Exercises in variational calculus
 Sheet 5

5.1 Exercise (p-Laplace)

Let $\Omega \subseteq \mathbb{R}^{n}$ be open and bounded. Examine the following boundary value problem for the p-Laplace operator for $1<p<\infty$:

$$
\left\{\begin{array}{cc}
-\Delta_{p} u:=-\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)=f, & \text { in } \Omega \\
u=0, & \text { on } \partial \Omega .
\end{array}\right.
$$

Find a suitable weak formulation of this boundary value problem and assumptions on f, such that you can show existence.
Hint: Try $f \in L^{r}(\Omega)$ and find a good r by Hölder inequality and Sobolev embeddings. If this fails, assume $f \in L^{\infty}(\Omega)$. Also examine $u \mapsto \frac{1}{p} \int_{\Omega}|\nabla u|^{p} d x$.
Further use Exercise 4.3.

5.2 Exercise (Poincaré inequality, Part II)

Let $\Omega \subseteq \mathbb{R}^{n}$ be open, bounded and connected with C^{1} boundary. For $u \in L^{1}(\Omega)$ we define the mean $\bar{u} \in \mathbb{R}$ by

$$
\bar{u}:=\frac{1}{\mathcal{L}^{n}(\Omega)} \int_{\Omega} u d x .
$$

Show that there exists a constant $C=C(n, \Omega)>0$, such that for all $u \in W^{1,2}(\Omega)$ we have

$$
\int_{\Omega}|u-\bar{u}|^{2} d x \leq C \int_{\Omega}|\nabla u|^{2} d x .
$$

Hint: Proceed by contradiction and use the compactness part of the Sobolev embedding theorem.

5.3 Exercise (Natural boundary conditions)

Let $\Omega \subseteq \mathbb{R}^{n}$ be open, bounded, connected and with C^{1}-boundary. For $f \in L^{2}(\Omega)$ with $\int_{\Omega} f d x=0$ we define the Energy $E: W^{1,2}(\Omega) \rightarrow \mathbb{R}$ by

$$
E(u):=\frac{1}{2} \int_{\Omega}|\nabla u|^{2} d x-\int_{\Omega} f u d x .
$$

Do the following:

1. Show, that E does possess a minimiser in $W^{1,2}(\Omega)$.
2. What kind of boundary value problem does the minimiser from the previous point satisfy weakly?
3. Can we still expect to have a minimiser, if $\int f d x \neq 0$?

Hint: Modify a minimising sequence with the help of Exercise 5.2.

