Exercises in variational calculus Sheet 5

5.1 Exercise (*p*-Laplace)

Let $\Omega \subseteq \mathbb{R}^n$ be open and bounded. Examine the following boundary value problem for the *p*-Laplace operator for 1 :

$$\begin{cases} -\Delta_p u := -\operatorname{div}(|\nabla u|^{p-2}\nabla u) = f, & \text{in } \Omega\\ u = 0, & \text{on } \partial\Omega. \end{cases}$$

Find a suitable weak formulation of this boundary value problem and assumptions on f, such that you can show existence.

Hint: Try $f \in L^r(\Omega)$ and find a good r by Hölder inequality and Sobolev embeddings. If this fails, assume $f \in L^{\infty}(\Omega)$. Also examine $u \mapsto \frac{1}{p} \int_{\Omega} |\nabla u|^p dx$. Further use Exercise 4.3.

5.2 Exercise (Poincaré inequality, Part II)

Let $\Omega \subseteq \mathbb{R}^n$ be open, bounded and connected with C^1 boundary. For $u \in L^1(\Omega)$ we define the mean $\overline{u} \in \mathbb{R}$ by

$$\overline{u} := \frac{1}{\mathcal{L}^n(\Omega)} \int_{\Omega} u \, dx$$

Show that there exists a constant $C = C(n, \Omega) > 0$, such that for all $u \in W^{1,2}(\Omega)$ we have

$$\int_{\Omega} |u - \overline{u}|^2 \, dx \le C \int_{\Omega} |\nabla u|^2 \, dx.$$

Hint: Proceed by contradiction and use the compactness part of the Sobolev embedding theorem.

5.3 Exercise (Natural boundary conditions)

Let $\Omega \subseteq \mathbb{R}^n$ be open, bounded, connected and with C^1 -boundary. For $f \in L^2(\Omega)$ with $\int_{\Omega} f \, dx = 0$ we define the Energy $E: W^{1,2}(\Omega) \to \mathbb{R}$ by

$$E(u) := \frac{1}{2} \int_{\Omega} |\nabla u|^2 \, dx - \int_{\Omega} f u \, dx.$$

Do the following:

- 1. Show, that E does possess a minimiser in $W^{1,2}(\Omega)$.
- 2. What kind of boundary value problem does the minimiser from the previous point satisfy weakly?
- 3. Can we still expect to have a minimiser, if $\int f dx \neq 0$?

Hint: Modify a minimising sequence with the help of Exercise 5.2.

The exercises and other material can be found on the homepage of the lecture:

https://www.math.uni-tuebingen.de/user/eichmann/Lehre/Variationsrechnung_22_23/.