + r
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und r = 0 oder δ(r) < δ(b). Man nennt δ die Gradabbildung des

euklidischen Rings.

Proposition 2.3.6. Jeder euklidische Ring ist ein Hauptidealring.

Beweis. Sei I ≠ 0 ein Ideal und sei g ∈ I ∖ {0} ein Element von minimalem

Grad, also δ(g)minimal unter allen δ( f )mit f ∈ I. Da g ∈ I, folgt (g) ⊂ I.
Sei f ∈ I beliebig, dann ist also δ( f ) ≥ δ(g), also existieren Elemente q, r
mit

f = qg + r

und δ(r) < δ(g). Dann ist r = f − qg ∈ I und da der Grad von g minimal

war, ist r = 0, also f = gq ∈ (g). □

Beispiele 2.3.7. (a) Z ist ein euklidischer Ring mit δ(k) = ∣k∣.

(b) Sei K ein Körper, dann ist der Polynomring K[x] euklidisch mit

δ( f ) = grad( f ).

(c) Der Ring R =Z[i] =Z⊕Zi aller komplexer Zahlen m + ni mit

m,n ∈Z ist ein euklidischer Ring mit

δ(m + ni) = m2 + n2, also δ(z) = ∣z∣2 = zz.

Beweis. Beachte zunaechst, dass die Funktion δ auf ganz C definiert

ist und mutliplikativ ist, d.h., für z,w ∈ C gilt stets

δ(zw) = δ(z)δ(w).

Wir stellen fest, dass für jedes z ∈ C der Abstund zum naechsten

Punkt c ∈ R stets ≤ 1√
2

ist.
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z

Mit underen Worten, zu jedem z ∈ C existiert ein c ∈ R mit δ(z− c) ≤ 1
2 .

Seien nun a = m+ni und b = k+ li inZ[i] ∖ {0} und sei z = a
b ∈ C. Dann

existiert also ein c ∈Z[i]mit δ(z − c) ≤ 1
2 . Setze r = a − bc ∈ R. Dann ist

δ(r) = δ(b)δ(
a
b
− c) ≤ δ(b)

1
2
< δ(b).

Damit ist R =Z[i] ein euklidischer Ring, also insbesondere ein

Hauptidealring. □

Definition 2.3.8. Sei R ein Ring und I ⊂ R ein Ideal. Dan ist I eine

Untergruppe von (R,+) und wir können die Menge R/I der

Nebenklassen betrachten.

Satz 2.3.9. Auf der Menge R/I gibt es genau eine Ringstruktur, so dass die
Projektion π ∶ R→ R/I ein Ringhomomorphismus ist. Für diesen
Ringhomomorphismus gilt I = ker(π), also ist jedes Ideal der Kern eines
Ringhomomorphismus.

Beweis. Wir machen uns zunächst klar, dass für a, b ∈ R die Bedingung

a + I = b + I gleichwertig ist zu a − b ∈ I.

Wir definieren Addition und Multiplikation durch

(a + I) + (b + I) = (a + b) + I und (a + I)(b + I) = ab + I. Hier ist
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Wohldefiniertheit zu prüfen. Seien aI = a′ + I und b + I = b′I, also

a − a′, b − b′ ∈ I, dann folgt

(a + b) − (a′ + b′) = (a − a′) + (b − b′) ∈ I

also folgt (a + b) + I = (a′ + b′) + I und damit die Wohldefiniertheit der

Addition. Für die Multiplikation rechne

ab − a′b′ = ab − ab′ + ab′ − a′b′

= a(b − b′) + (a − a′)b′ ∈ I.

Die Eindeutigkeit der Ringstruktur ist wegen der Surjektivität von π

klar und der Kern der Projektion R→ R/I ist die triviale Nebenklasse,

also I. □

Beispiel 2.3.10. Der Ring Z/m ist gleich Z/mZ.

Ein Ideal m eines Rings R heisst maximales Ideal, wenn m ≠ R und m
ist maximal in der Menge aller Ideale I ≠ R, also mit underen Worten:

(a) 1 ∉m und

(b) ist I ein Ideal mit m ⊂ I und I ≠ R, dann ist m = I.

Satz 2.3.11. (a) Jedes Ideal I ≠ R liegt in einem maximalen Ideal.

(b) Jedes Element von R ∖R× liegt in einem maximalen Ideal.

(c) Ein Ideal J ist genau dann maximal, wenn R/J ein Körper ist.

Proof. (a) Sei I ≠ R ein Ideal und sei S die Menge aller Ideale J mit 1 ∉ J
und J ⊃ I. Dann ist S mit der Inklusion partiell geordnet und die

Kettenbedingung ist erfüllt, denn sei ∅ ≠ K ⊂ S eine Kette, also eine

linear geordnete Teilmenge und sei a = ⋃J∈K J, dann ist a wieder ein
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Ideal und es gilt I ⊂ a , sowie 1 ∉ a . Dieses a ist dann eine obere

Schranke zu K. Nach dem Lemma von Zorn gibt es ein maximales

Element m in S, also liegt I in einem maximalen Ideal.

(b) Sei r ∈ R ∖R× eine Nichteinheit und sei I = (r) = rR das Hauptideal.

Dann gilt 1 ∉ I, da r nicht invertierbar ist. Also gibt es nach Teil (a) ein

maximales Ideal, das I und damit auch r enthaelt.

(c) Sei J ein maximales Ideal und sei r ∈ R ∖ J. Wegen der Maximalitaet

von J muss das Ideal rR + J gleich dem ganzen Ring sein, also auch die

Eins enthalten, es gibt also r′ ∈ R und ein α ∈ J mit rr′ + α = 1 oder

rr′ ∈ 1+ J, so dass in R/J gilt (r+ J)(r′ + J) = rr′ + J = 1+ J, das heisst, dass r
im Quotienten R/J invertierbar ist, also ist in R/J jedes Element ≠ 0

invertierbar, d.h., R/J ist ein Körper.

Sei umgekehrt R/J ein Körper und sei r ∈ R ∖ J, dann ist r modulo J
invertierbar, also existiert ein r′ ∈ R mit rr′ ∈ 1 + J, so dass 1 ∈ rR + J, also

ist J maximal. □

Beispiele 2.3.12. (a) Die maximalen Ideale von Z sind genau die

Hauptideale pZ, wobei p eine Primzahl ist.

(b) Die maximalen Ideale von R = C[x] sind genau die Hauptideale der

Form Iλ = (x − λ)C[x] für λ ∈ C. Die Abbildung f (x) ↦ f (λ)
induziert einen Isomorphismus

R/Iλ ≅ C.

Definition 2.3.13. Ein Ideal I ≠ R eines Rings R heisst Primideal, falls

ab ∈ I ⇒ a ∈ I oder b ∈ I.

Satz 2.3.14. Ein Ideal I von R ist genau dann ein Primideal, wenn R/I
integer ist.
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Beweis. Sei I ein Primideal und seien (a + I), (b + I) ∈ R/I mit

(a + I)(b + I) = [0], also 0 = [ab]was soviel heisst wie ab ∈ I. Da I ein

Primideal ist, folgt a ∈ I oder b ∈ I, also sagen wir, es sei a ∈ I. das heisst

aber (a + I) = [0], also ist (a + I) in R/I das Nullelement, damit ist R/I
integer.

Sei umgekehrt R/I integer und seien a, b ∈ R mit ab ∈ I. Das bedeutet

[0] = [ab] = (a + I)(b + I). Da R/I integer ist, folgt (a + I) = [0] oder

(b + I) = [0] also sagen wir (a + I) = [0], also a ∈ I und damit ist I ein

Primideal. □

2.4 Teilbarkeit

Definition 2.4.1. Seien a, b Elemente eines Rings R.

(a) Man sagt a teilt b oder ist ein Teiler von b, falls es ein c ∈ R gibt so

dass ac = b. in diesem Fall schreibt man a ∣ b. Ist a kein Teiler von b,

so schreibt man a ∤ b.

(b) a und b heißen assoziiert, wenn es eine Einheit u ∈ R× gibt mit a = bu.

Beispiele 2.4.2. (a) Für zwei natürliche Zahlen m,n gilt m teilt n in Z

genau dann, wenn m ein Teiler im üblichen Sinne ist.

(b) Zwei Elemente a, b inZ sind genau dann assoziiert, wenn a = ±b gilt.

Lemma 2.4.3. Für zwei Elemente a, b eines Integritaetsrings R sind
äquivalent

(i) a ∣ b und b ∣ a,

(ii) aR = bR,

(iii) a und b sind assoziiert.
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Beweis. (i)⇒(iii): Es gelte a = bc und b = ad. Wir nehmen an, dass a ≠ 0, da

sonst auch b = 0. Es ist a = bc = acd, also a(1 − cd) = 0 und da a ≠ 0 und R
integer ist, folgt cd = 1, also sind c,d Einheiten und a und b sind

assoziiert.

(iii)⇒(ii) Es sei a = bu mit einer Einheit u. Wegen uR = R folgt dann

aR = buR = bR.

(ii)⇒(i) Sei aR = bR, dann folgt a ∈ bR, also gibt es ein c ∈ R mit a = bc, also

b ∣ a. Ebenso folgt b ∣ a. □

Definition 2.4.4. Sei R ein Integritätsring und p ein Element, das weder

Null noch eine Einheit ist.

(a) Das Element p heißt irreduzibel, falls aus der Gleichung p = ab in R
stets folgt, dass a oder b eine Einheit ist.

(b) Das Element p heißt Primelement, falls aus p ∣ ab stets folgt p ∣ a oder

p ∣ b.

Beispiele 2.4.5. (a) In R =Z sind die Primelemente genau die Elemente

der Form ±p, wobei p eine Primzahl ist.

(b) In R = C[x] sind die Primelemente genau die Elemente c(x − a)mit

c ∈ C×, a ∈ C.

(c) In R = R[x] sind die Primelemente genau die Polynome der Form

c(x − α) für ein α ∈ R oder c(x2 + ax + b), falls dieses Polynom keine

reelle Nullstelle hat.

Proposition 2.4.6. Sei R ein Integritätsring. Dann ist jedes Primelement von
R auch irreduzibel.

Beweis. Seien p ein Primelement und sei p = ab. Dann teilt p das Produkt

ab also teilt p einen der Faktoren, sagen wir a. Das heißt a = pc = abc, also

a(1 − bc) = 0, also bc = 1, so dass b eine Einheit ist. □
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Beispiel 2.4.7. In dem Integritätsring R =Z[i
√

5] ist das Element 3

irreduzibel, aber kein Primelement.

Beweis. Sei α = i
√

5. Wir zeigen, dass 3 irreduzibel ist. Ist 3 = zw in R,

dann folgt 9 = ∣3∣2 = ∣z∣2∣w∣2. Ist ∣z∣2 = 1, dann ist z = ±1 eine Einheit. Ist

∣z∣2 = 9, dann ist ∣w∣2 = 1 und w ist eine Einheit. Angenommen, ∣z∣2 = 3. Sei

z = a + bα, dann ist 3 = ∣z∣2 = a2 + 5b2, also ist b = 0, da der Betrag sonst zu

gross wäre. Dann ist 3 = a2, aber 3 ist kein Quadrat in Z, Widerspruch!
Also ist 3 irreduzibel.

Wir zeigen, dass 3 kein Primelement ist. Hierzu beachte, dass

3 ∣ 9 = (2+α)(2−α), aber 3 teilt keinen der Faktoren, denn würde 3 etwa

2 + α teilen, also 2 + α = 3z, dann ist 9 = ∣2 + α∣2 = ∣3∣2∣z∣2, also ∣z∣ = 1 und

damit ist z = ±1, also 3 = ±(2 + i
√

5)was ein Widerspruch ist, da 3 den

Imaginaerteil 0 hat. □

Satz 2.4.8. Sei R ein Hauptidealring und sei p ∈ R. Dann sind äquivalent

(a) p irreduzibel,

(b) p ist ein Primelement.

Beweis. Wir müssen nur (a)⇒(b) zeigen: Sei p irreduzibel und p teile ab
und p ∤ a. Wir muessen zeigen, dass p das Element b teilt. Sei I das von

p und a erzeugte Ideal, also I = aR + pR. Dann ist dies ein Hauptideal,

also etwa I = cR. Dann folgt c ∣ a und c ∣ p, also etwa cd = p. Da p
irreduzibel ist, ist c oder d eine Einheit. Angenommen, d ist eine

Einheit, so ist pR = cR = I = aR + pR, also ist a ∈ pR, d.h. p teilt a, was der

Voraussetzung widerspricht.

Also ist d keine Einheit und damit muss c eine Einheit sein, d.h.,

I = cR = R und es gibt r, s ∈ R mit ar + ps = 1, also b = abr + psb. Nun teilt p
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das Produkt ab, also ist b = p(r′ + sb) für ein r′ ∈ R, also p ∣ b wie

verlangt. □

Korollar 2.4.9. In einem Hauptidealring R lässt sich jedes Element von
R ∖ {0}, das keine Einheit ist, als endliches Produkt von Primelementen
Schreiben.

Beweis. Da jedes irreduzible Element prim ist, genügt es, eine Zerlegung

in irreduzible zu konstruieren. Sei a ∈ R ungleich Null und keine

Einheit. Angenommen, a lässt sich nicht als Produkt von Irreduziblen

schreiben. Dann ist a reduzibel und kann selbst als Produkt a1a′1 von

Nichteinheiten geschrieben werden. Da a kein Produkt von

Irreduziblen ist, gilt dasselbe für mindestens einen der Faktoren, sagen

wir a1, und a1 kann als Produkt a2a′2 zweier Nichteinheiten geschrieben

werden. Iteration liefert eine Folge von Elementen

a = a0, a1, ⋅ ⋅ ⋅ ∈ R

so dass a j+1 ein Teiler von a j, aber nicht assoziiert zu a j ist. Also folgt für

die Hauptideale

aR = a0R ⊊ a1R ⊊ a2R ⊊ . . .

Man prüft leicht nach, dass die Vereinigung einer aufsteigenden Folge

von Idealen wieder ein Ideal ist, also ist

I = ⋃
j∈N
(a j)

wieder ein Ideal in R, also ein Hauptideal I = bR. Dann ist b ∈ a jR für ein

j und daher

bR ⊂ a jR ⊂ a j+1R ⊂ bR,

woraus Gleichheit folgt, also a jR = a j+1R ein Widerspruch! Daher ist die

Annahme falsch, also ist jedes Element als Produkt von Irreduziblen

darstellbar. □
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Lemma 2.4.10. Gilt in einem Integritätsring R die Gleichung

p1⋯pr = q1⋯qs

für Primelemente p j und irreduzible Elemente qi, dann ist r = s und nach
Umnummerierung ist jedes p j assoziiert zu q j.

Beweis. Da p1 ∣ q1⋯qs, gibt es ein j mit p1 ∣ q j. Nach Umnummerierung

können wir p1 ∣ q1 annehmen. Es folgt q1 = ε1p1, wobei ε1 auf Grund der

Irreduzibilität von q1 eine Einheit ist. Da wir uns in einem

Integritätsring befinden, folgt

p2⋯pr = ε1q2⋯qs.

Wir iterieren diesen Vorgang und können die qi so umnummerieren,

dass p j zu q j assoziiert ist. Insbesondere folgt r ≤ s. Ist r < s erhalten wir

1 = εqr+1⋯qs,

woraus folgt, dass qs eine Einheit ist, was ein Widerspruch ist, also ist

r = s. □

Definition 2.4.11. Ein Integritätsring R heißt faktoriell, falls jede

Nichteinheit in R ∖ {0} als Produkt von Primelementen darstellen lässt,

das heißt wenn wir eine sogenannte Primfaktorzerlegung haben. Diese

ist dann nach dem Lemma 2.4.10 eindeutig.

Proposition 2.4.12. In einem faktoriellen Ring ist jedes irreduzible Element
prim.

Proof. Sei q irreduzibel und p1⋯pn die Primfaktorzerlegung.

Angenommen n > 1, dann ist p1 oder p2⋯pn einer Einheit, was nicht sein

kann. Also ist q = p1, also prim. □
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Satz 2.4.13. Jeder Hauptidealring ist faktoriell. Insbesondere ist Z
faktoriell und für jeden Körper K ist der Polynomring K[x] faktoriell.

Beweis. Folgt aus Korollar 2.4.9 und Lemma 2.4.10. □

Beispiel 2.4.14. Der Ring R =Z[i
√

5] is nicht faktoriell, denn wir

wissen ja schon, das es Irreduzible gibt, die nicht prim sind.

Definition 2.4.15. Sei R ein faktorieller Ring. Sei P ein Vertretersystem

der Primelemente modulo Assoziiertheit, also P enthalte zu jeder

Klasse von assoziierten Primelementen genau ein Element. Hat man ein

solches P fest gewählt, kann man jede Nichteinheit z ∈ R ∖ {0} eindeutig

in der Form

z = ε∏
p∈P

pkp

schreiben, wobei ε eine Einheit ist und kp ∈N0, fast alle Null sind. Sind

dann

z = ε∏
p∈P

pkp, w = η∏
p∈P

pnp

zwei solche Darstellungen, dann ist klar, dass z das Element w genau

dann teilt, wenn kp ≤ np für jedes p ∈ P gilt. Wir definieren wir den

größten gemeinsamen Teiler der Elemente z,w als

ggT(z,w) =∏
p∈P

pmin kp,np,

sowie das kleinste gemeinsame Vielfache als

kgV(z,w) =∏
p∈P

pmax kp,np

Beispiele 2.4.16. (a) Im Fall R =Z kann man die Menge der

Primzahlen als P nehmen.
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(b) Im Fall R = K[x] für einen Körper K sind die Einheiten genau die

konstanten in K×, also ist jedes Polynom zu einem eindeutig

bestimmten normierten Polynom assoziiert. Damit kann man als P
die Menge aller normierter Primpolynome wählen.

(c) Im Allgemeinen hat man keine kanonische Wahl für P. Daher

hängen die Begriffe ggT und kgV dann von der Wahl von P ab und

sind daher nur bis auf Assoziiertheit definiert.

Satz 2.4.17. Seien a, b, z von Null verschiedene Elemente eines
Hauptidealrings R.

(a)

(z ∣ a, und z ∣ b) ⇔ z ∣ ggT(a, b).

(b)

(a ∣ z, und b ∣ z) ⇔ kgV(a, b) ∣ z.

(c) Für den größten gemeinsamen Teiler d = ggT(a, b) gilt dann

aR + bR = dR.

Insbesondere gibt es Elemente x, y ∈ R mit

ggT(a, b) = ax + by.

(d) Zwei Elemente r, s ∈ R heissen teilerfremd, falls ggT(r, s) = 1. Dies ist
genau dann der Fall, wenn es x, y ∈ R gibt mit

rx + sy = 1.

Beweis. (a) und (b) sind klar, wenn man die Produktzerlegungen

betrachtet.
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(c) Das Ideal aR + bR ist ein Hauptideal, etwa aR + bR = d′R. Wegen

a, b ∈ (d′) ist d′ dann ein gemeinsamer Teiler von a und b, teilt demnach

d. Andererseits teilt d auch a und b und teilt demnach d′, so dass d und

d′ assoziiert sind.

(d) Sind r, s teilerfremd, so gibt es x und y nach Teil (c). Umgekehrt gelte

rx + sy = 1. Dann gilt aR + bR = R, also ggT(a, b) = 1. □

Korollar 2.4.18. Sei R ein Hauptidealring und p ∈ R ∖ {0}. Dann sind
äquivalent;

(a) p ist ein Primelement.

(b) R/pR ist ein Körper.

Beweis. Sei p ein Primelement und sie z̄ ∈ R/pR ∖ {0} die

Äquivalenzklasse von z ∈ R. Dass z̄ ≠ 0 ist bedeutet, dass z ∉ pR ist, was

bedeutet, dass p in der Primfakorzerlegung von z nicht vorkommt und

damit ist ggT(z,p) = 1. Daher ist zR + pR = R, also gibt es x, y ∈ R mit

zx + py = 1, oder z̄x̄ = 1 in R/pR, so dass z̄ invertierbar ist.

Für die Umkehrung sei R/pR ein Körper und p teile ein Produkt ab.

Dann ist āb = 0 und daher ā = 0 oder b̄ = 0, also p ∣ a oder p ∣ b. □

Beispiel 2.4.19. Z/m ist genau dann ein Körper, wenn m = p eine

Primzahl ist. In diesem Fall schreibt man Fp =Z/p.

2.5 Lokalisierung

Sei R ein Integritaetsring und sei S ⊂ R eine multiplikativ

abgeschlossene Teilmenge, d.h., wir fordern

• 0 ∉ S, 1 ∈ S,

• x, y ∈ S ⇒ xy ∈ S.
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Beispiele 2.5.1. (a) Sei f ∈ R ∖ {0} und sei S = {1, f , f 2, . . .}, dann ist S
eine multiplikativ abgeschlossene Teilmenge.

(b) Ist p ⊂ R ein Primideal, dann ist das Komplement S = R ∖ p eine

multiplikativ abgeschlossene Teilmenge.

(c) Da R ein Integritaetsring ist, ist S = R ∖ {0} eine multiplikativ

abgeschlossene Teilmenge.

Definition 2.5.2. Sei S eine multiplikativ abgeschlossene Teilmenge des

Integritaetsrings R. Die Lokalisierung von R nach S ist der Unterring

S−1R des Quotientenkoerpers Quot(R), der von R und

S−1 = {s−1 ∶ s ∈ S}

erzeugt wird. Da S multiplikativ abgeschlossen ist, gilt

S−1R = {
a
s
∶ a ∈ R, s ∈ S} .

Beispiele 2.5.3. (a) Ist R =Z und S =Z ∖ {0}, dann ist S−1Z = Q.

(b) Ist R = K[x] der Polynomring über einem Körper K, dann ist der

Quotientenkoerper der Körper K(x) der rationalen Funktionen

über K.

2.6 Der chinesische Restsatz

Definition 2.6.1. Zwei Ideale I, J in einem Ring heißen teilerfremd, falls

I + J = R gilt.

Beispiel 2.6.2. In R =Z sind die Hauptideale mZ und nZ genau dann

teilerfremd, wenn die Zahlen m und n keine echten gemeinsamen Teiler

haben, wenn also m und n teilerfremd sind.

Beweis. Seien die Ideale teilerfremd, dann ist 1 ∈ mZ + nZ, es gibt also
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a, b ∈Zmit am + bn = 1. Wuerden nun m und n von einer Primzahl p
geteilt, dann wuerde auch 1 von p geteilt, was ein Widerspruch ist.

Seien umgekehrt die Zahlen m und n teilerfremd. Das Ideal mZ + nZ ist

ein Hauptideal, also von der Form gZ für ein g ∈N. Dann ist m ∈ gZ
also folgt g∣m und ebenso g∣n und daher ist g = 1, also sind die Ideale

mZ und nZ teilerfremd. □

Definition 2.6.3. Sind I und J Ideale, so definieren wir das Ideal IJ als

IJ =
⎧⎪⎪
⎨
⎪⎪⎩

n

∑
j=1

a jb j ∶ a j ∈ I, b j ∈ J
⎫⎪⎪
⎬
⎪⎪⎭

.

Sind etwa beides Hauptideale, I = (a) und J = (b), dann ist auch IJ ein

Hauptideal, nämlich IJ = (ab).

Lemma 2.6.4. Sind die Ideale I und J teilerfremd, dann gilt

IJ = I ∩ J.

Beweis. Die Inklusion “⊂” gilt auch ohne die Teilerfremdheit, da

IJ ⊂ IR = I und ebenso für J.

Zum Beweis von “⊃” seien also I und J teilerfremd, also gibt es

Elemente a ∈ I und b ∈ J mit 1 = a+ b. Sei dann x ∈ I ∩ J, dann ist x = ax+ bx
und da axund bx beide in IJ liegen, ist x ∈ IJ. □

Satz 2.6.5 (Chinesischer Restsatz). Sei R ein Ring und I1, . . . , Ir seien
parweise teilerfremde Ideale. Sei I = I1⋯Ir = I1 ∩ ⋅ ⋅ ⋅ ∩ Ir, dann liefern die
kanonischen Projektionen einen Isomorphismus

R/I ≅
r

∏
ν=1

R/Iν.
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Beweis. Da Iν ⊃ I für jedes ν, gibt es kanonische Projektionen

πν ∶ R/I → R/Iν, also einen Ringhomomorphismus

π ∶ R/I →
r

∏
ν=1

R/Iν.

Injektivität: Sei π(x̄) = 0, und x ∈ R ein Urbild von x̄. Dann ist x ∈ Iν für

jedes ν. Mit dem Lemma folgt dann also

x ∈ I1 ∩ I2 ∩ ⋅ ⋅ ⋅ ∩ Ir

= (I1I2) ∩ I3 ∩ ⋅ ⋅ ⋅ ∩ Ir

= (I1I2I3) ∩ I4 ∩ ⋅ ⋅ ⋅ ∩ Ir

⋮

= I1I2⋯Ir.

Also gilt x̃ = x + I1⋯Ir = 0 in dem Ring R/I, also ist π injektiv.

Surjektivität. Für die Surjektivität reicht es, zu zeigen, dass es Elemente

x j ∈ R gibt, mit π j(x j) = 1 und πk(x j) = 0 für k ≠ j. Modulo

Umnummerierung reicht es, x1 nachzuweisen. Seien a ∈ I und b ∈ I2⋯Ir

mit a + b = 1. Dann ist x1 = b das gewünschte Element. □

Korollar 2.6.6. Sei R ein Hauptidealring und sei

a = εpν1
1 ⋯pνr

r

eine Primfaktorzerlegung mit einer Einheit und paaweise nicht assoziierten
Primelementen pi. Ist πi ∶ R→ R/pνi

i R jeweils die kanonische Projektion, dann
ist der Homomorphismus

π ∶ R→
r

∏
i=1

R/pνi
i R
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surjektiv mit Kern aR, induziert also einen Isomorphismus

R/aR ≅
r

∏
i=1

R/pνi
i R.

Beweis. Klar nach Chinas Restsatz, da nichtassoziierte Primelemente

teilerfremd sind. □

* * *
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3 Moduln

3.1 Definition

Definition 3.1.1. Ein Modul über einem Ring R ist eine abelsche

Gruppe M mit einer Abbildung

R ×M→M

(λ,m) ↦ λm,

so dass für alle λ,µ ∈ R und alle m,n ∈M gilt

• 1Rm = m,

• (λµ)m = λ(µm),

• (λ + µ)m = λm + µm, λ(m + n) = λm + λn.

Beispiele 3.1.2. (a) Für einen Körper K sind die K-Moduln genau die

K-Vektorraeume.

(b) Der Ring R selbst ist ein R-Modul und eine Teilmenge T ⊂ R ist

genau dann ein Untermodul, wenn T ein Ideal ist.

(c) Jede abelsche Gruppe (M,+) ist auf genau eine Weise ein Modul

unter R =Z, denn km = m + ⋅ ⋅ ⋅ +m mit k-Kopien, wenn k ∈N und es

ist das Inverse, wenn k < 0. Es gilt also

{abelsche Gruppen} = {Z-Moduln}}

Es gilt auch, dass ein Gruppenhomomorphismus zwischen zwei

abelschen Gruppen dasselbe ist, wie ein

Z-Modulhomomorphismus.

(d) Sei K ein Körper und R der Polynomring K[x]. Sei V ein

K-Vektorraum und T ∶ V → V ein Endomorphismus. Dann wird V
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ein R-Modul durch

( f (x))v ∶= f (T)v.

Ist also f (x) = a0 + ⋅ ⋅ ⋅ + anxn, so ist

f (x)v = a0v + a1Tv + ⋅ ⋅ ⋅ + anTnv.

Definition 3.1.3. Eine R-lineare Abbildung oder ein

Modulhomomorphismus zwischen zwei Moduln ist ein

Gruppenhomomorphismus ϕ ∶M→ N mit der Eigenschaft

Φ(rm) = rϕ(m)

für jedes m ∈M und jedes r ∈ R.

Definition 3.1.4. Ein Untermodul eines R-Moduls M ist eine Teilmenge

N ⊂M, die mit den Strukturen von M selbst wieder ein Modul ist.

Beispiel 3.1.5. Eine Teilmenge I ⊂ R ist genau dann eine Untermodul,

wenn sie ein Ideal ist.

Definition 3.1.6. Seien M1, . . . ,Mk Untermoduln eines Moduls M, dann

ist die Summe der Moduln definiert als

U =M1 + ⋅ ⋅ ⋅ +Mk ∶= (m1 + ⋅ ⋅ ⋅ +mk ∶ m j ∈M j) ⊂M.

Dies ist ein Untermodul, wie man leicht sieht. Gilt zusätzlich

m1 + ⋅ ⋅ ⋅ +mk = m′1 + ⋅ ⋅ ⋅ +m′k′ ⇒ k = k′,m1 = m′1, . . . ,mk = m′k

wobei m j,m′j ∈M j für 1 ≤ j ≤ k, so sagen wir, die Summe ist direkt und

schreiben dies als

U =M1 ⊕ ⋅ ⋅ ⋅ ⊕Mk.

Dann ist die Summe U +V zweier Untermoduln genau dann direkt,

wenn U ∩V = 0 gilt. Ist U ⊕V =M, sagen wir, die Moduln U und V sind

komplementär.
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Lemma 3.1.7. Ist U ⊂M ein Untermodul, auf der Menge der Nebenklassen
M/U = {m +U ∶ m ∈M} definiert man eine Addition durch
(m +U) + (n +U) = m + n +U und eine Sklarmultiplikation
λ(m +U) = λm +U. Diese sind wohldefiniert und geben M/U eine
Modulstruktur, derart dass die Projektion M→M/U ein
Modulhomomorphismus wird.

Proof. Gilt etwa m +U = m′ +U und n +U = n′ +U, dann folgt

m′ + n′ +U = m′ + n′ + (m −m′)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∈U

+(n − n′)
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
∈U

+U = m + n +U.

Sowie

λm′ +U = λm′ + λ(m − n′) +U = λm +U.

Damit folgt die Wohldefiniertheit. Die Homomorphismus Eigenschaft

gilt nach Definition. □

Beispiel 3.1.8. nZ ist ein Untermodul von Z und wir haben wiederholt

Z/nZ betrachtet.

Definition 3.1.9. Sei M ein R=Modul. Die Länge des Moduls M,

geschrieben ℓ(M) = ℓR(M) ist das Supremum der Längen ℓ von Ketten

von Untermoduln

0 ⊊M1 ⊊ ⋅ ⋅ ⋅ ⊊Mℓ =M

Beispiele 3.1.10. (a) Ist R = K ein Körper, dann ist die Länge eines

Moduls (=Vektorraums) gleich seiner Dimension.

(b) Eine abelsche Gruppe (M,+), aufgefasst als Z-Modul hat genau

dann endliche Länge, wenn sie endlich ist. Die Länge desZ-Moduls

Z/m für m ∈N ist gleich der Anzahl aller Primteiler von m, mit

Vielfachheit gezaehlt.

Lemma 3.1.11. Sei R ein Hauptidealring und sei a ∈ R ∖ {0} mit
Primfaktorzerlegung a = εp1⋯pr. Dann hat der Restklassenmodul R/aR die
Länge ℓR(R/aR) = r.
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Beweis. Sei π ∶ R→ R/aR die Projektion. Die Untermoduln U ⊂ R/aR
entsprechen bijektiv ihren Urbildern unter π und dies sind die Ideale I
von R, die aR enthalten, so dass die Länge mit dem Supremum aller

Längen von Idealketten der Art

aR ⊊ I1 ⊊ ⋅ ⋅ ⋅ ⊊ Il = R

übereinstimmt. Da R ein Hauptidealring ist, wird jedes Iν von einem

Element aν erzeugt. Die Inklusion Iν ⊊ Iν+1 bedeutet, dass aν ein echter

Teiler von aν+1 ist. Daher müssen die Potenzen in der

Primfaktorzerlegung absteigen und die maximale Länge einer solchen

Kette ist r. □

Lemma 3.1.12. Ist M die direkte Summe zweier Untermoduln L und N, so gilt

ℓ(M) = ℓ(L) + ℓ(N).

Beweis. Seien

0 ⊊ L1 ⊊ ⋅ ⋅ ⋅ ⊊ Lr =M1,

0 ⊊ N1 ⊊ ⋅ ⋅ ⋅ ⊊ Ns =M2

echt aufsteigende Ketten von Untermoduln, dann ist

0 ⊊ (L1 ⊕ 0) ⊊ ⋅ ⋅ ⋅ ⊊ (Lr ⊕ 0) ⊊ (Lr ⊕N1) ⊊ ⋅ ⋅ ⋅ ⊊ (Lr ⊕Nr) =M

eine Kette in M, also ist ℓ(L) + ℓ(N) ≤ ℓ(M).

Für die umgekehrte Richtung sei

0 ⊊M1 ⊊ ⋅ ⋅ ⋅ ⊊Mℓ =M

eine echt aufsteigende Kette von Untermoduln. Seien πL und πN die

Projektionen auf die beiden Summanden L und N. Ist etwa

M j ∩ L =M j+1 ∩ L, dann behaupten wir, dass πN(M j) ≠ πN(M j+1) ist,
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denn gilt auch hier Gleichheit, dann gibt es zu m ∈M j+1 ein m̃ ∈M j mit

πN(m) = πN(m̃), also ist m − m̃ ∈ kerπN ∩M j+1 = L ∩M j+1 = L ∩M j und

damit ist m ∈M j+1, was ein Widerspruch zu M j ≠M j+1 ist. Damit wächst

bei jedem j entweder M j ∩ L oder πN(M j) und so folgt

ℓ ≤ ℓ(L) + ℓ(N). □

Definition 3.1.13. Sind M,N Moduln, dann ist V =M ×N auch einer.

Man fasst M ≅M × 0 und N ≅ 0 ×N jeweils als Untermoduln von V auf

und schreibt dann V = N ⊕M. Entsprechend ist der Modul

M1 ⊕M2 ⊕ ⋅ ⋅ ⋅ ⊕Mk =
k
⊕
j=1

M j definiert.

Lemma 3.1.14. Sei R ein Hauptidealring und Q ein Modul mit

Q ≅
n
⊕
j=1

R/α jR,

wobei α j ∈ R∖ 0 Nichteinheiten so dass α j ∣ α j+1 für 1 ≤ j ≤ n− 1, dann sind die
α j bis auf Assoziiertheit durch den Modul Q eindeutig bestimmt.

Beweis. Aus technischen Gründen invertieren wir die Nummerierung

der α j und betrachten zwei Darstellungen

Q ≅
n
⊕
j=1

R/α jR ≅
m
⊕
j=1

R/β jR,

mit α j+1 ∣ α j und desgleichen für βi. Falls es einen Index k ≤min(m,n)
mit αkR ≠ βkR gibt, so wähle k minimal mit dieser Eigenschaft. Da

αiR = βiR für 1 ≤ i < k, und da αk+1, . . . , αn sämtlich Teiler von αk sind,
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zerlegt sich αkQ zu

k−1
⊕
i=1
αk ⋅ (R/αiR) ≅ αkQ

≅ αk
⎛

⎝

m
⊕
j=1

R/β jR
⎞

⎠

≅
k−1
⊕
i=1
αk ⋅ (R/αiR) ⊕

m
⊕
j=k
αk ⋅ (R/β jR)

Aus Lemma 3.1.11 und Lemma 3.1.12 folgt ℓ(αk ⋅ (R/β jR)) = 0 für

k ≤ j ≤ m. Dies bedeutet aber insbesondere αk ⋅ (R/βkR) = 0, oder

αkR ⊂ βkR. Analog zeigt man αkR ⊃ βkR, also αkR = βkR, also gibt es

solches k gar nicht. □

3.2 Der Elementarteilersatz

Definition 3.2.1. Wir betrachten Matrizen über einem beliebigen Ring

R. Eine Matrix A ∈Mn(R) heißt invertierbar, falls es eine Matrix

B ∈Mn(R) gibt, mit AB = BA = I.

Lemma 3.2.2. Sei R ein kommutativer Ring mit Eins.

(a) Fuer A,B ∈Mn(R) gilt

det(AB) = det(A)det(B).

(b) Eine Matrix A ∈Mn(R) ist genau dann invertierbar, wenn det(A) ∈ R
eine Einheit ist.

Beweis. (a): Die Aussage gilt fuer Matrizen ueber dem

Quotientenkoerper K des Integritaetsrings

S = Z[X1, . . . ,XN],
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daher gilt sie auch fuer alle Matrizen in Mn(S). Seien r1, . . . , rN alle

Eintraege von A und B. Fuer den Ringhomomorphismus

ϕ ∶ S = Z[X1, . . . ,XN] → R,

X j ↦ r j

gibt es Matrizen Â, B̂ ∈Mn(S)mit ϕ(Â) = A und ϕ(B̂) = B. Da ϕ ein

Ringhomomorphismus ist, folgt ϕ(ÂB̂) = AB und damit

det(AB) = det (ϕ(ÂB̂))

= det (ϕ(Â)ϕ(B̂))

= det (ϕ(ÂB̂))

= ϕ(det (ÂB̂))

= ϕ(det (Â)det (B̂))

= ϕ(det (Â))ϕ(det (B̂))

= det (A)det (B).

(c) Sei A# die Komplementärmatrix. Man stellt fest, dass in dem Beweis

der Formel

AA# = A#A = det(A)I

nirgends benutzt wurde, dass man über einem Körper rechnet. Er gilt

also auch über R. Ist also det(A) ∈ R×, so ist det(A)−1A# eine Inverse zu

A.

Für die Umkehrung sei A invertierbar. Dann gilt

det(A)det(A−1) = det(AA−1) = det I = 1, also ist det(A) eine Einheit. □

Beispiel 3.2.3. Eine Matrix A ∈Mn(Z) ist genau dann in Mn(Z)

invertierbar, wenn gilt det(A) = ±1. Wir bestimmen also mal die Inverse
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zu ⎛⎝
1 2

1 1

⎞
⎠. Es ist

⎛

⎝

1 2 1

1 1 1

⎞

⎠
↝
⎛

⎝

1 2 1

0 −1 −1 1

⎞

⎠

↝
⎛

⎝

1 2 1

0 1 1 −1

⎞

⎠

↝
⎛

⎝

1 0 −1 2

0 1 1 −1

⎞

⎠
.

Wir stellen also fest, dass ⎛⎝
−1 2

1 −1

⎞
⎠ die gesuchte Inverse ist.

Satz 3.2.4 (Elementarteilersatz für Matrizen). Sei R ein Hauptidealring
und A ∈Mn(R) eine quadratische Matrix über R. Dann existieren
invertierbare Matrizen S,T ∈ GLn(R) mit

SAT =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

d1

⋱
dk

0

⋱
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

wobei alle d j ≠ 0 und d j ∣ d j+1 für 1 ≤ j ≤ k − 1 gilt. Dabei sind k die d j bis
auf Assoziiertheit eindeutig bestimmt, man nennt sie die Elementarteiler

der Matrix A.

Beweis. Wir betrachten die Menge aller Ideale der Form Ra, wobei a
irgendein Eintrag von A ist. In dieser Menge gibt es ein maximales

Ideal Ru. Durch Zeilen- und Spaltenvertauschung erreichen wir, dass
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u = a1,1 links oben steht. Sei nun die Matrix von der Gestalt

A =
⎛
⎜⎜⎜
⎝

u . . .

v . . .

⋮ . . .

⎞
⎟⎟⎟
⎠

und sei w der ggT von u und v. Dann gibt es a, b ∈ R mit w = au + bv und

w∣u, sowie w∣v. Sei X̂ die Matrix

X̂ = ⎛⎝
a b
−v/w u/w

⎞
⎠.

Dann ist det X̂ = 1, also ist X̂ invertierbar und die Matrix

X = ⎛⎝
X̂ 0

0 I

⎞
⎠

ist ebenfalls invertierbar. Die Matrix XA hat links oben ⎛⎝
w
0

⎞
⎠ stehen.

Man wiederholt dies mit den anderen Zeilen statt der zweiten und

sieht, dass es ein Y ∈ GLn(R) gibt mit

YA = ⎛⎝
w′ . . .

0 . . .

⎞
⎠.

Ebenso findet man ein Z ∈ GLn(R), so dass YAZ = ⎛⎝
w′′ 0

0 B

⎞
⎠.

Wiederholung desselben mit der Matrix B und so fort liefert Matrizen

F,G ∈ GLn(R) so dass FAG diagonal ist. Wir muessen nun noch die

Teilbarkeitsbedingung herstellen. Durch Zeilen und Spaltentausch

koennen wir voraussetzen, dass die Matrix von der Form ⎛
⎝

D
0

⎞
⎠ ist,

wobei D eine Diagonalmatrix mit allen Diagonaleintraegen ≠ 0 ist. Wir

verfahren aehnlich, schreiben jetzt nur den oberen linken 2 × 2 Block

auf. Sei also A = ⎛⎝
u 0

0 v

⎞
⎠. Sei α = au + bv der ggT. Die Matrix



57

X̂ = ⎛⎝
a b
−v/α u/α

⎞
⎠ erfuellt

X̂A = ⎛⎝
au bv
−uv/α uv/α

⎞
⎠.

Addiert man die zweite Spalte zur ersten, was durch

Rechtsmultiplikation mit ⎛⎝
1 0

1 1

⎞
⎠ erreicht wird, erhaelt man ⎛⎝

α bv
0 uv/α

⎞
⎠.

Da α∣v, kann man ein Vielfaches der ersten Spalte zur zweiten addieren

und erhaelt ⎛⎝
α 0

0 uv/α
⎞
⎠, wobei nun α den Eintrag uv/α teilt. Iteration

liefert eine Diagonalmatrix SAT, bei der der erste Eintrag alle folgenden

teilt. Iteration liefert die Existenzbehauptung.

Die Eindeutigkeitsbehauptung reduziert sich darauf, zu zeigen, dass

aus

S

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

d1

⋱
dk

0

⋱
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

f1
⋱

fl
0

⋱
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

T S,T ∈ GLn(R),

folgt k = l und d j = f j, falls beide Diagonalmatrizen die

Teilbarkeitsbedingung erfuellen. Da det(S) und det(T) Einheiten sind,

ist d1 der ggT aller Eintraege links, also auch der ggT aller Eintraege

rechts und damit gilt d1 = f1 bis auf Assoziiertheit. Weiter ist d1d2 der

ggT aller 2 × 2 Unterminoren links, also ist f1 f2 dieselbe Zahl. Iteration

mit den Minoren wachsender Dimension liefert die Eindeutigkeit. □

Definition 3.2.5. Eine Basis eines Moduls M ist eine Teilmenge b ⊂M,

so dass jedes m ∈M eine Linearkombination ist

m =
k

∑
j=1
λkbk

mit eindeutig bestimmten b j ∈ b und eindeutig bestimmten λ j ∈ R. Nicht
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jeder Modul hat eine Basis, wie zB Z/nZ als Z-Modul betrachtet.

Hat M eine endliche Basis b , dann ist M ≅ Rn, wobei n = ∣b ∣, der Beweis

geht genauso wie in LinA1 im Falle eines Körpers. Wir sprechen dann

von einem endlich-freien Modul.

Satz 3.2.6 (Elementarteilersatz für Moduln). Sei R ein Hauptidealring
und F ein endlich-freier Modul, sowie M ⊂ F ein Untermodul. Dann existie-
ren Elemente x1, . . . ,xk von F, die Teil einer Basis sind, sowie Koeffizienten
a1, . . . , ak ∈ R mit

• ai ∣ ai+1 falls 1 ≤ i ≤ k − 1 und

• a1x1, . . . , akxk ist eine Basis von M.

Die a j sind bis auf Assoziiertheit durch M eindeutig bestimmt, sie werden
die Elementarteiler von M genannt.
Insbesondere folgt: Ein Untermodul eines endlich-freien Moduls ist endlich-
frei!

Beweis. Sei b1, . . . , bn eine Basis von F. Wir zeigen durch Induktion nach

n, dass M endlich erzeugt ist, und zwar durch höchstens n Erzeuger.

Für n = 1 ist M ein Ideal und also durch ein Element erzeugt. Sei also

n > 1. Setze F′ = ∑n−1
j=1 Rb j und F′′ = Rbn. Sei π ∶ F→ F′′ die Projektion. Die

Moduln M ∩ F′ und π(M) sind erzeugt durch n − 1 bzw einen Erzeuger

und man zeigt wie im Körperfall, dass ein Erzeugendensystem von

M ∩ F′ erweitert um ein Urbild eines Erzeugers von π(M) ein

Erzeugendensystem von M bildet, M ist also endlich erzeugt mit ≤ n
Erzeugern. Sei z1, . . . , zn ein Erzeugendensystem von M und betrachte

die Matrix A der linearen Abbildung F ≅ Rn → Rn ≅ F gegeben durch

b j ↦ z j. Fasse die Matrizen S und T aus Satz 3.2.4 als Basiswechsel auf,

so folgt die Behauptung. □
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3.3 Endlich erzeugte Moduln über Hauptidealringen

Definition 3.3.1. Sei M ein Modul des Hauptidealrings R. Der

Torsionsuntermodul ist definiert als

T = (x ∈M ∶ ∃r∈R r ≠ 0, rx = 0) .

Dann ist T ein Untermodul. M heißt Torsionsmodul, falls M mit T
übereinstimmt.

Beispiele 3.3.2. (a) Ist M eine abelsche Gruppe als Z-Modul aufgefasst,

dann ist der Torsionsuntermodul genau die Menge der Elemente

endlicher Ordnung.

(b) Z/m ist ein Torsionsmodul unter Z.

(c) Ist K ein Körper und ist R = K[x]. Sei V ein R-Modul, der als

K-Vektorraum endliche Dimension hat. Dann ist V ein

Torsionsmodul.

Beweis. Sei T der Operator auf V, durch den x operiert. Sei f (x) das

charakteristische Polynom von T. Dann ist f (T)v = 0 für jedes v,

also ist jedes v Torsion. □

Satz 3.3.3. Sei M ein endlich erzeugter Modul über einem Hauptidealring
R und T ⊂M sein Torsionsmodul. Dann gibt es einen endlich-erzeugten
freien Untermodul F ⊂M, etwa F ≅ Rd, sowie Nichteinheiten
α1, . . . , αn ∈ R ∖ 0, mit α j ∣ α j+1 für 1 ≤ j ≤ n − 1 und

M = F⊕ T, T ≅
n
⊕
j=1

R/α jR.

Dabei ist d eindeutig bestimmt und wird der Rang von M genannt. Die
Elemente α1, . . . , αn sind eindeutig bestimmt bis auf Assoziiertheit.
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Es gilt ferner

T ≅
N
⊕
ν=1

R/peν
ν R,

wobei p1, . . . ,pN Primelemente sind und e1, . . . , eN ∈N und die
Primpotenzen peν

ν sind bis auf Reihenfolge und Assoziiertheit eindeutig
bestimmt.

Beweis. Da M endlich erzeugt ist, gibt es einen surjektiven

Homomorphismus ϕ ∶ Rr →M, also M ≅ Rr/ker(ϕ). Nach dem

Elementarteilersatz für Moduln existiert eine Basis x1, . . . ,xr von Rr und

Elemente α1, . . . , αn ∈ R mit α1 ∣ . . . ∣ αn, so dass α1x1, . . . , αnxn eine Basis

von kerϕ ist. Wir setzen αn+1 = ⋅ ⋅ ⋅ = αr = 0 und betrachten den

surjektiven Homomorphismus

ψ ∶ Rr =
r
⊕
j=1

R→
r
⊕
j=1

R/α jR.

mit ψ(γ1, . . . , γr) = (γ̄1, . . . , γ̄r). Nach Konstruktion ist kerϕ = kerψ und

daher

M ≅ Rr/kerϕ ≅ Rn−r ⊕
n
⊕
j=1

R/α jR,

wobei wir eventuelle Summanden mit α j ∈ R×, also R/α jR = 0

unterdrücken. Die Summe⊕n
j=1 R/α jR ist genau der Torsionsmodul der

rechten Seite und daher ist die Zerlegung eindeutig.

Der Zusatz folgt, indem man die Primfaktorzerlegung der α j betrachtet

und den chinesischen Restsatz benutzt. Die Eindeutigkeit der

Primpotenzen folgt aus der Eindeutigkeit der α j und der Eindeutigkeit

der Primfaktorzerlegung. □
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3.4 Der Hauptsatz über endlich-erzeugte abelsche Gruppen

Satz 3.4.1. Sei G eine endlich-erzeugte abelsche Gruppe, dann gibt es eine
eindeutig bestimmte Zahl r ∈N0 und eindeutig bestimmte
Primzahlpotenzen q1 ≤ q2 ≤ ⋅ ⋅ ⋅ ≤ qs so dass

G ≅Zr ⊕
s
⊕
j=1
Z/q jZ

Beweis. Folgt direkt aus Satz 3.3.3 für den Ring R =Z, denn Z-Moduln

sind dasselbe wie abelsche Gruppen. □

3.5 Jordan-Normalform

Wir betrachten nun den Fall R = K[x] für einen Körper K. Ein Modul

über R besteht aus einem K-Vektorraum V zusammen mit einem

Endomorphismus T ∶ V → V, wobei x ∈ R durch T operiert. Ein

Modulhomomorphismus Φ ∶ (V,T) → (W,S) ist eine lineare Abbildung

Φ ∶ V →W mit ΦT = SΦ.

Zu λ ∈ K sei pλ das Primelement pλ(x) = x − λ in R. Sei W = R/pk
λ für ein

k ∈N. Dann ist W ein K-Vektorraum der Dimension k mit der Basis

v1 = [(x − λ)k−1],v2 = [(x − λ)k−2], . . . ,vk = [(x − λ)0]. Sei T ∶W →W der

durch x induzierte Operator, dann folgt (T − λ)v j = v j+1, wenn wir

formal vk+1 = 0 setzen. Mit underen Worten, in der Basis v1, . . . ,vk ist T
durch die Jordan-Matrix

Jk(λ) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

λ 1

⋱ ⋱

⋱ 1

λ

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠
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gegeben.

Satz 3.5.1 (Jordan-Normalform). Sei T ∶ V → V ein Endomorphismus
des endlich-dimensionalen K-Vektorraums V. Nimm an, dass das
charakteristische Polynom χT in Linearfaktoren zerfällt. Dann hat V eine
Basis bezüglich der T durch eine Jordan-Matrix der Form

⎛
⎜⎜⎜
⎝

Jk1(λ1)
⋱

Jks(λs)

⎞
⎟⎟⎟
⎠

dargestellt wird.

Beweis. Der R-Modul (V,T) ist Torsion, hat also eine Zerlegung der

Form
N
⊕
j=1

R/ps j

j R,

wobei die p j Primelemente sind. Da χT durch Null operiert, ist

χTR ⊂ ps j

j R für jedes j. Das bedeutet p j ∣ χT. Da χT in Linearfaktoren

zerfällt, muss p j selbst einer sein, also p j(x) = x − λ j. Damit folgt die

Behauptung nach unseren Vorbemerkungen. □

* * *
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Teil II

Multilineare Algebra

4 Multilineare Algebra

In diesem Abschnitt sei K ein Körper.

4.1 Basen

Definition 4.1.1. Eine Teilmenge T ⊂ V eines Vektorraums V heißt

linear unabhängig, falls jede endliche Teilmenge linear unabhängig ist,

oder, äquivalent, falls beliebige v1, . . . ,vn ∈ T und λ1, . . . , λn ∈ K gilt

λ1v1 + ⋅ ⋅ ⋅ + λnvn = 0 ⇒ λ1 = λ2 = ⋅ ⋅ ⋅ = 0.

Definition 4.1.2. Eine Teilmenge E eines Vektorraums V heißt

Erzeugersystem, falls jeder Vektor v ∈ V eine Linearkombination von

Vektoren aus E ist. Man schreibt das auch als V = Span(E).

Lemma 4.1.3. Für eine Teilmenge B eines Vektorraums V sind die folgenden
äquivalent:

(a) B ist eine maximale linear unabhängige Menge,

(b) B ist ein linear unabhängiges Erzeugersystem,

(c) B ist ein minimales Erzeugersystem,

(d) zu jedem v ∈ V gibt es eindeutig bestimmte Koeffizienten λb, b ∈ B, fast alle
Null, so dass

v = ∑
b∈B

λbb.

Ist dies der Fall, nennen wir B eine Basis von V.
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Man kann (c) auch so formulieren: zu jedem v ∈ V gibt es eindeutig

bestimmte v1, . . . ,vn ∈B und eindeutig bestimmte λ1, . . . , λn ∈K ∖ {0},

so dass

v = λ1v1 + ⋅ ⋅ ⋅ + λnvn.

Beweis. Der Beweis verläuft genau so wie in LinA 1. Als Beispiel soll

hier mal (a)⇒(b) gezeigt werden: Sei B maximal linear unabhängig.

Wir zeigen dass B ein Erzeugersystem ist. Sei hierzu v ∈ V.

Angenommen, v ∉ Span(B). Wir behaupten, dass dann B ′ =B ∪ {v}
linear unabhängig ist. Sei also λv + λ1v1 + ⋅ ⋅ ⋅ + λnvn = 0 eine

Linearkombination der Null mit v j ∈B . Ist λ ≠ 0, dann folgt

v = −1
λ (λ1v1 + ⋅ ⋅ ⋅ + λnvn) ∈ Span(B), was nicht sein kann. Daher ist also

λ = 0 und damit λ1v1 + ⋅ ⋅ ⋅ + λnvn = 0 und da B linear unabhängig ist,

folgt λ1 = ⋅ ⋅ ⋅ = λn = 0. Damit ist also B ′ linear unabhängig, wegen

Maximalität also B ′ =B und damit v ∈B Widerspruch! Das heißt also,

dass B ein linear unabhängiges Erzeugersystem ist. □

Satz 4.1.4. (a) Jeder Vektorraum hat eine Basis.

(b) Ist T ⊂ V eine linear unabhängige Teilmenge, dann gibt es eine Basis B
mit T ⊂B .

(c) Je zwei Basen eine Vektorraums haben dieselbe Mächtigkeit. Diese
nennt man die Dimension des Raums.

(d) Zwei Vektorräume gleicher Dimension sind isomorph.

Proof. (a) folgt aus (b), indem man T = ∅ nimmt. Sei also T ⊂ V linear

unabhängig. Die Menge S aller linear unabhängigen Teilmengen T ⊂ V
mit T ⊂ T ist durch Inklusion geordnet. Sei K ⊂ S eine linear geordnete

Teilmenge. Sei dann S die Vereinigung aller Elemente von K. Dann ist S
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linear unabhängig, denn jede endliche Teilmenge von S liegt schon in

einem Element von K , da K linear geordnet ist. Also ist S eine obere

Schranke von K . Nach dem Lemma von Zorn gibt es eine maximale

linear unabhängige Menge T mit T ⊂ T . Wie in Lemma 4.1.3, (a)⇒(b),

sieht man ein, dass T auch ein Erzeugersystem ist.

(c) Seien A und B Basen. Es reicht, beide als unendlich anzunehmen. In

diesem Fall gibt es eine Surjektion A ↠A ×N.

(Dies ist bekannt, wenn A abzählbar und allgemein folgt es mit ZORN,

angewendet auf die Menge der Paare (A, ϕ), wobei A ⊂A und

ϕ ∶ A→ A ×N surjektiv.)

Für jedes v ∈A gibt es genau eine Darstellung

v = ∑
w∈Ev

λv,ww

mit einer endlichen Teilmenge Ev ⊂B und λv,w ∈ K∖{0}. Sei ( jv,1, jv,2, . . . )
eine Folge in Ev, in der jedes Element vorkommt. Definiere dann

ϕ ∶A ×N→B ,
(v, k) ↦ jv,k.

Diese Abbildung ist surjektiv. Wir erhalten Surjektionen

A ↠A ×N↠B . Da wir die Rollen von A und B vertauschen können,

gibt es auch eine Surjektion B →A und daher eine Bijektion A →B .

(d) Sei ϕ ∶ V →W ein Isomorphismus. Dann ist das Bild einer Basis eine

Basis und daher bleibt die Mächtigkeit derselben erhalten. Seien

umgekehrt A ⊂ V und B ⊂W Basen gleicher Mächtigkeit, dann gibt es

also eine Bijektion ϕ ∶A →B . Diese kann dann zu einer linearen

Abbildung fortgesetzt werden. Die Fortsetzung von ϕ−1 ist dann eine

Inverse der Fortsetzung von ϕ. □

Beispiele 4.1.5. (a) Sei V der R-Vektorraum aller Folgen in R, die nur
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endlich viele Glieder ≠ 0 haben. Dann ist die Menge E = {e1, e2, . . .}

mit e j = (0,0, . . . ,0,1,0, . . . ), wobei die 1 an der j-ten Stelle steht, eine

Basis.

(b) In der Regel sind Basen für unendlich-dimensionale Räume nicht so

einfach anzugeben. Der Vektorraum aller Folgen in F2 hat zum

Beispiel eine überabzählbare Dimension.

Proposition 4.1.6. Jeder Unterraum hat ein Komplement. Genauer sei U ⊂ V
ein Untervektorraum. Dann gibt es einen Unterraum W ⊂ V, so dass

V = U ⊕W.

Proof. Sei A eine Basis von U. Setze sie zu einer Basis B von V fort. Sei

dann W = Span(B ∖A). Wir behaupten V = U ⊕W. Sei hierzu v ∈ U ∩W
und sei v = ∑a∈A λaa +∑b∈B∖A µbb die eindeutige Darstellung in der

Basis. Da v ∈ U, folgt µb = 0 für alle b ∈B ∖A . Da v ∈W folgt ebenso

λa = 0 für alle a. Also ist v = 0. Bleibt zu zeigen, dass V = U +W gilt. Sei

also jetzt v ∈ V beliebig. Mit der eindeutigen Darstellung wie oben gilt

v = ∑
a∈A

λaa

´¹¹¹¹¹¹¸¹¹¹¹¹¹¶
∈U

+ ∑
b∈B∖A

µbb

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈W

∈ U +W. □

4.2 Dualraum

Definition 4.2.1. Sei V ein Vektorraum über dem Körper K. Eine

Linearform auf V ist eine lineare Abbildung α ∶ V → K. Sind α, β

Linearformen und sind λ,µ ∈ K, so ist λα + µβ, definiert durch

(λα + µβ)(v) = λα(v) + µβ(v),

wieder eine Linearform. Man sieht, dass V∗ ein linearer Unterraum des

Vektorraums Abb(V,K) ist.
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Beispiele 4.2.2. (a) Ist V = K, so ist jede Linearform von der Form

x↦ λx für ein λ ∈ K.

(b) Ist V = Kn, so ist jede Koordinatenabbildung v↦ v j eine Linearform.

(c) Ist S eine Menge in V = Abb(S,K) der Vektorraum aller

Abbildungen von S nach K, so ist für jedes s ∈ S die

Punktauswertung δs ∶ V → K; f ↦ f (s) eine Linearform.

Definition 4.2.3. Sei v1, . . . ,vn eine Basis von V. Für j = 1, . . . ,n sei v∗j die

Linearform

v∗j (λ1v1 + ⋅ ⋅ ⋅ + λnvn) = λ j.

Warnung: Die Vektoren v∗1, . . . ,v
∗
n hängen von der Wahl der gesamten

Basis B = (v1, . . . ,vn) ab, es sollte also besser v∗
1,B , . . . ,v

∗
n,B heißen.

Beispiele 4.2.4. (a) Sei V = Kn und e1, . . . , en die Stundard-Basis. Dann

gilt

e∗j
⎛
⎜⎜⎜
⎝

x1

⋮
xn

⎞
⎟⎟⎟
⎠
= x j.

(b) Sei die Charakteristik von K ≠ 2 und sei v1 =
⎛
⎝

1

1

⎞
⎠, sowie v2 =

⎛
⎝

1

−1

⎞
⎠.

Dann ist v1,v2 eine Basis von K2 und es gilt

v∗1
⎛
⎝

x
y

⎞
⎠ =

x + y
2
, v∗2

⎛
⎝

x
y

⎞
⎠ =

x − y
2
.

Lemma 4.2.5. Ist v1, . . . ,vn eine Basis von V, so ist v∗1, . . . ,v
∗
n eine Basis von

V∗, genannt die duale Basis. Insbesondere ist V endlich-dimensional, falls V
dies ist.

Beweis. Sei α ∈ V∗. definiere λ j = α(v j). Wir behaupten, dass

α = λ1v∗1 + ⋅ ⋅ ⋅ + λnv∗n. Es reicht zu zeigen, dass diese beiden linearen auf

den Basisvektoren übereinstimmen. Es ist aber gerade

(λ1v∗1 + ⋅ ⋅ ⋅ + λnv∗n)(v j) = λ1v∗1(v j) + ⋅ ⋅ ⋅ + λnv∗n(v j) = λ j = α(v j).
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damit ist also α = λ1v∗1 + ⋅ ⋅ ⋅ +λnv∗n und v∗n, . . . ,v∗n ein Erzeugendensystem.

Um die lineare Unabhängigkeit zu zeigen nimm an wir habe eine

Linearkombination der Null: µ1v∗1 + ⋅ ⋅ ⋅ + µnv∗n = 0. Für 1 ≤ j ≤ n gilt dann

0 = (µ1v∗1 + ⋅ ⋅ ⋅ + µnv∗n)(v j) = µ j,

also µ1 = ⋅ ⋅ ⋅ = µn = 0. □

Bemerkungen.

• Ist V endlich-dimensional und v1, . . . ,vn eine Basis, so liefert die

lineare Abbildung gegeben durch v j ↦ v∗j einen Isomorphismus

der Vektorräume V → V∗. Dieser hängt allerdings von der Wahl der

Basis ab.

• Ist V unendlich-dimensional, so ist V∗ nicht isomorph zu V (ohne

Beweis).

Beispiele 4.2.6. (a) Ist V = Kn, so ist der durch die Stundard-Basis

induzierte Isomorphismus V → V∗ gegeben durch x↦ xt, wobei xt

für die transponierte Matrix steht und damit für die lineare

Abbildung y↦ xty.

(b) Die Basis v1 =
⎛
⎝

1

1

⎞
⎠ und v2 −

⎛
⎝

1

−1

⎞
⎠ von K2 induziert einen

Isomorphismus K2 → (K2)∗ gegeben durch x↦ (1
2x)t.

Lemma 4.2.7. Sei T ∶ V →W eine lineare Abbildung, so ist T∗ ∶W∗ → V∗,
gegeben durch

T∗(α) = α ○ T

eine lineare Abbildung. Sie heißt die zu T duale Abbildung. Es gilt

(λT + µS)∗ = λT∗ + µS∗, sowie (T ○R)∗ = R∗ ○ T∗,

wobei T,S ∶ V →W, R ∶ U → V linear sind und λ,µ ∈ K.
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Beweis. Wir müssen zuerst zeigen, dass f ∗(α)wieder linear ist. Hierzu

rechnen wir

T∗(α)(λv + µv′) = α(T(λv + µv′)

= α(λT(v) + µT(v′)

= λα(T(v)) + µα(T(v′)) = λT∗(α)(v) + µT∗(α)(v′).

Daher ist T∗(α)wieder linear und T∗ ∶W∗ → V∗ wohldefiniert. Als

nächstes ist zu zeigen, dass α↦ T∗(α) linear ist. Dies sieht man durch

T∗(λα+µβ)(v) = (λα+µβ)(T(v)) = λα(T(v))+µβ(T(v)) = λT∗(α)(v)+µT∗(β)(v).

Schließlich ist zu zeigen, dass für festes α die Abbildung T ↦ T∗(α)
linear ist, was man ähnlich zeigt.

Am Ende schließlich zur Hintereinunderausführung:

(T ○R)∗(α) = α ○ (T ○R) = (α ○ T) ○R = (T∗(α)) ○R = R∗(T∗(α)) = R∗ ○ T∗(α).
□

Lemma 4.2.8. Die Duale Abbildung wird durch die transponierte Matrix
dargestellt. Genauer, sei T ∶ V →W eine lineare Abbildung. Sei B eine Basis
von V und C eine von W. Dann gilt

M C ∗
B∗ (T

∗) = (M B
C (T))

t
.

Beweis. Sei A =M B
C (T), das heißt

T(v j) =
m

∑
i=1

ai, jwi.

Damit T∗(w∗k)(v j) = w∗k(T(v j)) = ak, j, also

T∗(w∗k) =
n

∑
j−1

ak, jv∗j ,
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was gerade bedeutet, dass T∗ durch die Matrix At dargestellt wird. □

Korollar 4.2.9. Sei T ∶ V →W linear, wobei V und W endlich-dimensional
sind. Dann gilt

(a) dim Bild T = dim Bild T∗,

(b) dim ker T − dim ker T∗ = dim V − dim W,

(c) T injektiv⇔ T∗ surjektiv,

(d) T∗ injektiv⇔ T surjektiv,

(e) T bijektiv⇔ T∗ bijektiv.

Beweis. (a) Sei T durch die Matrix A dargestellt. Dann ist dim Bild T
gerade der Rang von A. Dieser ist gleich dem Rang von At, also gleich

dim Bild(T∗).

(b) Nach den Dimensionsformeln und Teil (a) ist

dim ker T − dim ker T∗ = (dim V − dim Bild T) − (dim W∗ − dim Bild T∗)

= dim V − dim W.

(c) T ist genau dann injektiv, wenn dim ker T = 0 und dies ist nach (b)

äquivalent zu dim ker T∗ = dim W − dim V oder dim V = dim Bild T∗

nach Dimensionsformel. (d) folgt ähnlich und (e) folgt aus (c) und

(d). □

Definition 4.2.10. Sei V ein Vektorraum. Sei V∗∗ = (V∗)∗ der

Bidualraum. Betrachte die Abbildung δ ∶ V → V∗∗, v↦ δv mit

δv(α) = α(v).
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Satz 4.2.11. Ist V endlich-dimensional, dann ist δ ein Isomorphismus.

Beweis. Wir zeigen zunächst, dass δ linear ist. Für v,w ∈ V und λ,µ ∈ K,

sowie α ∈ V∗ gilt

δλv+µw(α) = α(λv + µw)

= λα(v)µα(w)

= λδv(α) + µδw(α),

also δλv+µw = λδv + µδw. Damit ist δ linear. Sei v1, . . . ,vn eine Basis von V,

sei v∗1, . . . ,v
∗
n die Duale Basis und sei v∗∗1 , . . . ,v

∗∗
n die hierzu duale Basis

von V∗∗. Wir zeigen δv j = δ(v j) = v∗∗j . Hierzu berechne

δv j(v
∗
k) = v∗k(v j) = δk, j = v∗∗j (v

∗
k). □

4.3 Quotienten

Bei Vektorräumen haben wir, anders als bei Moduln, einen

Komplementärraum. Damit können wir auch Quotienten besser

verstehen.

Proposition 4.3.1. Ist W ein Komplementärraum zu U, also

V = U ⊕W,

dann ist die Abbildung ψ ∶W → V/U; w↦ [w] = w +U ein linearer
Isomorphismus.

Beweis. ψ ist linear, denn

ψ(λw +w′) = (λw +w′ +U = λ(w +U) + (w′ +U) = λψ(w) +ψ(w′).
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Die Abbildung ψ ist injektiv, denn

ψ(w) = 0 ⇒ w ∈ U ⇒ w = 0,

da w ∈W. ψ ist surjektiv, denn sei v ∈ V, dann kann man v = u +w
schreiben mit u ∈ U und w ∈W. Es folgt v +U = w +U = ψ(w) und daher

ist ψ surjektiv. □

Korollar 4.3.2. Ist U ⊂ V ein linearer Unterraum, so liefern die natürlichen
Abbildungen eine exakte Sequenz

0→ U α
Ð→ V

β
Ð→ V/U → 0.

Beweis. α ist die Inklusion des Unterraums, also injektiv. β ist die

Projektion des Quotienten, also surjektiv. Das Bild von α ist U und dies

ist der Kern von β. □

Proposition 4.3.3 (Universelle Eigenschaft). Sei U ⊂ V ein Unterraum
und sei P ∶ V → V/U die Projektion. Zu jeder linearen Abbildung

T ∶ V →W

mit T(U) = 0 gibt es genau eine linear Abbildung S ∶ V/U →W so dass das
Diagramm

V

P !!

T //W

V/U
S

OO

kommutiert. Diese universelle Eigenschaft induziert einen linearen
Isomorphismus

(T ∈Hom(V,W) ∶ T(U) = 0) ≅
Ð→Hom(V/U,W).

Beweis. Sei die Situation wie oben. Definiere S ∶ V/U →W durch

S(v +U) = T(v).
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Für die Wohldefiniertheit sei v +U = v′ +U. Dann folgt v − v′ ∈ U, also

T(v − v′) = 0 oder T(v) = T(v′), was die Wohldefiniertheit zeigt. Für

v ∈ V gilt nun T(v) = S(v +U) = S(P(v)), also T = S ○ P und damit

kommutiert das Diagramm. Zur Eindeutigkeit sei S′ ∶ V/U →W eine

weitere Abbildung, die das Diagramm kommutativ macht. Es gilt dann

S′(v +U) = T(v) = S(v +U).

Sei dann ψ ∶ (T ∈Hom(V,W) ∶ T(U) = 0) →Hom(V/U,W) die

entstehende Abbildung. Eine Stundardverifikation zeigt, dass ψ linear

ist. Fuer die Injektivitaet sei T gegeben mit S = ψ(T) = 0. Aus der Formel

T = S ○ P folgt dann auch T = 0 und damit ist ψ injkektiv. Fuer die

Surjektivitaet sei S gegeben, dann definiere T durch T = S ○ P, so folgt

ψ(T) = S. □

Definition 4.3.4. Sei T ∶ V →W linear. Den Quotienten W/Bild(T) nennt

man den Cokern von T und schreibt ihn als coker(T). Dann ist die

Sequenz

0→ ker(T) → V T
Ð→W → coker(T) → 0

exakt.

Satz 4.3.5 (Homomorphiesatz). Sei T ∶ V →W linear, dann ist die
Abbildung T̃ ∶ v + ker(T) ↦ T(v) ein Isomorphismus

V/ker(T) ≅
Ð→ Bild(T).

Beweis. Da T(ker(T)) = 0, ist die lineare Abbildung T̃ wohldefiniert. Sie

ist offensichtlich injektiv und surjektiv. □
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Satz 4.3.6. Sei V ein K-Vektorraum und seien U,W Unterraeume.

(a) Die Abbildung ϕ ∶ u + (U ∩W) ↦ u +W ist ein Isomorphismus

U/(U ∩W) → (U +W)/W.

(b) Gilt W ⊂ U, dann ist die Abbildung ψ ∶ (v +W) + (U/W) ↦ v +U ein
Isomorphismus

(V/W)/(U/W) → V/U.

Beweis. Die Wohldefiniertheit ist bei beiden Abbildungen leicht

einzusehen. Zur Injektivitaet von ϕ sei u ∈ U mit ϕ(u + (U ∩W)) = 0.

Dann folgt u ∈W, also u ∈ U ∩W, also u + (U ∩W) = 0 + (U ∩W), die

Abbildung ϕ ist also injektiv. Fuer die Surjektivitaet sei

u +w +W ∈ (U +W)/W gegeben. Dann gilt

u +w +W = u +W = ϕ(u + (U ∩W)).

Fuer die Injektivitaet von ψ sei v +W + (U/W) ∈ (V/W)/(U/W)mit

ψ(v +W + (U/W)) = 0 gegeben. Das bedeutet, dass v ∈ U liegt, damit

also v +W in U +W und daher ist v +W + (U/W) das Nullelement. Die

Surjektivitaet von ψ ist klar. □

Korollar 4.3.7 (Alternative Formulierung des letzten Satzes). Sei V ein
K-Vektorraum und seien U,W Unterraeume. Wir schreiben die Elemente von
V/U nun als Aequivalenzklassen [v]U, v ∈ V.

(a) Die Abbildung ϕ ∶ [u]U+W ↦ [u]W ist ein Isomorphismus

U/(U ∩W) ≅
Ð→ (U +W)/W.

(b) Gilt W ⊂ U, dann ist die Abbildung ψ ∶ [[v]W]U+W ↦ [v]U ein
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Isomorphismus
(V/W)/(U/W) → V/U.

4.4 Tensorprodukt

Definition 4.4.1. Für eine beliebige Menge S ≠ 0 sei K[S] der

Vektorraum der formalen Summen

∑
s∈S
λss, λs ∈ K, fast alle Null.

Dies wird ein Vektorraum durch

∑
s∈S
λss +∑

s∈S
µss = ∑

s∈S
(λs + µs)s, λ∑

s∈S
λss = ∑

s∈S
λλss.

Genauer kann man K[S] auch als die Menge aller Abbildungen S→ K,

s↦ λs auffassen, die für fast alle s verschwinden.

Definition 4.4.2. Seien U,V,W Vektorräume über K. Eine Abbildung

b ∶ V ×W → U heißt bilinear, falls

• v↦ b(v,w) ist linear für jedes feste w ∈W und

• w↦ b(v,w) ist linear für jedes feste v ∈ V.

Wir schreiben Bil(V ×W,U) für den Vektorraum aller bilinearen

Abbildungen V ×W → U.

Beispiele 4.4.3. (a) Bilinearformen sind bilineare Abbildungen.

(b) Das Matrixprodukt Mm×n ×Mn×p →Mm×p ist bilinear.

(c) Die Kommutator-Klammer [., .]Mn →Mn, gegeben durch

[A,B] = AB − BA

ist bilinear.
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Satz 4.4.4. Zu gegebenen Vektorräumen V und W gibt es einen Vektorraum
V⊗W und eine bilineare Abbildung b0 ∶ V ×W → V⊗W mit der folgenden
universellen Eigenschaft:
Ist b ∶ V×W → U eine bilineare Abbildung, dann existiert genau eine lineare
Abbildung ϕb ∶ V ⊗W → U so dass das Diagramm

V ×W b0 //

b
&&

V ⊗W
ϕb∃!
��

U

kommutiert. Diese universelle Eigenschaft legt den Raum V ⊗W und die
universelle Bilinearform b0 bis auf Isomorphie eindeutig fest.
Diese universelle Eigenschaft induziert einen linearen Isomorphismus

Bil(V ×W,U) ≅
Ð→Hom(V ⊗W,U).

Wir nennen den Raum V ⊗W das Tensorprodukt von V und W und
schreiben v⊗w ∈ V ⊗W für das Element b0(v,w).

Proof. Betrachte den Vektorraum K[V ×W] und definiere den

Unterraum M erzeugt von allen Elementen der Form

[(v + v′,w)] − [(v,w)] − [(v′,v)], [(v,w +w′)] − [(v,w)] − [(v,w′)],

[(λv,w)] − λ[(v,w)] [(v, λw)] − λ[(v,w)].

mit v ∈ V, w ∈W und λ ∈ K. Definiere dann

V ⊗W ∶= K[V ×W]/M

Schreibe v⊗w für das Bild von (v,w) in V ⊗W. Die Abbildung

b0 ∶ V ×W → V ⊗W, b(v,w) = v⊗w ist erzwungenermaßen bilinear. Ist

nun b ∶ V ×W → U bilinear, dann definiere eine lineare Abbildung
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ϕ̃ ∶ K[V ×W] → U durch

ϕ̃(v,w) = b(v,w).

Die Bilinearität von b impliziert, dass ϕ̃(M) = 0, also faktorisiert ϕ̃ über

ein eindeutig bestimmtes ϕb ∶ V ⊗W → U.

K[V ×W]

��

ww

V ×W
b0

//

b
&&

44

V ⊗W
ϕb∃!
��

U

Die Kommutativität des Dreiecks links unten folgt aus der

Surjektivitaet von L[V ×W] → V ⊗W und der Kommutativtät der

undren beide Dreiecke. Die Eindeutigkeit von V ⊗W geht wieder über

Trick der universellen Eigenschaft. □

Definition 4.4.5. Die Elemente der Form v⊗w mit v ∈ V und w ∈W
heißen reine Tensoren oder auch einfache Tensoren.

Proposition 4.4.6. (a) Ist (ei)i∈I eine Basis von V, dann hat jeder Vektor von
x ∈ V ⊗W eine eindeutige Darstellung der Form

x = ∑
i∈I

ei ⊗wi

mit wi ∈W, fast alle Null.

(b) Ist ( f j) j∈J eine Basis von W, dann ist (ei ⊗ f j)(i, j)∈I×J eine Basis von V ⊗W.
Insbesondere folgt

dim(V ⊗W) = (dim V)(dim W).

Proof. (a) Jedes Element x ∈ V ⊗W hat eine Darstellung der Form
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x = ∑n
k=1 vk ⊗wk. Dann ist vk = ∑i∈I µiei und daher

x =
n

∑
k=1
(∑

i∈I
µiei) ⊗wk = ∑

i∈I
ei ⊗ (

n

∑
k=1
µiwk) .

Für die Eindeutigkeit gelte

∑
i∈I

ei ⊗wi = ∑
i∈I

ei ⊗w′i.

Fixiere i0 ∈ I und betrachte die Bilinearform b ∶ V ×W →W gegeben

durch b (∑i∈I λiei,w) = λi0w. Sei ϕb die entsprechende lineare Abbildung,

dann folgt

wi0 = ϕb (∑
i∈I

ei ⊗wi) = ϕb (∑
i∈I

ei ⊗w′i) = w′i.

(b) folgt aus (a), denn jedes x hat eine eindeutige Darstellung ∑i∈I ei ⊗ vi

und jedes vi hate eine eindeutige Darstellung vi = ∑ j∈J λi, j f j. □

Beispiele 4.4.7. (a) Wir können C als Vektorraum über R auffassen. Für

einen beliebigen R-Vektorraum V sei dann

VC = C⊗R V = (1⊗V) ⊕ (i⊗V) = V + iV.

Man nennt VC die Komplexifizierung von V.

(b) Allgemeiner seien L ⊃ K zwei Körper. Wir fassen L als

K-Vektorraum auf und definieren

VL = L⊗K V

für einen beliebigen K-Vektorraum V.

Satz 4.4.8. Seien V,W endlich-dimensionale K-Vektorräume und sei V∗
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der Dualraum von V. Die Abbildung

ψ ∶ V∗ ⊗W →Hom(V,W),

(α,w) ↦ [v↦ α(v)w]

ist eine lineare Bijektion.

Beweis. Die Abbildung V∗ ×W →Hom(V,W), (α,w) ↦ ψ(α,w) ist

bilinear, daher verlängert sie zu einer linearen Abbildung wie im Satz.

Die Dimensionen der beiden Räume sind gleich, daher reicht es zu

zeigen, dass die Abbildung ψ surjektiv ist. Seien v1, . . . ,vn und

w1, . . . ,wm Basen von V und W und sei v∗1, . . . ,v
∗
n die duale Basis von V∗.

Ist T ∶ V →W in diesen Basen durch die Matrix A = (ai, j) gegeben und ist

v = ∑n
j=1λ jv j dann gilt

T(
n

∑
j=1
λ jv j) =

n

∑
j=1

m

∑
i=1
λ jai, jwi.

Nun ist λ j = v∗j (v), also haben wir T(v) = ∑n
j=1∑

m
i=1 v∗j (v)ai, jwi oder

T =
n

∑
j=1

m

∑
i=1

ai, jv∗j wi =
n

∑
j=1

m

∑
i=1

ai, jψ(v∗j ⊗w j) = ψ(
n

∑
j=1

m

∑
i=1

ai, jv∗j ⊗w j). □

Proposition 4.4.9. Sind S ∶ V → V′ und T ∶W →W′ lineare Abbildungen, so
induzieren sie eine lineare Abbildung

S⊗ T ∶ V ⊗W → V′ ⊗W′,

gegeben durch
(S⊗ T)(v⊗w) = Sv⊗ Tw.

Beweis. Die Abbildung b ∶ V ×W → V′ ⊗W′ gegeben durch

b(v,w) = Sv⊗Tw ist bilinear, faktorisiert also eindeutig über eine lineare
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Abbildung V ⊗W → V′ ⊗W′ die wir S⊗ T nennen und die das

Gewünschte leistet. □

Beispiel 4.4.10. Seien in der Proposition V =W = V′ =W′ = K2. Seien S
und T in der stundard Basis durch die Matrizen A = ( a b

c d ) und B = ( α βγ δ )
gegeben. In der Basis e1 ⊗ e1, e1 ⊗ e2, e2 ⊗ e1, e2 ⊗ e2 von V ⊗W ist dann

S⊗W durch die Matrix

⎛

⎝

a ( α βγ δ ) b ( α βγ δ )

c ( α βγ δ ) d ( α βγ δ )

⎞

⎠
=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

aα aβ bα bβ
aγ aδ bγ bδ
cα cβ dα dβ
cγ cδ dγ dδ

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

gegeben.

Definition 4.4.11. Das Kronecker Produkt zweier Matrizen A ∈Mn(K)

und B ∈Mm(K) ist die nm × nm Matrix definiert als
⎛
⎜⎜⎜
⎝

A11B . . . A1,nB
⋮ ⋮

An,1B . . . An,nB

⎞
⎟⎟⎟
⎠
. Sie

gibt die lineare Abbildung A⊗ B wieder.

Satz 4.4.12. Seien V,W endlich-dimensionale K-Vektorräume und
A,A′ ∶ V → V und B,B′ ∶W →W linear. Dann gilt

(A⊗ B)(A′ ⊗ B′) = AA′ ⊗ BB′

sowie
tr(A⊗ B) = tr(A) tr(B)

und
det(A⊗ B) = det(A)m det(B)n,

wobei n = dim V und m = dim W.
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Proof. Für v ∈ V und w ∈W gilt

(A⊗ B)(A′ ⊗ B′)(v⊗w) = (A⊗ B)(A′v⊗ B′w) = AA′(v) ⊗ BB′(w).

Damit stimmen die beiden Seiten für reine Tensoren überein und da

beide Seiten lineare Abbildungen sind, stimmen sie überall überein. Die

Formel für die Spur sieht man am Kronecker-Produkt und für die

Determinante benutzt man

det(A⊗ B) = det((A⊗ I)(I ⊗ B)) = det(A⊗ I)det(I ⊗ B). Man sieht etwa

det(A⊗ I) = det(A)m wieder am Kronecker-Produkt. □

4.5 Die Tensorielle Algebra

Definition 4.5.1. Eine Algebra über dem Körper K ist ein K-Vektorraum

A zusammen mit einer bilinearen Abbildung

A ×A→ A

(a, b) ↦ ab,

die assoziativ ist, d.h., es gilt

(ab)c = a(bc)

für alle a, b, c ∈ A. Wir sagen, die Algebra A hat eine Eins oder ist eine

Algebra mit Eins, oder eine unitale Algebra, falls es ein Element 1A in

A gibt mit der Eigenschaft

1Aa = a1A = a

für jedes a ∈ A. In dieser Vorlesung betrachten wir nur Algebren mit

Eins! Deshalb gilt ab jetzt die Sprachkonvention, dass Algebra immer

Algebra mit Eins heissen soll. Andernfalls sprechen wir von einer

Algebra ohne Eins.
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Das Einselement ist eindeutig bestimmt, denn ist 1′ ein zweites

Einselement, dann gilt

1′ = 1′1A = 1A.

Beispiele 4.5.2. (a) Ist A irgendein K-Vektorraum, dann macht die

Nullmultiplikation ab = 0 den Raum A zu einer Algebra ohne Eins!

(b) Der Körper K selbst ist eine K-Algebra.

(c) Mn(K) ist mit dem Matrixprodukt eine Algebra mit Eins.

(d) Ist V irgendein Vektorraum (auch unendlich-dimensional), dann ist

die Menge

End(V) =Hom(V,V)

eine Algebra mit der Komposition als Multiplikation.

(e) Ist S eine Menge und ist A = Abb(S,K) der Vektorraum aller

Abbildungen von S nach K. Dann ist A eine Algebra mit dem

punktweisen Produkt:

f g(s) = f (s)g(s), s ∈ S.

(f) Über dem Körper R der reellen Zahlen betrachtet man die

Quaternionenalgebra H , dies ist ein vierdimensionaler

R-Vektorraum mit einer Basis 1, i, j, k. Die Relationen

1x = x1 = x i2 = j2 = −1 i j = k = − ji

definieren eine Algebrenstruktur auf H . Dies ist eine Algebra mit

Eins. Diese Algebra ist nichtkommutativ, aber dennoch ist jedes

Element ≠ 0 invertierbar, es hundelt sich also um einen sogenannten

Schiefkörper.

Beweis. Die Tatsache, dass H in der Tat die Axiome einer Algebra

erfüllt, muss man nachrechnen. Bei der Assoziativität reicht es,
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diese auf den Basiselementen nachzuweisen. Wir zeigen, dass jedes

Element ≠ 0 invertierbar ist. Zunächst stellen wir fest, dass

ik = ii j = − j und ki = i ji = −ii j = j

gilt und ebenso jk = i = −kj. Für ein Quaternion z = a + bi + cj + dk sei

z = a − bi − cj − dk definiert. Es folgt

zz = (a + bi + cj + dk)(a − bi − cj − dk)

= a2 − abi − acj − adk + abi + b2 − bck + bdj

+ acj + bck + c2 − cdi + adk − bdj + cdi

= a2 + b2 + c2 + d2.

Ist z ≠ 0, dann ist a2 + b2 + c2 + d2 ≠ 0 und also ist dann

1
a2 + b2 + c2 + d2 z

ein Inverses zu z. □

Definition 4.5.3. Sind A,B Algebren über einem Körper K, dann ist ein

Algebrenhomomorphismus von A nach B eine lineare Abbildung

ϕ ∶ A→ B, für die

ϕ(ab) = ϕ(a)ϕ(b) und ϕ(1) = 1

gilt. Das heißt also, ein K-linearer Ringhomomorphismus.

Beispiele 4.5.4. (a) Der Algebrenhomomorphismus Mn(K) →M2n(K),
A↦ (A

A ).

(b) Ist S ≠ ∅ eine Menge und A = Abb(S,K) die Algebra aller

Abbildungen von S nach K mit punktweiser Addition und

Multiplikation. Sei s0 ∈ S, dann ist die Abbildung ϕ ∶A → K,

f ↦ f (s0) ein Algebrenhomomorphismus.

Lemma 4.5.5. Sei ϕ ∶A →B ein Algebrenhomomorphismus. Ist ϕ bijektiv, so
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ist die Umkehrabbildung ϕ−1 ∶B →A ebenfalls ein
Algebrenhomomorphismus. In diesem Fall heisst ϕ ein
Algebrenisomorphismus.

Beweis. Wir wissen bereits, dass ϕ−1 linear ist. Seien also b, b′ ∈B , so gilt

ϕ(ϕ−1(bb′)) = bb′ = ϕ(ϕ−1(b))ϕ(ϕ−1(b′)) = ϕ(ϕ−1(b)ϕ−1(b′)).

Da ϕ injektiv ist, folgt

ϕ−1(bb′) = ϕ−1(b)ϕ−1(b′),

also ist ϕ−1 ein Algebrenhomomorphismus. Aus ϕ(1) = 1, folgt durch

Anwenden von ϕ−1 auch ϕ−1(1) = 1. Die Umkehrung folgt durch

Vertauschung der Rollen von ϕ und ϕ−1. □

Ist I eine Indexmenge und ist für jedes i ∈ I ein K-Vektorraum Vi

gegeben, so ist

V =∏
i∈I

Vi

ein K-Vektorraum, wobei die Addition und die skalare Multiplikation

komponentenweise erklaert sind. Wir betrachten den Unterraum

⊕
i∈I

Vi B {v ∈ ∏
i∈I

Vi ∶ vi = 0 für fast alle i} .

Man macht sich leicht klar, dass dies in der Tat ein Unterraum ist und

dass für endliche Indexmengen diese Notation mit der bisherigen

⊕-Notation für Unterraeume kompatibel ist, wenn man jedes V j als

Teilraum von V = ∏i∈I Vi auffasst. Es ist der Teilraum der Elemente des

Produktes, die nur an der j-Koordinate einen Eintrag ungleich Null

haben duerfen.
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Sei nun V ein K-Vektorraum und sei

T(V) = K ⊕V ⊕ (V ⊗V) ⊕ (V ⊗V ⊗V ⊗V) ⊕ . . .

=
∞
⊕
n=0

V⊗n,

wobei V⊗0 = K und

V⊗n = V ⊗V ⊗ ⋅ ⋅ ⋅ ⊗V
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n mal

für n ≥ 1 ist. Die Vorschrift

(v1 ⊗ ⋅ ⋅ ⋅ ⊗ vn)(w1 ⊗ ⋅ ⋅ ⋅ ⊗wm) = v1 ⊗ ⋅ ⋅ ⋅ ⊗ vn ⊗w1 ⊗ ⋅ ⋅ ⋅ ⊗wm

macht T(V) zu einer Algebra, die man die tensorielle Algebra von V
nennt.

Satz 4.5.6 (Universelle Eigenschaft der tensoriellen Algebra). Sei V
ein K-Vektorraum, ϕ = ϕV ∶ V → T(V) die Abbildung, die V auf die erste
Tensorpotenz schickt. Dann hat ϕ folgende universelle Eigenschaft:
Für jede K-Algebra A und jede lineare Abbildung α ∶ V →A existiert genau
ein Algebrenhomomorphismus ψ ∶ T(V) →A , der α fortsetzt, d.h., so, dass
das Diagramm

V
ϕ
//

α
""

T(V)
ψ
��

A
kommutiert.

Beweis. Sei eine lineare Abbildung α ∶ V →A in die Algebra A gegeben.

Wir definieren eine lineare Abbildung ψ ∶ T(V) →A durch ψ(1) = 1 und

ψ(v1 ⊗ ⋅ ⋅ ⋅ ⊗ vn) = α(v1)α(v2)⋯α(vn),

wobei rechts das Produkt in A genommen wird. Nach Definition ist ψ

multiplikativ auf den Basiselementen, damit aber auch schon insgesamt
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multiplikativ. Nach Konstruktion gilt ψ(ϕ(v)) = α(v) und damit

kommutiert das Diagramm. Sei nun ψ′ ein weiterer

Algebrenhomomorphismus, für den das Diagramm kommutiert, dann

gilt

ψ′(v1 ⊗ ⋅ ⋅ ⋅ ⊗ vn) = ψ′(v1)⋯ψ′(vn) = α(v1)⋯α(vn) = ψ(vn ⊗ ⋅ ⋅ ⋅ ⊗ vn)

und damit ψ′ = ψ. □

Bemerkung 4.5.7. Sei ϕ ∶A →B ein Algebrenhomomorphismus und

sei I = ker(ϕ) der Kern. Dann gilt

• I ist ein Untervektorraum von A und

• IA ⊂ I und AI ⊂ I, wobei

IA = Spann{ya ∶ y ∈ I, a ∈A}

geschrieben wurde.

Die zweite Eigenschaft schreibt man auch so

y ∈ I, a ∈A ⇒ ay, ya ∈ I.

Eine Teilmenge I ⊂A mit diesen beiden Eigenschaften nennt man ein

(zweiseitiges) Ideal von A .

Beispiel 4.5.8. Ist M ⊂A eine Teilmenge, dann ist der Untervektorraum

I =AMA = Spann{amb ∶ a, b ∈A , m ∈M}

ein Ideal. Dies ist das kleinste Ideal, das M enthaelt, man nennt es das

von M erzeugte Ideal.

Beweis. Ist M leer, so ist I das Nullideal. Sei also M ≠ ∅. Die Menge

AMA ist nach Definition ein Untervektorraum. Ist nun y ∈ I und a ∈A ,
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dann kann man y schreiben als

y =
n

∑
j=1

a jm jb j

mit b j, b j ∈A und m j ∈M. Also sind ay = ∑n
j=1 aa jm jb j und

ya = ∑n
j=1 a jm jb ja wieder in I. □

Satz 4.5.9. Ein Unterraum I einer Algebra A ist genau dann ein Ideal,
wenn der Quotientenraum A/I eine Algebrenstruktur traegt, so dass die
Projektion P ∶A →A/I ein Algebrenhomomorphismus ist. Diese
Algebrenstruktur ist dann eindeutig bestimmt.

Beweis. Sei I ein Ideal. Wir definieren eine Multiplikation auf dem

Quotientenraum A/I durch

(a + I)(b + I) = ab + I.

Hier ist die Wohldefiniertheit zu pruefen. Seien also a′, b′ ∈A mit

a + I = a′ + I und b′ + I = b + I, das heisst a − a′ ∈ I und b − b′ ∈ I. Dann gilt

ab − a′b′ = ab − a′b + a′b − a′b′

= (a − a′)
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
∈I

b + a′ (b − b′)
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
∈I

∈ I,

also ab + I = a′b′ + I, d.h., die Multiplikation ist wohldefiniert. Wegen der

Surjektivität der Projektion P ∶A →A/I ist diese Multiplikation

eindeutig festgelegt. □
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Satz 4.5.10 (Homomorphiesatz). Ist ϕ ∶A →B ein
Algebrenhomomorphismus, dann ist das Bild eine Unteralgebra von B und
es gilt

Bild(ϕ) ≅A/ker(ϕ),

wobei eine Isomorphie als Algebren gemeint ist.

Beweis. Der Kern ker(ϕ) ist ein Ideal, so dass die Algebra A/ker(ϕ)

wohldefiniert ist. Die besagte Isomorphie ist uns als eine Isomorphie

von Vektorraeumen bereits bekannt. Sie ist durch ϕ induziert und da ψ

ein Algebrenhomomorphismus ist, ist die Isomorphie auch einer. □

Beispiele 4.5.11. (a) Sei S eine Menge und A = Abb(S,K), sowie T ⊂ S
eine Teilmenge und sei

I = { f ∈A ∶ f ∣T = 0}.

Dann ist T ein Ideal und A/I ≅ Abb(T,K).

(b) Sind A und B Algebren, so ist auch A ×B eine Algebra mit der

komponentenweisen Multiplikation, also

(a, b)(a′, b′) = (aa′, bb′).

Die Projektion P ∶A ×B →A ist ein Algebrenhomomorphismus mit

Kern

I = {0} ×B .

(c) Sei 1 ≤ k ≤ n und sei A die Menge aller Matrizen in Mn(K) der

Gestalt (A B
D ), also der untere linke (n − k) × k-Block ist Null. Dann

ist A eine Unteralgebra mit Eins von Mn(K) und die Abbildung

A →Mk(K), (A B
D ) ↦ A ist ein Algebrenhomomorphismus dessen

Kern das Ideal I aller Matrizen der Form ( 0 B
D ) ist.
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Satz 4.5.12. Jede Algebra A mit Eins ist Quotient einer tensoriellen
Algebra, d.h. es gibt einen Vektorraum V und ein Ideal I von T(V) so dass
A ≅ T(V)/I.

Beweis. Als Vektorraum kann man V =A selbst nehmen. Die lineare

Abbildung A →A , die durch die Identitaet gegeben ist, induziert nach

der universellen Eigenschaft einen Algebrenhomomorphismus

ψ ∶ T(V) →A , der surjektiv ist, weil die Einschraenkung nach V ≅A
schon surjektiv ist. Sei I = ker(ψ), so folgt A ≅ T(V)/I. □

4.6 Die äußere Algebra

Definition 4.6.1. Sei V ein K-Vektorraum. Die äußere Algebra ⋀∗V ist

definiert als ∗
⋀V = T(V)/ ⟨v⊗ v ∶ v ∈ V⟩

Man schreibt das Bild von v⊗w als v ∧w. Es gilt dann

v ∧w = −w ∧ v,

denn

0 = (v +w) ∧ (v +w) = v ∧ v + v ∧w +w ∧ v +w ∧w = v ∧w +w ∧ v.

Die äußere Algebra ist ein Quotient der tensoriellen Algebra, es gibt

also einen surjektiven Algebrenhomomorphismus

ϕ ∶ T(V) → ⋀∗V.

Der Kern von ϕ ist das zweiseitige Ideal erzeugt von allen Elementen

der Form v⊗ v für v ∈ V.
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Beispiele 4.6.2. (a)

(b) Sei V = Rv0 ein eindimensionaler R-Vektorraum. Man kann C als

Quotienten der R-Algebra T(V) schreiben. Der Kern ist das Ideal

erzeugt von v0 ⊗ v0 + 1.

Satz 4.6.3. Ist v1, . . . ,vn eine Basis von V, dann ist

(vi1 ∧ ⋅ ⋅ ⋅ ∧ vik)1≤i1<⋅⋅⋅<ik≤n

eine Basis von ⋀k V. Insbesondere ist

dim⋀k V = ⎛⎝
n
k

⎞
⎠

und damit insbesondere ⋀k V = 0 falls k > n und dim⋀●V = 2n.

Beweis. Da die Tensoren vi1 ⊗ ⋅ ⋅ ⋅ ⊗ vik den Raum V⊗k aufspannen, bilden

die genannten Vektoren ein Erzeugersystem. Es reicht also, die

Dimensionsaussage zu zeigen. Für n = 0 ist die Behauptung klar. Sei sie

also für n bewiesen. Sei W = V ⊕Kw0 mit einem neuen Vektor w0. Dann

ist ⋀W = (⋀V) ⊕ (⋀V ∧w0), woraus die Behauptung folgt. □

Beispiele 4.6.4. (a) Sei V = K, dann hat ⋀V die Basis 1, e und die

Multiplikation ist gegeben durch e2 = 0.

(b) Sei V = K2. Dann hat ⋀V die Basis 1, e1, e2, e1 ∧ e2.

(c) Sei V = K3. Dann hat ⋀V die Basis

1, e1, e2, e3, e1 ∧ e2, e1 ∧ e3, e2 ∧ e3, e1 ∧ e2 ∧ e3.
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4.7 Die symmetrische Algebra

Sei V ein K-Vektorraum und sei I das Ideal von T(V) erzeugt von der

Teilmenge

M = {v⊗w −w⊗ v ∶ v,w ∈ V}.

Sei

Sym(V) = T(V)/I.

Man nennt Sym(V) die symmetrische Algebra über V. Man schreibt

das Bild von v1 ⊗ ⋅ ⋅ ⋅ ⊗ vn in Sym(V) als v1⋯vn.

Satz 4.7.1. Die Algebra Sym(V) ist kommutativ. Die kanonische Abbildung
sym ∶ V → Sym(V) ist injektiv. Sym(V) ist die universelle kommutative
Algebra mit einer linearen Abbildung von V, genauer heisst das: Ist α ∶ V →
A eine lineare Abbildung in eine kommutative Algebra, so existiert genau
ein Algebrenhomomorphismus ϕ ∶ Sym(V) →A der das Diagramm

V
sym

//

α
''

Sym(V)
∃!ϕ
��

A

kommutativ macht.

Beweis. Der kanonische Algebrenhomomorphismus T(V) →A über

den α faktorisiert, annulliert das Ideal I, da A kommutativ ist. Daher

existiert genau ein ϕ, welches das Diagramm kommutativ macht. □

Satz 4.7.2. Sei V ≠ 0 endlich-dimensional, dann ist die Algebra Sym(V)
unendlich-dimensional. Sie kann geschrieben werden als

Sym(V) =
∞
⊕
j=0

Sym j(V),
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wobei Sym j(V) das Bild von V⊗n ist. Es gilt

Symk(V)Sym j(V) ⊂ Symk+ j(V).

Ist e1, . . . , en eine Basis von V, dann ist

(ep1

1 ⋯epn
n )p1+⋅⋅⋅+pn= j

eine Basis von Sym j(V), wobei die p j inN0 liegen. In diesem Fall definiert
die Vorschrift

Sym(V) → K[X1, . . . ,Xn],

e j ↦ X j

einen Algebrenisomorphismus.

Beweis. Schreibe Sym(V) = T(V)/I wie oben. Dann wird Sym(V) von

den Elementen der Form v1⋯vn, genannt Monome, aufgespannt, da

T(V) von den reinen Tensoren aufgespannt wird. Dann ist Sym j(V) der

Spann der Monome der Laenge j und Sym(V) ist die Summe aller

Sym j(V). Es ist zu zeigen, dass Sym j ∩Symk = 0 für k ≠ j gilt. Dies folgt

allerdings automatisch, wenn wir die Aussage über die Basis zeigen. Es

ist nun

v1 ⊗ ⋅ ⋅ ⋅ ⊗ vk ⊗ vk+1 ⊗ ⋅ ⋅ ⋅ ⊗ vm − v1 ⊗ ⋅ ⋅ ⋅ ⊗ vk+1 ⊗ vk+ ⊗ ⋅ ⋅ ⋅ ⊗ vm

in I, hier wurden zwei aufeinunderfolgende Faktoren vertauscht. Das

bedeutet, dass man in Sym(V) in einem Monom v1⋯vm ebenfalls zwei

aufeinunderfolgende Faktoren vertauschen kann. Ist nun e1, . . . , en eine

Basis von V, dann kann man in einem gegebenen Monom v1⋯vm jdes v j

in der Basis entwickeln und alles ausdistribuieren, so dieht man , dass

Sym(V) von den Monomen der Gestalt ei1⋯eim erzeugt wird. Indem
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man benachbarte Faktoren vertauscht, kann man ein solches Monom

immer in die Form ep1

1 ⋯epn
n bringen, so dass die behauptete Basis schon

einmal ein Erzeugendensystem ist. Um die lineare Unabhängigkeit zu

zeigen betrachten wir die lineare Abbildung α ∶ V → K[x1, . . . ,xn]

definiert durch α(e j) = x j, so induziert diese nach der universellen

Eigenschaft einen Algebrenhomomorphismus

ϕ ∶ Sym(V) → K[x1, . . . ,xn] dessen Bild von x1, . . . ,xn erzeugt wird, der

also surjektiv ist. Da die Monome der Form ep1

1 ⋯epn
n gerade auf die

Monome im Polynomring abgebildet werden, die bekanntermaßen eine

Basis von K[x1, . . . ,xn] bilden, ist ϕ ein Algebrenisomorphismus und die

Monome eine Basis von Sym(V)wie behauptet. □

4.8 Multilineare Abbildungen

Seien V1, . . . ,Vk,W Vektorräume über K. Eine Abbildung

m ∶ V1 × ⋅ ⋅ ⋅ ×Vk →W

heißt multilinear, falls für jedes 1 ≤ j ≤ n und für fest gewählte Vektoren

vi ∈ V für i ≠ j die Abbildung

v↦ m(v1, . . . ,v j−1,v,v j+1, . . . ,vn)

linear ist.

Beispiele 4.8.1. (a) Sei V = Kn, dann ist die Determinante

det ∶ V × ⋅ ⋅ ⋅ ×V → K

eine multilineare Abbildung.
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(b) Die Abbildung

V1 × ⋅ ⋅ ⋅ ×Vk → V1 ⊗V2 ⊗ ⋅ ⋅ ⋅ ⊗Vk

(v1, . . . ,vk) ↦ v1 ⊗ ⋅ ⋅ ⋅ ⊗ vk

ist multilinear.

Satz 4.8.2. Seien V1, . . . ,Vk,W Vektorräume. Zu jeder multilinearen Abbil-
dung

m ∶ V1 × ⋅ ⋅ ⋅ ×Vk →W

gibt es genau eine lineare Abbildung m⊗ ∶ V1 ⊗ ⋅ ⋅ ⋅ ⊗ Vk → W, so dass das
Diagramm

V1 × ⋅ ⋅ ⋅ ×Vk
µ
//

m
))

V1 ⊗ ⋅ ⋅ ⋅ ⊗Vk

∃! m⊗
��

W

kommutiert. Die Abbildung m↦ m⊗ ist eine lineare Bijektion

Multk(V1 × ⋅ ⋅ ⋅ ×Vk,W)
≅
Ð→Hom(V1 ⊗ ⋅ ⋅ ⋅ ⊗Vk,W).

Beweis. Man wiederholt die Konstruktion aus dem Produkt zweier

Räume. □

Definition 4.8.3. Eine multilineare Abbildung m ∶ Vk → U heißt

symmetrisch, falls

m(vσ(1), . . . ,vσ(k)) = m(v1, . . . ,vk)

für jede Permutation σ ∈ Per(n) gilt.

Sie heißt alternierend, wenn

m(v1, . . . ,vk) = 0,

falls vi = v j für ein i und ein j ≠ i.
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Lemma 4.8.4. Ist m alternierend, dann gilt

m(vσ(1), . . . ,vσ(k)) = sign(σ)m(v1, . . . ,vk) (*)

für jede Permutation σ ∈ Per(n). Ist Char(K) ≠ 2, so folgt aus (*) für alle σ
schon, dass m alternierend ist.

Beweis. Ist σ = τi, j eine Transposition so gilt

0 = m(v1, . . . , vi + v j
²

i−te Stelle

, . . . , vi + v j
²

j−te Stelle

, . . . ,vk)

= m(v1, . . . ,vi, . . . ,v j, . . . ,vk) +m(v1, . . . ,v j, . . . ,vi, . . . ,vk).

Damit folgt die Behauptung falls σ eine Transposition ist. Für die

allgemeine Aussage schreibt man σ als Produkt von Transpositionen

und zieht bei jeder Transposition einen Faktor (−1) heraus. □

Beispiele 4.8.5. (a) Ist V = Kn, so ist die Determinante det ∶ Vn → K
alternierend.

(b) Ist V = K, so ist die Abbildung m ∶ Vk → K, gegeben durch

m(a1, . . . , ak) = a1⋯ak symmetrisch.

Satz 4.8.6. Zu jeder alternierenden Abbildung m ∶ Vk →W existiert eine
eindeutig bestimmte lineare Abbildung m∧ ∶ ⋀k V →W, so dass das
Diagramm

Vk ∧ //

m
""

⋀k V
∃! m∧
��

W

kommutiert. Die Abbildung m↦ m∧ ist ein linearer Isomorphismus

Altk(Vk,W) ≅
Ð→Hom(⋀k V,W).
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Beweis. Analog zum Beweis von Satz 4.7.2. □

4.9 Lineare Abbildungen

Sei T ∶ V → V linear. Die Abbildung

m ∶ Vk → ⋀k V

(v1, . . . ,vk) ↦ Tv1 ∧ ⋅ ⋅ ⋅ ∧ Tvk

ist alternierend. Nach der universellen Eigenschaft existiert eine lineare

Abbildung

⋀k T ∶ ⋀k V → ⋀k V,

so dass

⋀k T(v1 ∧ ⋅ ⋅ ⋅ ∧ vk) = Tv1 ∧ ⋅ ⋅ ⋅ ∧ Tvk.

Beispiel 4.9.1. Sei die lineare Abbildung A ∶ K3 → K3 durch die Matrix

A =
⎛
⎜⎜⎜
⎝

a b c
d e f
g h j

⎞
⎟⎟⎟
⎠

gegeben. Wir bestimmen die Matrix von ⋀2 A in der Basis

e1 ∧ e2, e1 ∧ e3, e2 ∧ e3. Wir rechnen

⋀2 A(e1 ∧ e2) = (Ae1) ∧ (Ae2)

= (ae1 + de2 + ge3) ∧ (be1 + ee2 + he3)

= (ae − bd)e1 ∧ e2 + (ah − bg)e1 ∧ e3 + (dh − eg)e2 ∧ e3.

Ebenso rechnet man die underen Terme durch und erhält am Ende die

Matrix
⎛
⎜⎜⎜
⎝

det ( a b
d e ) det ( a c

d f ) det ( b c
e f )

det ( a b
g h ) det ( a c

g j ) det ( b c
h j )

det ( d e
g h ) det ( d f

g j ) det ( e f
h j )

⎞
⎟⎟⎟
⎠
.
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Satz 4.9.2. Ist dim V = n und T ∶ V → V linear, so gilt

⋀n T = det(T)Id.

Beweis. Sei v1 . . .vn eine Basis von V. Der eindimensionale Raum ⋀n V
wird von v1 ∧ ⋅ ⋅ ⋅ ∧ vn aufgespannt. Sei (ai, j) die Matrix von T, d.h.

Tv j =
n

∑
i=1

ai, jvi.

es folgt

⋀n T(v1 ∧ ⋅ ⋅ ⋅ ∧ vn) = Tv1 ∧ ⋅ ⋅ ⋅ ∧ Tvn

=
n

∑
i1...in=1

ai1,1⋯ain,nvi1 ∧ ⋅ ⋅ ⋅ ∧ vin

= ∑
σ∈Per(n)

aσ(1),1⋯aσ(n),n vσ(1) ∧ ⋅ ⋅ ⋅ ∧Vσ(n)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=sign(σ)v1∧⋅⋅⋅∧vn

= det(T) v1 ∧ ⋅ ⋅ ⋅ ∧ vn. □

Lemma 4.9.3. (a) Fuer lineare Abbildungen A,B ∶ V → V gilt

⋀k(AB) = (⋀k A)(⋀k B).

Insbesondere Folgt ⋀k(S−1) = ⋀k(S)−1 und tr(⋀k(STS−1) = tr⋀k(T).

(b) Ist A = D +N eine obere Dreiecksmatrix, wobei D diagonal ist und N nur
Nullen auf der Diagonale hat. Dann gilt

tr⋀k(A) = tr⋀k(D).
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Beweis. (a) Fuer beliebige v1, . . . ,vk ∈ V gilt

⋀ j(AB)v1 ∧ ⋅ ⋅ ⋅ ∧ vk = (ABv1) ∧ ⋅ ⋅ ⋅ ∧ (ABvk)

= ⋀ j(A)(Bv1) ∧ ⋅ ⋅ ⋅ ∧ (Bv j)

= ⋀k(A)⋀k(B)v1 ∧ ⋅ ⋅ ⋅ ∧ vk.

Damit gilt auch ⋀k(S)⋀k(S−1) = ⋀k(I) = I.

(b) Sei e1, . . . , en die Standard-Basis und sei B die Basis von ⋀k V, die aus

den Vektoren ei1 ∧ ⋅ ⋅ ⋅ ∧ eik mit i1 < i2 < ⋅ ⋅ ⋅ < ik besteht. Definiere

F(ei1 ∧ ⋅ ⋅ ⋅ ∧ eik) = 2i1 + ⋅ ⋅ ⋅ + 2ik ∈N.

Die Funktion F ∶B →N ist injektiv. Alle Elemente von B sind

Eigenvektoren von D und es gilt

⋀k(D +N)ei1 ∧ ⋅ ⋅ ⋅ ∧ eik = ⋀
k(D)ei1 ∧ ⋅ ⋅ ⋅ ∧ eik + Ñei1 ∧ ⋅ ⋅ ⋅ ∧ eik

= ⋀k(D)ei1 ∧ ⋅ ⋅ ⋅ ∧ eik + ∑
(R1,...,Rk)

R1ei1 ∧ ⋅ ⋅ ⋅ ∧Rkeik

wobei die Summe ueber verschiedene Tupel (R1, . . . ,Rk) laeuft, wobei

jedes Rk gleich D oder N ist, wobei bei jedem Summanden mindestens

ein Rk gleich N ist. Wir setzen F(λb) = F(b), falls 0 ≠ λ ∈ K und b ∈B . Ist

N(ei) ≠ 0, dann ist N(ei) = ei−1 und daher folgt

F(R1ei1 ∧ ⋅ ⋅ ⋅ ∧Rkei j) < F(ei1 ∧ ⋅ ⋅ ⋅ ∧ eik). Ist Fn = F−1({1,2, . . . ,n}) dann folgt

Ñ(Fn) ⊂ Fn−1. Das bedeutet, dass Ñ ind er Basis B durch eine obere

Dreiecksmatrix mit Nullen auf der Diagonale gegeben ist. Da ⋀k D
gleichzeitig durch eine Diagonalmatrix gegeben ist, folgt die

Behauptung. □
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Satz 4.9.4. Ist dim V = n und T ∶ V → V linear, so gilt

det(1 − T) =
n

∑
k=0
(−1)k tr⋀k T.

Beweis. Beide Seiten der Gleichung aendern sich nicht, wenn wir den

Körper K durch einen algebraischen Abschluss ersetzen, wir koennen

also den Körper als algebraisch abgeschlossen annehmen. Da beide

Seiten der Gleichung sich nicht aendern, wenn man T durch eine

konjugierte ersetzt, kann man annehmen, dass T in Jordan-Normalform

ist, also T = D +N, wobei D eine Diagonalmatrix ist. Es gilt dann

det(1 − T) = det(1 −D −N) = det(1 −D). Nach dem Lemma ist

tr⋀k T = tr⋀k(D +N) = tr⋀k D.

Insgesamt kann man also T durch D ersetzen und annehmen, dass T
eine Diagonalmatrix ist. Diese habe die Diagonaleinträge λ1, . . . , λn.

Dann ist

det(1 − T) = (1 − λ1)⋯(1 − λn) =
n

∑
k=0

∑
1≤i1<⋅⋅⋅<ik≤n

(−1)kλi1⋯λik

=
n

∑
k=0
(−1)k tr⋀k T. □

5 Kategorien

5.1 Kategorien

Definition 5.1.1. Eine Kategorie ist ein Tripel (Ob,Hom, ○), wobei Ob

eine Klasse ist, deren Elemente Objekte der Kategorie genannt werden.

Hom ist eine Familie von Mengen (Hom(X,Y))X,Y∈Ob. Die Elemente von

Hom(X,Y) heißen Morphismen oder Pfeile von X nach Y. Schließlich
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ist ○, die Komposition eine Familie von Abbildungen: fuer je drei

Objekte X,Y,Z:

Hom(X,Y) ×Hom(Y,Z) →Hom(X,Z)

( f , g) ↦ g ○ f ,

so dass

• g ○ ( f ○ h) = (g ○ f ) ○ h wenn die Pfeile komponierbar sind.

• Fuer jedes Objekt X gibt es einen Pfeil 1X ∈Hom(X,X)mit

f ○ 1X = f und 1X ○ g = g fuerr alle f , g, fuer die die jeweilige

Komposition existiert.

Bemerkung 5.1.2. (a) Der Einsmorphismus 1X ist eindeutig bestimmt,

denn, sei 1′X ein weiterer, dann gilt

1X = 1X1′X = 1′X.

(b) Wie bei Abbildungen aendert die Komposition die Reihenfolgt, also

muss g ○ f als “g nach f ” gelesen werden.

Beispiele 5.1.3. (a) SET ist die Kategorie der Mengen und

Abbildungen.

(b) AB ist die Kategorie der abelschen Gruppen und

Gruppenhomomorphismen.

(c) RING ist die Kategorie der Ringe mit Eins und unitalen

Ringhomomorphismen.

(d) x ist die Kategorie der topologischen Raeume und stetigen

Abbildungen.

(e) SET∗ ist die Kategorie der punktierten Mengen, d.h., Objekte sind

Paare (X,x0)wobei X eine Menge ist und x0 ∈ X ein Element.
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Morphismen von (X,x0) nach (Y, y0) sind Abbildungen f ∶ X → Y
mit f (x0) = y0.

(f) Sei C eine Kategorie. Dann ist C opp die entgegengesetzte oder

duale Kategorie in der alle Pfeile umgedreht sind. Sie hat dieselben

Objekte, aber

HomC opp(X,Y) =HomC (Y,X).

(g) Eine Gruppe kann als Kategorie verstenden werden mit nur einem

Objekt. Das bedeutet, eine gegebene Gruppe G definiert eine

Kategorie G mit nur einem Objekt X und HomG(X,X) ∶= G. Die

Komposition ist dann die der Gruppenstruktur.

(h) Sei (A,≥) eine partiell geordnete Menge. Man definiert dann eine

Kategorie mit Ob = A, wobei Hom(x, y) hat genau ein Element hat,

falls x ≤ y und sonst gilt Hom(x, y) = ∅.

(i) Seien A und B Kategorien. Die Produktkategorie A ×B hat als

Objekte die Paare (X,Y), wobei X ∈A und Y ∈B . Ferner sei

HomA×B ((A,B), (X,Y)) =Hom(A,X) ×Hom(B,Y)

und die Komposition geht koordinatenweise.

Definition 5.1.4. Morphismen werden visualisiert durch Diagramme

wie dieses

X
f
//

h ��

Y
g
��

Z

Ein Diagramm heisst kommutativ, falls je zwei Wege, die von einem

Punkt zu einem andern führen, gleich sind. Das obige Diagramm ist

also genau dann kommutativ, wenn h = g ○ f .

Definition 5.1.5. Ein Pfeil f ∶ X → Y heisst Isomorphismus, falls es
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einen Pfeil g ∶ Y → X bibt, so dass

g ○ f = 1X und f ○ g = 1Y.

Beispiele 5.1.6. (a) Die Isomorphismen in der Kategorie der Mengen

sind die Bijektionen.

(b) IsoMorphismen in der Kategorie der Gruppen sind

Gruppenisomorphismen.

Definition 5.1.7. Sei A eine Kategorie. Eine Unterkategorie ist eine

Kategorie B , so dass Ob(B) ⊂ Ob(A) und

HomB(X,Y) ⊂HomA(X,Y)

fuer alle X,Y ∈B , sowie die Kompositionen und Einheiten von B sind

die von A . Eine Unterkategorie B heisst eine volle Unterkategorie,

falls fuer je zwei X,Y ∈B gilt HomB(X,Y) =HomA(X,Y). Jede

Teilklasse von Ob(A) definiert genau eine volle Unterkategorie.

Beispiel 5.1.8. Die Kategorie der endlichen Gruppen ist eine volle

Unterkategorie der Kategorie GRP aller Gruppen.

Definition 5.1.9. Eine volle Unterkategorie D ⊂A heisst dicht, falls es

zu jedem X ∈A ein Y ∈D gibt, so dass X isomorph zu Y ist.

Beispiel 5.1.10. Sei K ein Koerper und A die Kategorie der

endlich-dimensionalen K-Vektorraeume und linearen Abbildungen.

Dann ist die volle Unterkategorie D mit den Objekten {0},K,K2,K3, . . .

eine dichte Unterkategorie.

* * *
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5.2 Epis, Monos und Produkte

Definition 5.2.1. Ein Morphismus f ∶ X → Y heist Epimorphismus oder

Epi, falls fuer jedes (nichtkommutative!) Diagramm der Form

X
f
// Y

α //

β
// Z

gilt

α f = β f ⇒ α = β.

Beispiele 5.2.2. (a) In SET sind die Epis genau die surjektiven

Abbildungen.

(b) In der Kategorie der Gruppen sind die Epis genau die surjektiven

Gruppenhomomorphismen.

Beweis. Jeder surjektive Pfeil ist offensichjtlich ein Epi. Fuer die

Umkehrung sei f ∶ G→ H ein Epi in GRP. Sei H0 ⊂ H das Bild von f .

Sei X = {ω} ∪H/H0, wobei ω ein neuer Punkt ist. Sei x0 = 1H0 die

triviale Nebenklasse. Sei α ∶ H → Per(X) der

Gruppenhomomorphismus, der durch die Linkstranslation

definiert wird, genauer

α(h)(x) =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

hx, x ∈ H/H0,

ω x = ω.

Der Stabilisator des Punktes x0 ist H. Sei τ ∈ Per(X) die Permutation,

die ω und x0 vertauscht und alle anderen Elemente unveraendert

laesst, d.h.,

τ(x) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ω x = x0,

x0 x = ω,

x sonst.

Ein gegebenes h ∈ H kommutiert genau dann mit τ, wenn es trivial
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auf x0 operiert, d.h., wenn es in H0 liegt. Sei β ∶ H → Per(X) der

Gruppenhomomorphismus gegeben durch

β(h) = τα(h)τ−1.

Für h0 ∈ H0 gilt α(h0)ω = ω sowie α(h0)x0 = x0, so dass

α(h0) = β(h0).

Also α f = β f . Da f ein Epi ist, folgt α = β, d.h., jedes Element von H
kommutiert mit τ, also H0 = H, d.h., f ist surjektiv. □

(c) In der Kategorie RING ist die Inklusion Z→ Q ein Epi.

Definition 5.2.3. Ein Morphismus f ∶ X → Y heisst a Monomorphismus

oder Mono, falls fuer jedes Diagramm der Form

V
α //

β
//X

f
// Y

gilt

fα = fβ ⇒ α = β.

Beispiele 5.2.4. (a) Eine Abbildung in SET is genau dann Mono, wenn

sie injektiv ist.

(b) Ein Morphismus f ist genau dann Mono in einer Kategorie C opp,

wenn f ein Epi in C ist.

5.3 Terminale und initiale Objekte

Definition 5.3.1. Ein terminales Objekt einer Kategorie C ist ein

Objekt X, so dass es von jedem anderen Objekt A genau einen Pfeil

nach X gibt, also wenn gilt

∣Hom(A,X)∣ = 1
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fuer jedes Objekt A.

Beispiele 5.3.2. (a) In der Kategorie SET ist eine Einpunktmenge

terminal.

(b) In der Kategorie der Gruppen ist die triviale Gruppe {1} terminal.

(c) In der Kategorie der Ringe ist der Nullring terminal.

(d) in der Kategorie (N,≤) gibt es kein terminales Objekt.

Satz 5.3.3. Ein terminales Objekt ist bis auf Isomorphie eindeutig
bestimmt.

Beweis. Seien S,T terminale Objekte in C . Da T terminal ist, gibt es

genau einen Pfeil α ∶ S→ T. Da S terminal ist, gibt es genau einen Pfeil

β ∶ T → S. Da T terminal ist, gibt es genau einen Pfeil T → T, naemlich

die Eins 1T. Damit folgt

αβ = 1T.

Ebenso folgt βα = 1S und damit sind α und β Isomorphismen. □

Definition 5.3.4. Ein initiales Objekt I in C ist ein terminales Objekt in

C opp.

Das heisst also: I ist genau dann initial, wenn

∣Hom(I,A)∣ = 1

fuer jedes A ∈ C gilt.

Beispiele 5.3.5. (a) In SET ist die leere Menge initial.

(b) In GRP ist die triviale Gruppe initial.

(c) In RING ist Z initial.
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Bemerkung 5.3.6. Ein initiales Objekt ist ebenfalls bis auf Isomorphie

eindeutig, was man entweder ebenso beweist wie den Satz, oder sich

darauf zurueckzieht, dass Isomorphismen in C opp dasselbe sind wie

Isomorphismen in C .

5.4 Produkte und Coprodukte

Definition 5.4.1. Seien X,Y Objekte einer Kategorie C . Ein Produkt von

X und Y ist ein Objekt P, zusammen mit Morphismen p1 ∶ P→ X und

p2 ∶ P→ Y, so dass die folgende univeselle Eigenschaft gilt: Für jedes

Objekt Z und Morphismen α ∶ Z→ X und β ∶ Z→ Y gibt es genau einen

Morphismus Z→ P, so dass das Diagramm

P

�� ��

X Y

Z

__ ??∃!

OO

kommutiert. Das bedeutet, dass die Morphismen von Z nach X und Y
ueber die universellen Morphismen von P nach X und Y faktorisieren.

Proposition 5.4.2. Falls es existiert, ist ein Produkt eindeutig bestimmt bis
auf Isomorphie. Genauer ist ein Produkt (P,pX,pY) ein terminales Objekt in
der Kategorie aller Tripel (Z, α, β) wie oben, wobei ein Morphismus
(Z, α, β) → (W, γ, δ) ein Morphismus Z→W ist, der das Diagramm

Z

~~   

��

X Y

W

>>``

kommutativ macht.
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Proof. Klar. □

Definition 5.4.3. Da das Produkt eindeutig bestimmt ist, kann man es

als X ×Y schreiben.

Beispiele 5.4.4. (a) In SET ist das kartesische Produkt ein Produkt.

Dasselbe gilt in GRP, RING.

(b) In FIELD gibt es nicht immer ein Produkt, da es zum Beispiel

keinen Körper K gibt, der sowohl nach Q als auch nach F2

abgebildet werden kann.

Die universelle Eigenschaft liefert eine Bijektion

Hom(Z,X ×Y) ≅Hom(Z,X) ×Hom(Z,Y).

Definition 5.4.5. Ein Coprodukt von X und Y ist ein Product in Copp.

Das bedeutet, es ist ein Objekt K mit Pfeilen i1 ∶ X → K und i2 ∶ Y → K, so

dass die folgende universelle Eigenschaft gilt: Für jedes objekt Z und

Morphismen p ∶ X → Z und q ∶ Y → Z gibt es genau einen Pfeil K → Z, so

dass das Diagramm

K

∃!

��

X

��

??

Y

__

��

Z

kommutiert. Es ist eindeutig bestimmt, wenn es existiert und wir

schreiben es dann als K = X∐Y oder C = X⊕Y. Die universelle

Eigenschaft liefert Bijektionen:

Hom(X⊕Y,Z) ≅Hom(X,Z) ×Hom(Y,Z).

Beispiele 5.4.6. (a) In der Kategorie SET ist das Copruduct X∐Y gleich
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der disjunkten Vereinigung also

X ⊔Y = X∐Y.

(b) In der Kategorie der Gruppe ist das Coprodukt gleich dem freien

Produkt von Gruppen, also

G∐H = G ∗H.

(c) In der Kategorie RING ist das Coprodukt gleich dem

Tensorprodukt über Z.

(d) In der Kategorie FIELD gibt es im Allgemeinen kein Corpodukt,

nimm etwa wieder zwei Koerper verschiedener Charakteristik.
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