
SWAS 2015: Quantum Unique Ergodicity

1. Fundamentals

Introduce fundamentals of dynamics like mixing, ergodicity and entropy
with examples (Chap 4 in [KH95] or other sources)
In the remaining time, give a sketch of the proof that the geodesic flow of
a negatively curved manifold is ergodic [Ano69].

2. Entropy at work

Present the proof of the Fuerstenberg conjecture (under the assumption
of positive entropy) in [Rud90]. For context look at [Lin05].

3. Classification of invariant measures

Present the unipotent subgroup result of Ratner ([Rat91] or in simpler
form in [Rat92])
Present Lindenstrauss’s main result (Theorem 1.1 in [Lin06]) and explain
how it implies QUE. (You might want to look at [Ein10]).

4. Early results

Give a short introduction to Pseudodifferential operators [Hör07], enough
to be able to define micro local lifts as in [CdV85,Zel87]. (For a simplified
version see [Lin01].)
Present the results of [CdV85,Zel87].

5. QUE for Γ\H×H
Present the contents of the paper [Lin01], in which it is shown, that weak*
limits for Hilbert-Maaß forms are invariant under torus actions.

6. Entropy of quantum limits

Show that any weak * limit of microlocal lifts of Hecke-eigenfunctions has
positive entropy [BL03, BL04]. This is the place, where number theory
actually plays a significant role.

7. (G,T )-spaces and recurrence

Introduce (G,T )-spaces as in [Lin06], Section 2. In the following, it may
suffice to present proofs only in the special case of a G-action (Example
2.2 of [Lin06]).
Sketch the contents of Section 3-5 of [Lin06].

8. The Einsiedler-Katok Lemma

Present Proposition 6.4. and its proof in [Lin06] and its predecessor
Lemma 8.2 in [EK03] and what it is used for in [EK03].

9. Proof of the main theorem

Show how Theorem 7.1 of [Lin06] implies Theorem 1.1 of the same paper
and sketch the proof of Theorem 7.1
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