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Abstract. A generalisation of the Selberg zeta function, or rather its log-
arithmic derivative, to higher rank is given. In the compact case one gets

a Mittag-Leffler series expansion, the proof of which rests upon a dynamical

Lefschetz formula. A modified version of the Lefschetz formula is then conjec-
tured to hold in the non-compact case as well. A sketch of a possible proof is

included.

Introduction

In the nineteenfifties, A. Selberg introduced, together with the trace formula,
the Selberg zeta function for compact quotients of the hyperbolic plane. This was
later generalised to rank one spaces [19, 33] and also to non-compact spaces (still
of rank one) [20]. See also [7, 8, 15, 16, 17, 18, 23, 30, 31, 32].

In this paper we first survey results on a several variable Dirichlet series Lj(s)
which may be considered as a generalisation of the logarithmic derivative of the
Selberg zeta function. The main result is that Lj(s) admits a Mittag-Leffler series
expansion. This can be used to derive asymptotical results as a prime geodesic
theorem or class number asymptotics [10].

Hitherto the Mittag-Leffler formula has been shown for compact locally sym-
metric spaces only. In the second part we present a conjectural Lefschetz formula
for the non-compact case. Such Lefschetz formulae for compact spaces are in [13]
and [25]. We also give a sketch of a possible proof in the non-compact case, which,
however, rests on further, more technical conjectures.

1. Generalised Selberg zeta functions

First recall the classical Selberg zeta function. For this fix a semi-simple Lie
group G which is connected and has finite centre. Assume that the split-rank of
G is one. Let X = G/K be the associated symmetric space. Here K ⊂ G is a

1991 Mathematics Subject Classification. Primary 11M36, 11F72; Secondary 37C27, 53C12.
Key words and phrases. Zeta functions, Lefschetz formulae.

c©0000 (copyright holder)

1



2ANTON DEITMAR S. FRIEDBERG ET AL: MULTIPLE DIRICHLET SERIES, AUTOMORPHIC FORMS, AND ANALYTIC NUMBER THEORY. PROCEEDINGS OF SYMPOSIA IN PURE MATHEMATICS, VOLUME: 75, 177- 190 (2006).

maximal compact subgroup of G. Let Γ ⊂ G be a discrete, torsion-free subgroup.
Let P = MAN be the Langlands decomposition of a non-trivial parabolic subgroup
P (all such are conjugate in G). Then A is a split torus of dimension one and M
is compact. Every γ ∈ Γ with γ 6= 1 is G-conjugate to an element aγmγ ∈ A−M ,
where A− is the negative Weyl chamber in A with respect to P . The element aγ
is uniquely determined and mγ is unique up to M -conjugation. We say that γ ∈ Γ
is primitive if γ = σn, σ ∈ Γ, n ∈ N, implies n = 1. The Selberg zeta function is
defined by

ZΓ(s) =
∏

[γ] prim

∏
k≥0

det
(
1− e−sl(γ)(aγmγ)k|n

)
,

where n is the Lie algebra of N and aγmγ acts on n by the adjoint representation.
The first product is extended over the set of all primitive conjugacy classes [γ] in
Γ. The length of γ is defined by l(γ) = | log aγ |. Then the product converges for
Re(s) large enough and ZΓ(s) extends to a meromorphic function on C [7, 9, 25].

Note that to every γ ∈ Γ H {1} there is a unique primitive element γ0 such
that γ is a positive power of γ0. Note that

Z ′Γ
ZΓ

(s) =
∑
[γ] 6=1

l(γ0)
det(1− aγmγ |n)

e−sl(γ),

and thus for every j ∈ N,

(−1)j+1

(
∂

∂s

)j+1
Z ′Γ
ZΓ

(s) =
∑
[γ] 6=1

l(γ0)
det(1− aγmγ |n)

l(γ)j+1 e−sl(γ)

Here the sum runs over the set of all conjugacy classes [γ] 6= 1 in Γ.
Now for the higher rank case, i.e. rank(G) ≥ 1. Then there can be several

conjugacy classes of non-trivial parabolics. For the Selberg zeta function one only
considers cuspidal parabolics, i.e., parabolics P = MAN such that M admits a
compact Cartan subgroup. Assume first that A is one-dimensional. Then one
defines the Selberg zeta function exactly as before, except that the first product is
extended over the set EP (Γ) of all conjugacy classes [γ] in Γ with γ ∼G aγmγ where
aγ ∈ A− and mγ ∈M is elliptic, and that the Euler factors come with an exponent
which is an Euler number given below. One can prove that the product converges
in a half-plane and ZΓ(s) extends to a meromorphic function on C [9].

For higher dimensional A it is natural to expect a Dirichlet series in several
variables for a generalised Selberg zeta function. The reason is this: if dimA = 1
then aγ ∈ A− is determined by a single value, the length l(γ). If dimA > 1, then
aγ ∈ A− lies in a higher-dimensional Weyl chamber and the length alone does not
pin it down. Therefore, one rather expects a zeta function in r = dimA variables.

If [γ] ∈ EP (Γ), then γ lies in a conjugate AγMγ of AM . Let Gγ and Γγ denote
the centralisers of γ in G and Γ respectively and let Kγ be a maximal compact
subgroup of Gγ . Consider the locally symmetric space Xγ = Γγ\Gγ/Kγ . Since
Gγ ⊂ AγMγ , the torus Aγ lies central in Gγ and therefore acts on Xγ . The Euler-
number χ(Aγ\Xγ) is non-zero. The group Γγ is a discrete subgroup of AγMγ and
projects down to a lattice Γγ,A in Aγ . Let

λγ = vol (Aγ/Γγ,A) .
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Set

ind(γ) =
λγ χ(Aγ\Xγ)

det(1− aγmγ |n)
.

If dimA = 1, then λγ = l(γ0) and if the rank of G is one, then χ(Aγ\Xγ) = 1.
Let α1, . . . , αr be positive multiples of the simple roots of (A,G) such that

α1 + · · ·+ αr = 2ρ ∈ a∗,

where a∗ is the Lie algebra of A and ρ is the modular shift of P . For a ∈ A− let
l(a) = |α1(log a) · · ·αr(log a)|. For s ∈ Cr let

s · α def
= s1α1 + · · ·+ srαr ∈ a∗.

Each λ ∈ a∗ gives a continuous group homomorphism A→ C× written as a 7→ aλ.
For j ∈ N let

Lj(s) def
=

∑
[γ]∈EP (Γ)

ind(γ) l(a)j+1 as·αγ .

This is a multi-variable Dirichlet series which converges for Re(sk) > 1 for k =
1, . . . , r. We consider it a replacement for the lacking Selberg zeta function in
several variables. Indeed in the rank one case the proof of the meromorphic con-
tinuation proceeds via the logarithmic derivative, but it is impossible to deduce
meromorphicity in several variables in this way.

Let D be the differential operator

D = (−1)r
∂

∂s1
· · · ∂

∂sr
.

For a complex vector space V on which A acts linearly, and λ ∈ a∗, let

V λ = {v ∈ V : ∃n ∈ N, (a− aλ)nv = 0 ∀a ∈ A}

be the generalised λ-weight space. For (π, Vπ) in the unitary dual Ĝ of G, let
Hq(n, πK) denote the Lie-algebra cohomology of the Harish-Chandra-module

πK
def
= {v ∈ Vπ : v is K − finite}.

Then Hq(n, πK) is a Harish-Chandra module for (m⊕ a,KM ) [22].
Since Γ is cocompact, the right regular representation of G on L2(Γ\G) decom-

poses discretely,
L2(Γ\G) =

⊕
π∈Ĝ

NΓ(π)π

with finite multiplicities NΓ(π).
For λ ∈ a∗, π ∈ Ĝ, let

mλ(π) =
∑
p,q≥0

(−1)p+q+dimN dim

(
Hq(n, πK)λ ⊗

p∧
pM

)KM

,

where KM = K ∩ M and pM is the positive part in the Cartan decomposition
m = kM ⊕ pM of m = Lie(M). Let

qM =
dim pM∑
p=0

(−1)p dim

(
p∧

pM

)KM

.
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Then it turns out that qM ∈ N; see [12].

Theorem 1.1. For j large enough the Dirichlet series Lj(s) converges locally
uniformly on {Re(sk) > 1}. It can be written as a Mittag-Leffler series

L(s) = Dj+1 qM
(s1 − 1) · · · (sr − 1)

+
∑

π∈Ĝ−{1}

NΓ(π)
∑
λ∈a∗

mλ(π)Dj+1 1
(s1 + λ1) · · · (sr + λr)

,

where the co-ordinates λk are defined by λ = λ1α1 + · · · + λrαr. For π 6= 1 and
λ ∈ a∗ with mλ(π) 6= 0 we have Re(λk) ≥ −1 for k = 1, . . . , r and there is at least
one k with Re(λk) < −1. The Mittag-Leffler series converges locally uniformly on
{Re(sk) > 1}.

This theorem is sufficient to prove asymptotic assertions about geodesics and
class numbers [10, 12], but it will not grant meromorphic continuation of Lj to all
of Cr.

Question 1.2. Does Lj(s) extend to a meromorphic function on Cr?

In one variable, a convergent Mittag-Leffler series guarantees meromorphicity.
In several variables, however, poles can accumulate even though the Mittag-Leffler
series converges. The question of meromorphicity of Lj(s) thus amounts to subtle
questions of the distribution of automorphic representations which are beyond the
scope of our present methods.

The theorem is derived from a Lefschetz formula which we will present next.

Theorem 1.3. (Lefschetz formula)
For ϕ ∈ C∞

c (A−) we have∑
π∈Ĝ

NΓ(π)
∑
λ∈a∗

mλ(π)
∫
A

ϕ(a)aλ+ρ da =
∑

[γ]∈EP (Γ)

ind(γ)ϕ(aγ).

The proof of this formula [13] uses the trace formula and the Osborne conjecture
[22].

2. A conjectural Lefschetz formula

In this section we will formulate a Lefschetz formula for an arithmetic sub-
group Γ of G which is not necessarily cocompact. Fix a cuspidal parabolic P .
Let Ĝadm ⊃ Ĝ be the admissible dual, i.e. the set of classes of admissible ir-
reducible representations under infinitesimal equivalence. Harish-Chandra proved
that two unitary irreducible representations are unitarily equivalent iff they are
infinitesimally equivalent. Therefore Ĝ can be considered as a subset of Ĝadm. For
π ∈ Ĝadm let Λπ ∈ h∗ be a representative of the infinitesmal character of π. The
unitary G-representation on L2(Γ\G) decomposes as

L2(Γ\G) = L2
disc ⊕ L2

cont,

where
L2

disc =
⊕
π∈Ĝ

NΓ(π)π
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is a direct sum of irreducibles with finite multiplicities and L2
cont is a sum of con-

tinuous Hilbert integrals. In particular, L2
cont does not contain any irreducible

subrepresentation.
Let a∗,+R = {t1α1 + · · ·+ trαr : t1, . . . , tr > 0} be the positive dual cone and let

a∗,+R be its closure in a∗R.
For µ ∈ a∗ and j ∈ N let Cµ,j(A−) denote the space of all functions on A which
• are j-times continuously differentiable on A,
• are zero outside A−,
• satisfy |Dϕ| ≤ C|aµ| for every invariant diffferential operator D on A of

degree ≤ j, where C > 0 is a constant, which depends on D.
This space can be topologized with the seminorms

ND(ϕ) = sup
a∈A

|a−µDϕ(a)|,

D ∈ U(a), deg(D) ≤ j. Since the space of operators D as above is finite dimen-
sional, one can choose a basis D1, . . . , Dn and set

||ϕ|| = ND1(ϕ) + · · ·+NDn(ϕ).

The topology of Cµ,j(A−) is given by this norm and thus Cµ,j(A−) is a Banach
space.

Conjecture 2.1. (Lefschetz Formula)
For λ ∈ a∗ and π ∈ Ĝadm there is an integer NΓ,cont(π, λ) which vanishes if Re(λ) /∈
a∗,+R and there are µ ∈ a∗ and j ∈ N such that for each ϕ ∈ Cµ,j(A−) we have∑

π∈Ĝadm
λ∈a∗

mλ(π) (NΓ(π) +NΓ,cont(π, λ))
∫
A

ϕ(a)aλ da =
∑

[γ]∈EP (Γ)

ind(γ)ϕ(aγ).

Either side of this identity represents a continuous functional on Cµ,j(A−).

The numbers NΓ,cont(π) represent vanishing orders of the automorphic scatter-
ing matrix. The conjecture can be proven for SL2.

3. A possible proof for Q-rank one

In this section we give a rough sketch of a possible proof for Q-rank one con-
gruence groups. We will point out the technical problems, each of which requires
further study. The main problem consists in a growth assertion for the logarithmic
derivative of the scattering matrix. The “proof” uses Arthur’s trace formula.

3.1. The spectral side. We will now recall Arthur’s trace formula. This
formula is the equality of two distributions on G(A),

Jgeom = Jspec.

The geometric distribution Jgeom can be described in terms of weighted orbital in-
tegrals. For the moment our interest however is focused on the spectral distribution
Jspec.

From now on we will assume that

rankQ(G) = 1.

Then, up to conjugation, there is only one Q-parabolic P0 different from G. Let
P0 = L0N0 be a Levi decomposition and let P0 = M0A0N0 be the Langlands
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decomposition of P0 = P0(R) with M0A0 = L0 = L0(R). Let Λ be an in-
finitesimal character of M0 and let H0(Λ) be the space of all functions φ on
N0(A)L0(Q)A0\G(A) whose pullback to L0(Q)\L0(A)1 × KA is square integrable
and which satisfy φ(Zx) = Λ(Z)φ(x) in the distributional sense for every Z ∈ zM0 .
The Weyl group W = W (G,A0) acts on the set of all infinitesimal characters Λ of
M0. If one writes O for an orbit under that action, then O has one or two elements.
Let H0(O) denote the sum of the H0(Λ), where Λ ranges over O.

Let a0, n0 be the complex Lie algebras of A0 and N0 respectively. For φ ∈
H0(O) and λ ∈ a∗0 we put φλ(x) = e〈λ+ρ0,H(x)〉φ(x), where for X ∈ a0 we set
ρ0(X) = 1

2 tr(ad(X)|n0) and H : G(A) → a0,R is defined by e〈ψ,H(nlk)〉 = ψ(l) for
every ψ ∈ XQ(L0), n ∈ N0(A), and k ∈ KA. We get a representation IO,λ of G(A)
on H0(O) by

(IO,λ(y)φ)(x) = φλ(xy), x, y ∈ G(A).

Let w0 denote the non-trivial element of the Weyl group W (G,A0) as well as any
representative in G(Q). Let λ ∈ a∗0. In the theory of Eisenstein series one considers
the operator M(O, λ) on the subspace of KA-finite vectors in H0(O), which is
defined for Re(λ− ρ0) positive with respect to P0 by

(M(O, λ)φ)−λ(x) =
∫
N0(A)

φλ(w0nx) dn

and has a meromorphic continuation to a∗0. This operator satisfies

M(O, λ)M(O, w0λ) = Id and M(O, λ)∗ = M(O, λ̄)

and

M(O, λ) IO,λ = IO,w0λM(O, λ),

so it intertwines IO,λ and IO,w0λ = IO,−λ. For an irreducible unitary representation
π of G(A) we write N(π) for the multiplicity of π in L2(G(Q)\G(A)). If T is a
truncation parameter, the spectral side of the trace formula is given by∑

π∈Π(G(A))

N(π) trπ(f)

+
ρ(T )
π

∑
O

∫
a∗0,R

trIO,λ(f) dλ

− 1
4π

∑
O

∫
a∗0,R

tr (M(O,−iλ)M ′(O, iλ) IO,λ(f)) dλ

+
1
4

∑
O:#O=1

tr (M(O, 0) IO,0(f)) .

Here we have written Π(G(A)) for the unitary dual of the locally compact group
G(A). We further have identified a∗0,R with R by t 7→ 2tρ, which explains the
derivative M ′(O, λ) = d

dλM(O, λ). This formula is a special case of Theorem 8.2
in [4].
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3.2. A simple trace formula. In this section we recall the “simple trace
formula” from [11].

Let H be a linear algebraic Q-group. If E is a Q-algebra, any rational character
χ of H defined over Q defines a homomorphism H(E) → GL1(E). If E comes with
an absolute value | . |, we define H(E)1 to be the subgroup of all elements g such
that |χ(g)| = 1 for all rational characters χ defined over Q. We will use this notation
in the cases when E is R or the ring A of adeles of Q. One should be aware that
H(R)1 could also be defined with respect to characters defined over the field R, but
this is not the point of view in the present paper.

Let G be a semisimple, simply connected reductive linear algebraic group over
Q. If P is a parabolic Q-subgroup of G with unipotent radical N , we have a Levi
decomposition P = LN . Generally, we denote the group of real points of a linear
algebraic Q-group by the corresponding roman letter, so that P = LN . However,
if A is a maximal Q-split torus of L, we denote by A the connected component
of the identity A(R)0. One has decompositions L(A) = L(A)1A, L = MA (direct
products) and P 1 = MN , where M = L1.

An element x of G(A) is called parabolically singular or p-singular, if there are
y ∈ G(A) and a parabolic Q-group P 6= G such that yxy−1 ∈ P(A)1. A function f
on G(A) is called p-admissible if f vanishes on all p-singular elements.

Example 3.1. Suppose that the function f on G(A) is supported on Kfin ×G
and vanishes on all G-conjugates ofKfin×P 1 for every parabolic Q-subgroup P 6= G.
Then f is p-admissible.

Proof: Let q ∈ P(A)1 for some proper Q-parabolic P and let x ∈ G(A). We
have to show that f(x−1qx) = 0. By the assumption on the support of f we have
only to consider q = qfinq∞ with x−1qfinx ∈ Kfin, i.e., qfin ∈ xKfinx

−1 ∩ P(A), a
compact subgroup of P(A). Any continuous quasicharacter with values in ]0,∞[
will be trivial on that subgroup, hence qfin ∈ P(A)1. Since q was already in P(A)1,
it follows that q∞ ∈ P(A)1 ∩ P = P 1, and so f(x−1qx) = 0 due to the assumption
on f applied to the parabolic Q-subgroup P. �

An element γ ∈ G(Q) is called Q-elliptic if it is not contained in any parabolic
Q-subgroup other than G itself. This notion is clearly invariant under conjugation,
and we say that a class o is Q-elliptic if some (hence any) of its elements is so.
It is known that Q-elliptic elements are semisimple, so Q-elliptic classes o are just
conjugacy classes in G(Q).

Let Γ ⊂ G(Q) ⊂ G be a congruence subgroup, i.e., there exists a compact open
subgroup KΓ of G(Afin) such that Γ = KΓ∩G(Q). Suppose the test function f is of
the form f = 1

vol(KΓ) ⊗ f∞, where f∞ is p-regular on G. Then f is p-regular [11].

Proposition 3.2. Let f be as above. Then we have

Jgeom(f) =
∑
[γ]

vol(Γγ\Gγ) Oγ(f∞),

where the sum on the right-hand side runs over the set of all conjugacy classes [γ]
in the group Γ which consist of Q-elliptic elements.

Proof: see [11]. �
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Proposition 3.3. If the Q-rank of G is one and f is p-admissible, then the
spectral side of the trace formula reduces to∑

π∈Π(G(A))

N(π) trπ(f)

− 1
4π

∑
O

∫
a∗0,R

tr (M(O,−iλ)M ′(O, iλ) IO,λ(f)) dλ

+
1
4

∑
O:#O=1

tr (M(O, 0) IO,0(f)) .

Proof: If f is p-admissible, then the geometric side of the trace formula, as
we have seen, is independent of T . Therefore the spectral side also is constant as a
function in the truncation parameter T . This means that the summand involving
T must be zero. �

3.3. The continuous contribution. In this section we will treat the contin-
uous spectral contribution which is

1
4π

∫
a∗0,R

tr (M(O,−iλ)M ′(O, iλ) IO,λ(f)) dλ.

We abbreviate this as
1
4π

∫
a∗0,R

tr (M(λ) IO,λ(f)) dλ,

or, if no confusion is possible, write it as
1

4πi

∫
ia∗0,R

tr M(λ)−1M ′(λ)Iλ(f) dλ.

3.3.1. Integral kernel. Fix an infinitesimal character Λ of M0. Let

V (Λ) def
= L2

(
L0(Q)\L0(A)1

)
(Λ)

be the space of all square integrable functions φ on L0(Q)\L0(A)1 satisfying Tφ =
Λ(T )φ in the distributional sense for every T ∈ zM0 . Let V (O) be the sum of the
V (Λ) where Λ ranges over O. Let R0 denote the right regular representation of
L0(A)1 on this space. Note that R0 is a direct sum of irreducible representations.
The representation IO,λ can be viewed as the unitarily induced representation

IndG(A)
P(A) (V (O)⊗ λ⊗ 1) ,

where we have used P(A) = L0(A)1A0N0(A). In other words, IO,λ can be viewed
as the representation on the space HO,λ of functions φ : G(A) → V (O) satisfying
φ(manx) = aλ+ρ0R0(m)φ(x) for m ∈ L0(A)1, a ∈ A0, n ∈ N0(A), and x ∈ G(A),
as well as

∫
kA
|φ(k)|2 dk < ∞. On this space, the representation IO,λ is given by

IO,λ(y)φ(x) = φ(xy).
Since G(A) = P(A)KA, any function φ ∈ HO,λ is uniquely determined by its

restriction to KA. In this way, HO,λ can be identified with the space L2(KA, R0) of
all φ ∈ L2(KA, V (O)) such that φ(mk) = R0(m)φ(k) for all m ∈ KA ∩ L0(A) and
all k ∈ KA.
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Now let f be as above, and let φ ∈ HO,λ. Then for k1 ∈ KA,

IO,λ(f)φ(k1) =
∫
G(A)

f(y)φ(k1y) dy

=
∫
G(A)

f(k−1
1 y)φ(y) dy

and this equals∫
N0(A)

∫
L0(A)1

∫
A0

∫
KA

f(k−1
1 nmak2) aλ+ρ0R0(m)φ(k2) dndmdadk2.

We thus interpret IO,λ(f) as an integral operator on L2(KA, R0) with kernel

kf,λ(k1, k2) =
∫
N (A)L0(A)1A0

f(k−1
1 nmak2)aλ+ρ0R0(m)dnam

=
∫
A0

f̃(k1, k2, a)aλ+ρ0 da,

where

f̃(k1, k2, a) =
∫
N (A)L0(A)1

f(k−1
1 nmak2)R0(m) dmda.

Thus we may view the kernel kf,λ pointwise as a Fourier transform in λ of the
function f̃ .

3.3.2. Moderate growth. An open set U ⊂ C is called an admissible set if each
connected component of U is bounded.

Let g be a meromorphic function on C. We say that g is essentially of moderate
growth if there is a natural number N , a constant C > 0 and an admissible set U
such that on C H U one has |g(z)| ≤ C|z|N . The minimal number N for which
there exists such a set U is called the growth exponent of g.

Lemma 3.4. Let f be an entire function of finite order p and let g = f ′/f be
its logarithmic derivative. Then g is essentially of moderate growth with growth
exponent ≤ 2p+ 3.

Proof: Let p be the order of f and let a1, a2, . . . be the non-zero zeros of f ,
each repeated with multiplicity. By Hadamard’s factorization theorem we can write

f(z) = zmeP (z)
∞∏
n=1

Ep(z/an),

where P is a polynomial of degree ≤ p and

Ep(z) = (1− z) exp
(
z +

z2

2
+ · · ·+ zp

p

)
.

This implies
f ′

f
(z) =

m

z
+ P ′(z) +

∞∑
n=1

1
an

E′
p

Ep
(z/an).

It suffices to show the claim for the sum over n. So we will assume that m = 0 =
P (z). As a consequence of Hadamard’s factorization theorem one has

D def
=

∞∑
n=1

|an|−p−1 <∞,
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and this implies that there is C > 0 such that for x > 0,

#{n : |an| ≤ x} ≤ Cxp+2.

For a ∈ C and r > 0 let Br(a) denote the open disk of radius r around a. For n ∈ N
we define

rn
def
= |an|−p−1.

We will first show that the set U =
⋃
nBrn

(an) has only bounded components.
Assume the contrary. By replacing the sequence (an) with a subsequence if nec-
essary it suffices to assume that B consists of a single component and that the
balls Brn(an) and Brn+1(an+1) have a nonempty intersection for every n ∈ N. This
implies that

|an − an+1| < rn + rn+1 = |an|−p−1 + |an+1|−p−1.

The finiteness of D then implies that∑
n

|an − an+1| < ∞.

This, however, implies that the sequence (an) converges, a contradiction. So the
set U has only bounded components.

We have to estimate the absolute value of

1
an

E′
p

Ep
(z/an) =

1
an

(
1 +

z

an
+ · · ·+

(
z

an

)p−1

− 1
1− z/an

)
in C H U . We first consider the case |z| < |an|. Then∣∣∣∣ 1

an

E′
p

Ep
(z/an)

∣∣∣∣ =
1
|an|

∣∣∣∣∣1 +
z

an
+ · · ·+

(
z

an

)p−1

− 1
1− z

an

∣∣∣∣∣
=

1
|an|

∣∣∣∣∣∣
∞∑
j=p

(
z

an

)j∣∣∣∣∣∣
=

1
|an|

∣∣∣∣∣
(
z

an

)p 1
1− z

an

∣∣∣∣∣
=

|z|p

|an|p+1

1
|1− z/an|

.

For z ∈ C H B and |z| < |an| we have |an − z| ≥ rn = |an|−p−1, hence

1
|1− z/an|

≤ |an|p+1 < |z|p+2,

so ∣∣∣∣ 1
an

E′
p

Ep
(z/an)

∣∣∣∣ ≤ |z|2p+2

|an|p+1

and thus for z ∈ C H U ,∣∣∣∣∣∣
∑

n:|an|>|z|

1
an

E′
p

Ep
(z/an)

∣∣∣∣∣∣ ≤ D|z|2p+2.
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Next we consider the case |z| ≥ |an| for z ∈ C H U . Then |an− z| ≥ |an|−p−1 and
so 1

|an−z| ≤ |an|p+1 so that∣∣∣∣ 1
an

E′
p

Ep
(z/an)

∣∣∣∣ ≤ |an|p+1 +
p|z/an|p

|an|
.

Summing over n we get∑
n:|an|≤|z|

∣∣∣∣ 1
an

E′
p

Ep
(z/an)

∣∣∣∣ ≤ #{n : |an| ≤ |z|} |z|p+1 +Dp|z|p

≤ C|z|2p+3 +D|z|p.
The lemma follows. �

3.3.3. A conjecture. We consider test functions of the form f = 1
vol(KΓ)11KΓ ⊗

f∞. Note that for a unitary representation η of G(Afin) one has η
(

1
vol(KΓ)11KΓ

)
=

PrΓ, the orthogonal projection onto the space ηKΓ of KΓ-invariants.
Comparing the version of the trace formula used in this paper to the non-adelic

trace formula in Theorem 4.2 of [24] one sees that for f of the above form, the
expression

tr (M(λ)IO,λ(f))
equals

tr
(
c(λ,O)−1c′(λ,O)πΓ,λ(f∞)

)
,

where we write c(λ,O) for the scattering operator of [24] restricted to the space
attached to the orbit O and πΓ,λ equals IO,λ restricted to the space of KΓ-invariants
and considered as a G-representation.

Under the compact group K one has the isotypical decomposition

πΓ,λ =
⊕
σ∈K̂

πσΓ,λ

which is preserved by c(λO) and πΓ,λ(f∞). For each σ ∈ K̂ the space πσΓ,λ is finite
dimensional. Let c(λ, σ,O) denote the restriction of c(λ,O) to the isotype πσΓ,λ.

Conjecture 3.5. The map λ 7→ c(λ, σ,O)−1c′(λ, σ,O) is a meromorphic
matrix valued function of essentially moderate growth. The growth exponent is
≤ 2(dim(G/K) + 2) + 3. The exceptional set U can be chosen independent of σ.

We want to give the integral over ia∗R in the continuous contribution of the trace
formula a different shape. To this end recall that the kernel kf,λ is a Paley-Wiener
function in the argument λ.

We will formulate a general remark on Paley-Wiener functions. For a natural
number n let Cnc (R) denote the space of n-times continuously differentiable com-
pactly supported functions on R. By a Paley-Wiener function of order n we mean
a function h which is the Fourier transform of some g ∈ Cnc (R). Since it better fits
into our applications we will change coordinates from z to iz. So a Paley-Wiener
function h will be of the form

h(z) =
∫ ∞

−∞
g(t)eztdt

for some g ∈ Cnc (R).
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Proposition 3.6. Let h be a Paley-Wiener function of order n and fix a ∈ C.
There is a unique decomposition

h = h+,n
a + h−,na

such that the functions h±na are holomorphic in C− {a}, both have at most a pole
of order < n at a. Further for some C > 0 the following estimates hold:

|h+,n
a (z)| ≤ C

|z − a|n
for Re(z) ≤ 0, z 6= a,

|h−,na (z)| ≤ C

|z − a|n
for Re(z) ≥ 0, z 6= a.

Proof: Let us show uniqueness first. Suppose we are given two decompositions
h = h+ + h− = h+

1 + h−1 of the above type then h̃ = h+ − h+
1 = h−1 − h− satisfies

|h̃(z)| ≤ 2C
|z−a|n for all z 6= a. Therefore the entire function (z−a)nh̃(z) is bounded,

hence constant. But this function vanishes at a by the pole order condition, whence
the claim.

For the existence assume

h(z) =
∫ ∞

−∞
g(t)eztdt

for some g ∈ Cnc (R). Now define

h+,n
a (z) := (

1
z − a

)n
∫ ∞

0

(g(t)eat)(n)e(z−a)tdt− c(g)
(z − a)n

and

h−,na (z) := (
1

z − a
)n
∫ 0

−∞
(g(t)eat)(n)e(z−a)tdt+

c(g)
(z − a)n

,

where c(g) =
∫∞
0

(g(t)eat)(n)dt. Partial integration shows that h = h+,n
a +h−,na , the

rest is clear. �

Note that if g vanishes at t = 0 to order j + 1 and n ≤ j, then

h±,na = h±,n−1
a = . . . = h±,1a

and this further equals

h±(z) :=
∫ ∞

0

g(±t)e±tzdt.

In this case we say that h is orthogonal to polynomials of degree ≤ j.
If a = 0, we will generally drop the index, so h±,n0 = h±,n.
Finally note that, by the formula given above, one sees that if g depends dif-

ferentiably or holomorphically on some parameter then the same holds for h±.
Fix some n ≤ j, but still large and denote by k±,nf,λ,a the kernels we get by apply-

ing this construction to kf,λ as a function in λ. Write T±,nf,λ,a for the corresponding
operator at infinity and I±,nλ,a (f) for the global operator PrΓ ⊗ T±,nf,λ,a. Suppose
a ∈ a∗ has negative real part and does not coincide with a pole of M(λ)−1M ′(λ).
We get that

1
4πi

∫
ia∗R

trM(λ)−1M ′(λ)Iλ(f)dλ
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equals
1

4πi

∫
ia∗R

trM(λ)−1M ′(λ)I+,n
λ,a (f)dλ

+
1

4πi

∫
ia∗R

trM(λ)−1M ′(λ)I−,nλ,a (f)dλ.

We move the integration paths to the left and the right resp. to get the residues
plus a term which tends to zero according to the conjecture. The above becomes

1
2

∑
Reλ<0

trRλI
+,n
λ,a (f)

+
1
2
resλ=atrM(λ)−1M ′(λ)I+,n

λ,a (f)

− 1
2

∑
Reλ>0

trRλI
−,n
λ,a (f),

where Rλ0 := resλ=λ0M(λ)−1M ′(λ).
We say that a function f ∈ Cjc (G) is orthogonal to polynomials of degree ≤ j if

the operator valued function λ 7→ πξ,λ(f) satisfies this condition for any ξ ∈ M̂ . In
that case it immediately gives that the above equals

1
2

∑
Reλ<0

trRλI+
λ (f)− 1

2

∑
Reλ>0

trRλI−λ (f).

Furthermore f is called positive if I−λ (f) = 0. In that case we end up with the
simple expression

1
2

∑
Reλ<0

trRλIλ(f).

From here the proof of the Lefschetz formula should proceed in a similar way
to the compact case [13]. There is, however, a difference and a further difficulty
in that the test functions chosen in [13] are not orthogonal to polynomials. They
can, however, be chosen to be approximately orthogonal to polynomials, meaning
that one can let them run through a sequence, giving the same geometric contribu-
tion, such that the polar contributions above vanish in the limit. This is done by
shrinking the support of these functions so that in the limit it shrinks to a subset
of KMA

−. It remains to be shown that the necessary interchange of integral and
limit is justified, but I believe this can be done. The major problem, in my view,
of this approach lies in Conjecture 3.5, which I have at the moment no idea how to
prove in general.
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