Solutions to exercise 1

Solution to exercise 1.1

Since $\Omega \subseteq \mathbb{R}^{n}$ is open, we have for every $x \in \Omega$ an $R>0$ such that $B_{R}(x) \subset \subset \Omega$ (i.e. $\overline{B_{R}(x)} \subseteq \Omega$). If we show $\left.f\right|_{B_{R}(x)}=0$ a.e., we have already achieved our desired conclusion. Hence we can assume w.l.o.g. that $f \in L^{1}(\Omega)$ and Ω is bounded. We define

$$
A:=[f>0]:=\{x \in \Omega: f(x)>0\} .
$$

Therefore $\chi_{A} \in L^{1}(\Omega)$ and by the hint we find a sequence of functions $\varphi_{k} \in$ $C_{0}^{\infty}(\Omega)$, such that

$$
\left|\varphi_{k}\right| \leq 1,\left\|\varphi_{k}-\chi_{A}\right\|_{L^{1}(\Omega)} \rightarrow 0
$$

After extracting a subsequence (By an addendum of the Riesz-Fischer Theorem) and relabeling we can assume

$$
\varphi_{k} \rightarrow \chi_{A} \text { pointwise a.e.. }
$$

Hence $f \cdot \varphi_{k} \rightarrow f \chi_{A}$ pointwise a.e. and $\left|f \cdot \varphi_{k}\right| \leq|f| \in L^{1}(\Omega)$. The dominated convergence theorem yields

$$
0=\lim _{k \rightarrow \infty} \int_{\Omega} f \cdot \varphi_{k} d x=\int_{\Omega} f \chi_{A} d x=\int_{[f>0]} f d x=\int_{[f>0]}|f| d x
$$

Hence $f=0$ on A a.e. By the same argument $\mathcal{L}^{n}([f<0])=0$.
Addendum: The existence of such φ_{k} can be explicitly shown via a convolution with a smoothing kernel, see e.g. Gilbarg\&Trudinger Lemma 7.2.

Solution to exercise 1.2

Since φ has compact support, we can extend it to \mathbb{R}^{n} by zero and still have a smooth function. Furthermore let $R>0$ be such that

$$
\operatorname{spt}(\varphi):=\overline{\{x \in \Omega: \varphi(x) \neq 0\}} \subset\left[-\frac{R}{2}, \frac{R}{2}\right]^{n}
$$

Then Fubini yields

$$
\begin{aligned}
\int_{\Omega} \operatorname{div}(\varphi) d x & =\sum_{j=1}^{n} \int_{[-R, R]^{n}} \partial_{j} \varphi(x) d x \\
& =\sum_{j=1}^{n} \int_{-R}^{R} \ldots \int_{-R}^{R} \partial_{j} \varphi d x_{j} d x_{1} \ldots d x_{j-1} d x_{j+1} \ldots d x_{n} \\
& =\sum_{j=1}^{n} \int_{-R}^{R} \ldots \int_{-R}^{R}[\varphi]_{-R}^{R} d x_{1} \ldots d x_{j-1} d x_{j+1} \ldots d x_{n} \\
& =\sum_{j=1}^{n} \int_{-R}^{R} \ldots \int_{-R}^{R} 0 d x_{1} \ldots d x_{j-1} d x_{j+1} \ldots d x_{n}=0
\end{aligned}
$$

with the help of the fundamental theorem of calculus.
For second part of the exercise we define a $\varphi \in C_{0}^{1}\left(\Omega, \mathbb{R}^{n}\right)$ by

$$
\varphi_{j}=f g \delta_{i j} .
$$

By the first part we then have

$$
0=\int_{\Omega} \operatorname{div} \varphi d x=\int_{\Omega} \partial_{i}(f g) d x=\int_{\Omega} \partial_{i} f g+f \partial_{i} g d x
$$

and the result follows.
If f or φ do not have compact support anymore, we have to add some assumptions: $\varphi \in C^{1}\left(\bar{\Omega}, \mathbb{R}^{n}\right), \Omega$ bounded and with C^{1} boundary. Then the divergence theorem yields

$$
\int_{\Omega} \operatorname{div} \varphi d x=\int_{\partial \Omega}\langle\varphi, \nu\rangle d a r e a_{\partial \Omega}
$$

and $\nu: \partial \Omega \rightarrow \partial B_{1}(0)$ is the outer unit normal of Ω.
If $f, g \in C^{1}(\bar{\Omega})$ we can apply the same trick as above and obtain:

$$
\int_{\Omega} \partial_{i} f g+f \partial_{i} g d x=\int_{\partial \Omega} \nu_{i} f g d a r e a_{\partial \Omega} .
$$

By Rademachers theorem one might lower the regularity assumptions on $\partial \Omega$, φ, f and g so that they only have to be Lipschitz.

Solution to exercise 1.3

Let $t \in I$ and $h_{k} \in \mathbb{R} \backslash\{0\}$ with $h_{k} \rightarrow 0$. We need to show

$$
\lim _{k \rightarrow \infty} \frac{1}{h_{k}} \int f\left(t+h_{k}, x\right) d \mu(x)-\int f(t, x) d \mu(x)=\int \partial_{t} f(t, x) d \mu
$$

Hence we define a sequence of functions $g_{k}: X \rightarrow \mathbb{R}$ by

$$
g_{k}(x):=\frac{f\left(t+h_{k}, x\right)-f(t, x)}{h_{k}} .
$$

Since f is μ-measurable, so is g. Since $h_{k} \neq 0$ we then have $g_{k} \in L^{1}(\mu)$. Since f is differentiable w.r.t. t, we have for almost every x

$$
g_{k}(x) \rightarrow \partial_{t} f(t, x) \text { for } k \rightarrow \infty .
$$

By the mean value theorem we have an $s_{k} \in\left[-\left|h_{k}\right|,\left|h_{k}\right|\right]$ such that

$$
\left|g_{k}(x)\right|=\left|\frac{f\left(t+h_{k}, x\right)-f(t, x)}{h_{k}}\right|=\left|\frac{\partial_{t} f\left(t+s_{k}, x\right) h_{k}}{h_{k}}\right| \leq|g(x)| .
$$

Since $g \in L^{1}(\mu)$, the dominated convergence theorem yields

$$
\int g_{k} d \mu \rightarrow \int \partial_{t} f(t, x) d \mu
$$

which is the desired result.

Solution to exercise 1.4

Let $\varphi \in C_{0}^{\infty}((a, b), \mathbb{R})$ be arbitrary. Since $\varphi(a)=\varphi(b)=0$, we have for all $s \in \mathbb{R}$

$$
(t \mapsto x(t)+s \cdot \varphi(t)) \in L .
$$

Since $[a, b] \subset \mathbb{R}$ is compact and $t \mapsto h\left(t, x(t), x^{\prime}(t)\right)$ is continuously differentiable, the function

$$
s \mapsto F(x+s \varphi)
$$

is continuously differentiable by Exercise 1.3. Furthermore the derivatives of h are bounded and hence integral and derivative can be exchanged.
Also $s \mapsto F(x+s \varphi)$ does possess a minimum in $s=0$, hence

$$
\begin{aligned}
0= & \left.\frac{d}{d s} F(x+s \varphi)\right|_{s=0}=\left.\frac{d}{d s} \int_{a}^{b} h\left(t, x(t)+s \varphi(t), x^{\prime}(t)+s \varphi^{\prime}(t)\right) d t\right|_{s=0} \\
= & \left.\int_{a}^{b} \frac{\partial}{\partial s}\left(h\left(t, x(t)+s \varphi(t), x^{\prime}(t)+s \varphi^{\prime}(t)\right)\right) d t\right|_{s=0} \\
= & \int_{a}^{b} \frac{\partial h}{\partial y}\left(t, x(t)+s \varphi(t), x^{\prime}(t)+s \varphi^{\prime}(t)\right) \cdot \varphi(t) \\
& +\left.\frac{\partial h}{\partial p}\left(t, x(t)+s \varphi(t), x^{\prime}(t)+s \varphi^{\prime}(t)\right) \cdot \varphi^{\prime}(t) d t\right|_{s=0} \\
= & \int_{a}^{b} \frac{\partial h}{\partial y}\left(t, x(t), x^{\prime}(t)\right) \cdot \varphi(t)+\frac{\partial h}{\partial p}\left(t, x(t), x^{\prime}(t)\right) \cdot \varphi^{\prime}(t) d t \\
= & \int_{a}^{b} \frac{\partial h}{\partial y}\left(t, x(t), x^{\prime}(t)\right) \cdot \varphi(t) d t+\left[\frac{\partial h}{\partial p}\left(t, x(t), x^{\prime}(t)\right) \cdot \varphi(t)\right]_{t_{0}}^{T} \\
& -\int_{a}^{b} \frac{d}{d t}\left(\frac{\partial h}{\partial p}\left(t, x(t), x^{\prime}(t)\right)\right) \cdot \varphi(t) d t \\
= & \int_{a}^{b}\left(\frac{\partial h}{\partial y}\left(t, x(t), x^{\prime}(t)\right)-\frac{d}{d t}\left(\frac{\partial h}{\partial p}\left(t, x(t), x^{\prime}(t)\right)\right)\right) \cdot \varphi(t) d t .
\end{aligned}
$$

Since $\varphi \in C_{0}^{\infty}((a, b), \mathbb{R})$ is arbitrary, exercise 1.1 yields the desired conclusion:

$$
\frac{d}{d t}\left(\frac{\partial h}{\partial p}\left(t, x(t), x^{\prime}(t)\right)\right)-\frac{\partial h}{\partial y}\left(t, x(t), x^{\prime}(t)\right)=0
$$

