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Construction of global Galois representations
associated with modular forms
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We will discuss the construction of Galois representations associated to modular
forms/automorphic representations. This is the easy direction of the (conjec-
tural) global Langlands correspondence. The subject started with work of Eich-
ler and Shimura, who associated a Galois representation (on the Tate-module
of an elliptic curve) to a newform of weight 2 on a modular curve X0(N). This
was generalized by Kuga, Ihara and Deligne to classical modular forms of weight
≥ 2. We will mainly focus on this starting point, following Deligne’s Bourbaki
talk from 1969 [4] closely.
In the third meeting, there will be a general (easy) discussion of the global
and local Langlands program (1 talk) and then a survey presentation of Kot-
twitz’ method (following ideas also due to Langlands and Rapoport) to con-
struct Galois representations associated with modular forms on (compact) uni-
tary Shimura varieties.
Remark: There is a ‘translation’ of Deligne’s article [4] available, but I guess
with a minimum of knowledge of French you are better off with the original. At
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least formulas should be crosschecked and bear in mind that the translation of
“(la) pointe” (as opposed to “(le) point”) is “cusp” and not “point”.

1 1st meeting

1.1 Modular curves over C
Main references: [4, 15, 7, 19], see also [2].

• Modular curves as quotients of the upper half plane.

• Recall its parametrization of elliptic curves with level structures (so far
just as point sets over C), in particular X(N) and X0(p)(N).

• Adelic interpretation as in Deligne [4, §2], description of the resulting
GL2(Af )-operation on the projective limit.

• Analytic construction of the compactification X (as Riemann surface).

• Construction and understanding of the local systems U1 = R1π∗QE ,
where π : E → X is the universal elliptic curve.

• The coherent sheaves ω, Ω1 and their relations on X and X.

• The Hodge filtration of U1 ⊗OX .

• Interpretation of sections H0(X,ωn), H0(X,Uk ⊗ ωn), etc. as functions
on GL2(R) with satisfy certain differential equations, see [19, §1]. (you
might combine this with the adelic description, but this is not necessary)
Here Uk is Symk(U1).

1.2 The isomorphism of Shimura

Main references: [4, 19].
Let Γ ⊂ GL2(Z) be a congruence subgroup and let X = H/Γ.

• Introduction of H1(Γ, Uk) (Galois cohomology) and H̃1(Γ, Uk) (cocyles,
where the restriction to all unipotent subgroups is trivial). Here we denote
by Uk just Qk+1 with the standard representation of GL2(Q), i.e. again
Uk = Symk(U1).

• Prove the isomorphism H1(Γ, Uk) ∼= H1(X,Uk) and

H̃1(Γ, Uk) ∼= image(H1
c (X,Uk)→ H1(X,Uk)).

• Understanding of the spaces H0(X,Ω1(Uk)⊗ ωn).

• The map to cohomology δ : H0(X,Ω1(Uk))→ H̃1(X,Uk ⊗C) — explain

why the image lands in H̃. This map arises from the long exact sequence
associated with the de Rham resolution of Uk ⊗ C.
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• The map H0(X,ωk ⊗ Ω1) ↪→ H0(X,Ω1(Uk)). The spaces are denoted
Sk+2(Γ) and S2(Γ, k) respectively in [19, §2]. Present [19, 3.2.1].

• The goal of this talk is to understand and prove the isomorphism

H0(X,Ω1 ⊗ ωk)⊕H0(X,Ω1 ⊗ ωk)→ H̃1(X,Uk ⊗ C)

which might be seen as a Hodge structure of type (k + 1, 0), (0, k + 1) on
the space on the RHS.

• Present [19, Théorème (3.2.5)].

• Present [19, Théorème (3.3.1)].

• Finally present [19, Théorème (4.2.4/4.2.6)] — but already in the formu-
lation of [4, Théorème 2.10].

1.3 Integral model of the compactification

Main references: [4, §3], [6].
First part: Present the algebraic theory of the modular curve, explain how
X(N) and X0(p)(N) represent a moduli problem over spec(Z[1/N ]).
Second part: Present the results and some ideas from [6].

2 2nd meeting

2.1 Algebraic preliminaries

Main References: [9, 5, 16]
The purpose of this talk is a review of etale cohomology and the Weil conjectures.

• Example of the Tate module in the case of an Abelian variety. Come back
to this example as often as possible making it possible to understand this
talk without previous knowledge in etale cohomology.

• Explain the category of l-adic sheaves over a variety over a field. Present
cohomology with and without compact support (also briefly the relative
version and the Leray spectral sequence).

• For local system over varieties over C, explain the comparison isomorphism
between usual sheaf cohomology and etale cohomology (with and without
compact support).

• Recall the absolute and relative Frobenius morphisms.

• Mention already the modular description of the Frobenius on the modular
curve.

• Recall the Grothendieck-Lefschetz fixed point formula.
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• State the Weil conjectures (Theorem of Deligne [5]) without proof.

• Explain the “trace morphism” on cohomology for a finite morphism (cf.
[4, Lemme 4.6] for what we have to understand in the second talk).

• Explain briefly Poincaré duality for l-adic cohomology.

2.2 The congruence relation

Main Reference: [4, §3, §4].

• Hecke operators on X/Γ as correspondences. [4, §3]. The modular de-
scriptions of X(N), X0(p)(N), etc. should be only recalled from the 3rd
talk of the first meeting.

• Explicit description of the Hecke correspondences, resp. of the adelic
operation on the local systems Uk.

• Explicit description of the Hecke correspondences on modular forms.

• The structure of the Hecke algebra (only for maximal compact open) as
in [4, 3.12]. Reinterpretation of the operation on modular forms as convo-
lution w.r.t. the adelic operation with a function (left and right invariant
under GL2(Zp)).

• The relation between Hecke eigenvalues and Fourier coefficients. You may
first present something about the algebraic theory of the Fourier develop-
ment [6, VII]. The relation to Hecke theory may be found in [7, 5.8].

• Compatibility of the Shimura isomorphism with the various actions of
Hecke operators [4, 3.19].

• The main part of this talk should be the presentation of [4, §4], in partic-
ular the description of the Hecke correspondence Tp in the fibre above Fp
in terms of Frobenius and Verschiebung [4, 4.8/4.9].

2.3 Weil implies Ramanujan/Petersson

Firstly interpret the congruence relation as a result about existence of Ga-
lois representations associated with modular forms. The Galois action and
the action of the Hecke algebras at all p on nWl := H̃1

et(X(n), Uk ⊗ Ql)1 for
(n, p) = (n, l) = 1 commute. The Shimura isomorphism

H0(X(n),Ω1 ⊗ ωk)⊕H0(X(n),Ω1 ⊗ ωk)→ H̃1(X(n), UkQ)⊗Q C

is, furthermore, compatible with the action of the Hecke algebra (cf. previous
talk). The idea is therefore to look at the maximal Eigenspaces for the Hecke

1For n � 1; otherwise defined as in [4].
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algebra on this. Firstly one splits off the space of “newforms”2 on each side via
orthogonality w.r.t. the Petersson inner product (LHS) and the scalar prod-
uct described in [4, (3.20)] for the etale side (“RHS”, but tensored with Ql).
Both come from a scalar product on H̃1(X(n), UkQ) with values in (2πi)−k−1Q.
Explain this in detail. Because of multiplicity one (e.g. [7, 5.7]) the maximal
Eigenspaces are 1-dimensional with Eigenvalues given by Fourier coefficients of
the corresponding newform (a cusp form of weight k + 2 for Γ0(n)). Hence, we

get a 2-dimensional subspace V ⊆ H̃1(X(n), UkQ) ⊗ K, for some number field
K (the field generated by the Fourier coefficients), such that the Galois group
Gal(Q|Q) acts on V ⊗K Kν for any prime ν|l. This Galois representation is un-
ramified outside l and n. The congruence relation then shows (as in [4, p.171])
that Frobenius at p satisfies

det(1− FpX|V ⊗K Kν) = 1− apX + pk+1X2

where ap is the p-th Fourier coefficient of the Eigenform. The Petersson/
Ramanujan conjecture (in its refined form due to Serre) claims that the roots

of this equation have complex absolute value p
k+1
2 for any complex embedding

of K. Thus it suffices to show that, in general, the Eigenvalues of Frobenius

on H̃1
et(X(n), Uk ⊗Ql) have absolute value p

k+1
2 . This is shown in [4, §5]. The

main point is that H̃1
et(X(n), Uk ⊗ Ql) over Fp can be related via the Leray

spectral sequence to the cohomology of a smooth rational variety of dimension
k + 1, namely to a smooth compactification of the k-th power universal elliptic
curve Ek → X(n). The smooth compactification is constructed ad. hoc. in [4,
§5], but you may cite the modern and more general result from [8] about the
existence of toroidal compactifications in arbitrary characteristic. It would be
nice to state explicitly the consequence for the modular form ∆ of weight 12 as
in the introduction to [4] (Ramanujan’s original conjecture).

3 3rd meeting

3.1 Introduction to the Langlands program

Main references: [11], [3, especially chapter 7 and 10–11], and also [2, 1.8, 3.9]
and [1].

• Start by presenting the correspondence between classical automorphic
forms and automorphic representations for GL2 [3, chapter 7], [11, §7].
Nice would be also a description of the local constituents of an automor-
phic representation for GL2 and their associated local Galois representa-
tions. How does the weight and type (holomorphic/Maass) of a classical
eigenform correspond to the representation and parameter at ∞. [2, p.
93. (3)], [11, §8].

2say for Γ0(n) for simplicity — this means that we take invariants under the group of upper
triangular matrices in GL2(Z/nZ) everywhere. In this case the operator I∗p operates trivially.
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• Explain the local Weil-group.

• Local Langlands correspondence for GLn.

• This is the most important part of the talk: General local Langlands
correspondence for reductive groups. We need the notion of L-group and
the classification of spherical representations in terms of Satake parameters
[3, §11, 2.1], [1, chapter III]. Explain their associated unramified Galois
representations.

• Global Langlands correspondence. This can be presented in a very rough
and philosophical way. See e.g. Taylor’s ICM talk [18, §4], cf. also [2,
chapter 3.9]. Note that the topic of this seminar is to establish certain
instances of the inclusion of parts of (AF) ⊂ (lR) in the notation of [18,
§4]. Namely, for G = GL2 in the first 2 meetings, for G a unitary group
associated with a compact Shimura variety in this meeting. We have
identified and will identify however only the local Galois representations
at unramified primes.

• Return to the case G = GL2 and explain the connection between on the
one hand side the Fourier coefficients of a classical newform, the Euler
product of its L-function and the Satake parameters of the local con-
stituents of the associated automorphic representation.

3.2 The conjecture of Langlands-Rapoport and Kottwitz’
formula

In this talk we would like to understand the formula of Kottwitz for the num-
ber of points — or more generally, the trace of Frobenius twisted by a Hecke
correspondence on the etale cohomology — of the (good) reduction mod p of
Shimura varieties. The conceptual explanation of this formula, which goes back
to Langlands and Rapoport [14], lies in the theory of motives over finite fields
in its Tannakian formulation. The most elegant way to derive the formula uses
the standard conjectures as well as the Tate and Hodge-conjecture. For certain
PEL-type Shimura varieties the formula has been derived unconditionally in [13]
and there are now many variants including primes of bad reduction (involving
the theory of vanishing cycles) and even Shimura varieties with boundary (cf.
e.g. [17]). However, in this talk we will assume the validity of the above men-
tioned conjectures to understand the philosophy behind the formula. We will
closely follow Milne’s articles.

3.3 Construction of l-adic Galois representations associ-
ated with automorphic representations of unitary Shimura
varieties

The purpose of this talk is to present the paper of Kottwitz [12]. The method
remains ubiquitous in the subject and contains already many of the main ideas,
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especially:

• The trace formula and its stabilization.

• The “Fundamental Lemma”.

The generalizations of those ideas to arbitrary reductive groups were completed
only recently.

4 Further reading

The following is a (very incomplete) list of some collected works, resp. recent
books on the more advanced aspects of the subject:

1. Automorphic Forms, Representations, and L-functions I, II, Corvallis 1977

2. Automorphic Forms, Shimura Varieties, and L-functions, Ann Arbor 1988

3. Representation Theory and Automorphic Forms, Edinburgh 1996

4. The Geometry and Cohomology of Some Simple Shimura varieties, Harris
and Taylor, 2002 [10]

5. Harmonic Analysis, The Trace Formula, And Shimura Varieties, Clay
Math. Proceedings, Toronto 2003

6. An Introduction to the Langlands program 2004 [3]

7. On the cohomology of certain noncompact Shimura varieties, Morel, 2010
[17]

8. Paris book project, part I: On the stabilzation of the Trace Formula, 2011

5 References
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