Exercises in variational calculus Sheet 3

3.1 Exercise (Lower semicontinuity and convexity)

Let $(B, \|\cdot\|)$ be a Banachspace and $F: B \to \mathbb{R}$ be convex and lower semicontinuous. Show that F is also weakly lower semicontinuous, i.e. show that for every $x_k \in B$ weakly converging to an $x \in B$ that

$$F(x) \le \liminf_{k \to \infty} F(x_k).$$

Hint: Examine the epigraph $epi(F) := \{(t, x) \in \mathbb{R} \times B | F(x) \le t\}$ and use Theorem 2.15.

3.2 Exercise (Poincaré Inequality)

Let $\Omega \subseteq \mathbb{R}^n$ be open and bounded, $1 \leq p < \infty$. Show that there exists a constant $C = C(\operatorname{diam}(\Omega), n, p) > 0$, such for all $u \in W_0^{1,p}(\Omega)$

$$\|u\|_{L^p(\Omega)} \le C \|\nabla u\|_{L^p(\Omega)}.$$

Hint: Density, partial integration and Hölders inequality.

3.3 Exercise (Basics about weak derivatives)

Let $\Omega \subseteq \mathbb{R}^n$ be open and $u \in L^1_{loc}(\Omega)$. Show the following:

1. The weak derivative is unique, i.e. if two functions $v_1, v_2 \in L^1_{loc}(\Omega)$ exist, which are both a weak derivative of u w.r.t. the *i*-th component (i = 1, ..., n), then

$$v_1 = v_2 \mathcal{L}^n$$
-a.e..

2. Let $i, j \in \{1, \ldots, n\}$ and we assume $D^{(i)}u, D^{(j)}u$ and $D^{(i,j)}u$ to exist weakly. Show that $D^{(j,i)}u$ exists weakly as well and \mathcal{L}^n -a.e.

$$D^{(i,j)}u = D^{(j,i)}u.$$

Hint: Fundamental lemma of variational calculus.

3.4 Exercise (Sobolev spaces and Functional Analysis)

Let $\Omega \subseteq \mathbb{R}^n$ be open.

- 1. Show that $W^{k,p}(\Omega)$ for $1 \leq p \leq \infty$ is complete.
- 2. Show that for $1 the Sobolev space <math>W^{k,p}(\Omega)$ is reflexive.

Hint: You may use without proof, that $(L^p(\Omega))^m$ for $m \in \mathbb{N}$ is reflexive if, 1 .

The exercises and other material can be found on the homepage of the lecture:

https://www.math.uni-tuebingen.de/user/eichmann/Lehre/Variationsrechnung_22_23/.