Corrections to: A First Course in Harmonic Analysis, paperback version

Anton Deitmar

I thank Ghassem Narimani for pointing out an error in the proof of the Riemann-Lebesgue Lemma 3.3.2 on page 48. Replace it with the following proof:

Proof: We compute

$$f(x) = \int_{-\infty}^{\infty} f(y) e^{-2\pi i x y} dy$$

= $-\int_{-\infty}^{\infty} f(y) e^{-2\pi i x \left(y + \frac{1}{2x}\right)} dy$
= $-\int_{-\infty}^{\infty} f\left(y - \frac{1}{2x}\right) e^{-2\pi i x y} dy.$

So we get

$$\hat{f}(x) = \frac{1}{2} \int_{-\infty}^{\infty} \left(f(y) - f\left(y - \frac{1}{2x}\right) \right) e^{-2\pi i x y} \, dy.$$

Let $\varepsilon > 0$. By the integrability of f there exists T > 0 such that $\int_{|x|>T-1} |f(x)| \, dx < \varepsilon/2$. Let

$$\hat{f}_T(x) = \frac{1}{2} \int_{-T}^{T} \left(f(y) - f\left(y - \frac{1}{2x}\right) \right) e^{-2\pi i x y} \, dy.$$

For |1/2x| < 1 we estimate

$$\begin{aligned} \left| \frac{1}{2} \int_{|y|>T} \left(f(y) - f\left(y - \frac{1}{2x}\right) \right) e^{-2\pi i x y} \, dy \\ & \leq \left| \frac{1}{2} \int_{|y|>T} |f(y)| \, dy + \frac{1}{2} \int_{|y|>T} |f(y - \frac{1}{2x})| \, dy \\ & \leq \int_{|y|>T-1} |f(y)| \, dy \ < \ \varepsilon/2. \end{aligned} \end{aligned}$$

So if $|x| > \frac{1}{2}$ we get

$$|\hat{f}(x)| < |\hat{f}_T(x)| + \frac{\varepsilon}{2}.$$

By dominated convergence and the continuity of f it follows that there exists x_0 such that for $|x| > x_0$ one has $|\hat{f}_T(x)| < \frac{\varepsilon}{2}$. Together the claim follows. Q.E.D.

(page,location)

- (46,*) It is not mentioned, but used, that the Fourier-transform of a function $f \in L^1_{bc}(\mathbb{R})$ is a continuous function. This is an immediate consequence of the dominated convergence theorem.
- 65,-10 The integration should extend from $-\infty$ to ∞ .

(66,Lemma 4.4.1) The proof of the lemma should be:

$$\widehat{\hat{T}}(f) = \widehat{T}(\widehat{f}) = T(\widehat{f}) = T(\check{f}).$$

- (104,-4) Add: From the fact that each $\chi \in \hat{A}$ is continuous, it follows that $\bigcup_n L_n = \hat{A}$.
- (106,10) Write: The lemma follows. To finish the proof of the theorem, it remains to show that \hat{A} is locally compact. For this fix a natural number k such that $B_{1/k}$ has compact closure. Since the prescribed exhaustion (K_n) is absorbing, there exists n with $B_{1/k} \subset K_n$. Let \hat{e} be the identity character in \hat{A} . Then, for any character $\chi \in \hat{A}$,

$$\hat{d}(\chi, \hat{e}) < \frac{\sqrt{2}}{2^n} \quad \Rightarrow \quad \hat{d}_n(\chi, \hat{e}) < 2^n \frac{\sqrt{2}}{2^n} = \sqrt{2} \quad \Rightarrow \quad \chi \in L_k.$$

Hence, L_k is a neighborhood of \hat{e} in \hat{A} . Since L_k is compact, \hat{A} is locally compact.