Dr. S. Eichmann Winter 2022/23

Exercises in variational calculus Sheet 6

On this exercise sheet we will examine an example of a geometric energy defined for curves. We use the following definition of a curve:

We call $P \subseteq \mathbb{R}^2$ a $W^{2,2}$ -regular curve, if there exists an open interval $I \subseteq \mathbb{R}$ and a function $c: I \to \mathbb{R}^2$, such that the coordinates satisfy $c_1, c_2 \in W^{2,2}(I)$, $|\dot{c}(t)| \neq 0$ for all $t \in I$ and

$$c(I) = P$$
.

We call c a $W^{2,2}$ -parametrisation of P.

Now we define two energies for a $W^{2,2}$ -curve P by its parametrisation $c: I \to \mathbb{R}^2$:

The length of P:

$$L(P) := \int_{I} |c'(t)| dt.$$

The elastic energy of P

$$E(P) := \int_{I} \frac{1}{|c'|} \left| \frac{d}{dt} \left(\frac{c'}{|c'|} \right) \right|^{2} dt.$$

6.1 Exercise (Inner Invariances)

Show that L and E are well defined, i.e. independent of a specific parametrisation. Hence let $c:[a,b]\to\mathbb{R}^2$ be smooth with $c'(t)\neq 0$ for all $t\in [a,b]$ and $\varphi:[d,e]\to [a,b]$ be a smooth diffeomorphism with $\varphi'(t)\neq 0$ for all t. Now show

$$\int_{d}^{e} |(c \circ \varphi)'| dt = \int_{a}^{b} |c'(t)| dt$$

and

$$\int_{d}^{e} \frac{1}{|(c\circ\varphi)'|} \left| \frac{d}{dt} \left(\frac{(c\circ\varphi)'}{|(c\circ\varphi)'|} \right) \right|^2 \, dt = \int_{a}^{b} \frac{1}{|c'|} \left| \frac{d}{dt} \left(\frac{c'}{|c'|} \right) \right|^2 \, dt.$$

6.2 Exercise (Arclength parametrisation)

Let $c \in W^{2,2}((a,b),\mathbb{R}^2)$ with $c'(t) \neq 0$ for all t and P = c(a,b) the corresponding curve. Show that there exists a diffeomorphism $\varphi : [0,1] \to [a,b]$ with $\varphi' > 0$, such that

$$|(c \circ \varphi)'(t)| = L(P)$$
 for all $t \in (0, 1)$.

Hint: Invert $s \mapsto \int_a^s |c'(t)| dt$.

6.3 Exercise (Existence of minimiser under Dirichlet data)

Let $a, b \in \mathbb{R}^2$, $v, w \in \partial B_1(0) \subseteq \mathbb{R}^2$. We define

$$M:=\left\{\begin{array}{c}P\subseteq\mathbb{R}^2\ W^{2,2}\text{-curve with parametrisation }c:(d,e)\to\mathbb{R}^2\text{ such that}\\c(d)=a,\ c(e)=b,\ \frac{c'(d)}{|c'(d)|}=v,\ \frac{c'(e)}{|c'(e)|}=w\end{array}\right\}.$$

We define for $\lambda > 0$

$$W_{\lambda}: M \to \mathbb{R}, \ W_{\lambda}(P) := E(P) + \lambda L(P).$$

Show that W_{λ} does possess a minimiser in M. *Hint:* Use exercise 6.2 to control the inner invariances of the functional.

The exercises and other material can be found on the homepage of the lecture: https://www.math.uni-tuebingen.de/user/eichmann/Lehre/Variationsrechnung_22_23/.