Solutions to exercise 2

Solution of exercise 2.1

1. - Positive definite: Let $L \in B^{*}$ with $\|L\|_{B^{*}}=0$. Then for all $x \in B$ with $\|x\|_{B} \leq 1$ we have

$$
|L(x)| \leq \sup _{y \in B,\|y\|_{B} \leq 1}|L(y)|=\|L\|_{B^{*}}=0
$$

hence $L(x)=0$. Now let $x \in B \backslash\{0\}$ be arbitrary. Then by linearity of L we have

$$
L(x)=\|x\|_{B} L\left(\frac{x}{\|x\|_{B}}\right)=\|x\|_{B} \cdot 0=0
$$

and it follows, that $L=0$.

- Homogenity: Let $L \in B^{*}$ and $\alpha \in \mathbb{R}$. Then

$$
\|\alpha L\|_{B^{*}}=\sup _{x \in B,\|x\|_{B} \leq 1}|\alpha L(x)|=|\alpha| \sup _{x \in B,\|x\|_{B} \leq 1}|L(x)|=|\alpha|\|L\|_{B^{*}} .
$$

- Triangle inequality: Let $L, G \in B^{*}$. Then

$$
\begin{aligned}
& \|L+G\|_{B^{*}}=\sup _{x \in B,\|x\|_{B} \leq 1}|L(x)+G(x)| \leq \sup _{x \in B,\|x\|_{B} \leq 1}|L(x)|+|G(x)| \\
\leq & \sup _{x \in B,\|x\|_{B} \leq 1}|L(x)|+\sup _{x \in B,\|x\|_{B} \leq 1}|G(x)|=\|L\|_{B^{*}}+\|G\|_{B^{*}} .
\end{aligned}
$$

2. Let $L: B \rightarrow V$ be linear and continuous. Since L is continuous in $x=0$, we find a $\delta>0$, such that for all $y \in B_{\delta}(0)$ we have

$$
\|L(y)\|_{V}=\|L(0)-L(y)\|_{V}<1
$$

Now let $y \in B$ with $\|y\|_{B} \leq 1$. Then $\left\|\frac{\delta}{2} y\right\|_{B}<\delta$ and therefore

$$
\left\|L\left(\frac{\delta}{2} y\right)\right\|_{V}<1
$$

Hence by linearity

$$
\|L(y)\|_{V}<\frac{2}{\delta}<\infty
$$

Therefore the operatornorm is bounded.
Now let $\|L\|_{B, V}<\infty$. Furthermore let $x, y \in B$ with $x-y \neq 0$. Then

$$
\left\|L\left(\frac{x-y}{\|x-y\|_{B}}\right)\right\|_{V} \leq\|L\|_{B, V} .
$$

Since L is linear, we then obtain

$$
\|L(x)-L(y)\|_{V} \leq\|L\|_{B, V}\|x-y\|_{B} .
$$

Therefore L is Lipschitz and also continuous.
3. Let $x \in B \backslash\{0\}$. Then

$$
\frac{\|L(x)\|_{V}}{\|x\|_{B}}=\left\|L\left(\frac{x}{\|x\|_{B}}\right)\right\|_{V} \leq \sup _{y \in B,\|y\|_{B} \leq 1}\|L(y)\|_{V}=\|L\|_{B, V} .
$$

On the other hand let $x \in B \backslash\{0\}$ with $\|x\|_{B} \leq 1$. Then

$$
\|L(x)\|_{V} \leq \frac{\|L(x)\|_{V}}{\|x\|_{B}} \leq \sup _{y \in B \backslash\{0\}} \frac{\|L(y)\|_{V}}{\|y\|_{B}}
$$

Solution of exercise 2.2

1. Let $L \in B^{*}$ be arbitrary. Since L is Lipschitz by Ex. 2.1 we have

$$
\left|L\left(x_{k}\right)-L(x)\right|=\left|L\left(x_{k}-x\right)\right| \leq\|L\|_{B^{*}}\left\|x_{k}-x\right\| \rightarrow 0 \text { for } k \rightarrow \infty
$$

2. Let x_{k} weakly converge to $x \in B$ and $y \in B$. We proceed by contradiction and assume $x \neq y$. By Hahn-Banach 2.5 3) we find an $L \in B^{*}$ and $\gamma_{1}, \gamma_{2} \in \mathbb{R}$ such that

$$
\lim _{k \rightarrow \infty} L\left(x_{k}\right)=L(x)<\gamma_{1}<\gamma_{2}<L(y)=\lim _{k \rightarrow \infty} L\left(x_{k}\right),
$$

a contradiction.
3. Let $x_{k} \in \mathbb{R}^{n}$ weakly converge to $x \in \mathbb{R}^{n}$. We define $L_{j}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by $L_{j}(x)=\left\langle e_{j}, x\right\rangle$. Then the j-th component converges, i.e.

$$
x_{k}^{j}=\left\langle e_{j}, x\right\rangle=L_{j}\left(x_{k}\right) \rightarrow L_{j}(x)=x^{j} .
$$

Since $j=1, \ldots, n$ is finite, all components converge and we have $\| x_{k}-$ $x \| \rightarrow 0$ for $k \rightarrow \infty$. Please note that since we are in a finite dimensional normed space, all norms are equivalent and therefore the choice of norm does not matter.

Solution of exercise 2.3

Let H be a seperable Hilbertspace and $p_{n} \in H$ a sequence, such that there exists a $C>0$ with

$$
\left\|p_{n}\right\| \leq C<\infty \text { for all } n \in \mathbb{N}
$$

Let $\left\{q_{\ell}, \ell \in \mathbb{N}\right\} \subset H$ be dense. Via Cauchy-Schwartzes inequality we have

$$
\left|\left\langle p_{n}, q_{\ell}\right\rangle\right| \leq C\left\|q_{\ell}\right\| .
$$

With Bolzano-Weierstraßwe can successively extract subsequences and we obtain

$$
\begin{array}{lllll}
\left\langle p_{1_{1}}, q_{1}\right\rangle, & \left\langle p_{1_{2}}, q_{1}\right\rangle, & \left\langle p_{1_{3}}, q_{1}\right\rangle, & \cdots & \rightarrow f\left(q_{1}\right) \\
\left\langle p_{21}, q_{2}\right\rangle, & \left\langle p_{2_{2}}, q_{2}\right\rangle, & \left\langle p_{2_{3}}, q_{1}\right\rangle, & \cdots & \rightarrow f\left(q_{2}\right) \\
\left\langle p_{3_{1}}, q_{3}\right\rangle, & \left\langle p_{3_{2}}, q_{3}\right\rangle, & \left\langle p_{3_{3}}, q_{3}\right\rangle, & \cdots & \rightarrow f\left(q_{3}\right)
\end{array}
$$

$$
\vdots \quad \ddots
$$

Here n_{j} is a subsequence of k_{j} if $n \geq k$. Choosing the diagonal as a subsequence, i.e.

$$
p_{n}:=p_{n_{n}}
$$

we have

$$
\left\langle p_{n}, q_{\ell}\right\rangle \rightarrow f\left(q_{\ell}\right) \text { for all } \ell \in \mathbb{N} .
$$

This defines a function $f:\left\{q_{\ell}, \ell \in \mathbb{N}\right\} \rightarrow \mathbb{R}$. In the next step we use the density of the q_{ℓ} to extend f continuously to the whole of H :
Let $q \in H$ be arbitrary, $\varepsilon>0$ and q_{ℓ} such that $\left\|q-q_{\ell}\right\|<\varepsilon$. Then

$$
\begin{aligned}
\limsup _{n, j \rightarrow \infty}\left|\left\langle p_{n}, q\right\rangle-\left\langle p_{j}, q\right\rangle\right| & \leq \limsup _{n, j \rightarrow \infty}\left|\left\langle p_{n}, q-q_{\ell}\right\rangle\right|+\left|\left\langle p_{n}-p_{j}, q_{\ell}\right\rangle\right| \\
& +\left|\left\langle p_{j}, q_{\ell}-q\right\rangle\right| \leq 2 C \varepsilon
\end{aligned}
$$

Hence $\left\langle p_{n}, q\right\rangle$ is a Cauchy sequence and since H is complete, it converges to a limit $f(q)$. Therefore

$$
\forall q \in H:\left\langle p_{n}, q\right\rangle \rightarrow f(q), n \rightarrow \infty
$$

Since the scalarproduct is linear, f is as well. We also have

$$
|f(q)|=\lim _{n \rightarrow \infty} \mid\left\langle p_{n}, q\right\rangle \leq \lim _{n \rightarrow \infty}\left\|p_{n}\right\|\|q\| \leq C\|q\|
$$

hence f is bounded and by Ex. 2.1 it is continuous. By the Riesz representation theorem we therefore find a unique $p \in H$, such that for all $q \in H$ we have

$$
\lim _{n \rightarrow \infty}\left\langle p_{n}, q\right\rangle=f(q)=\langle p, q\rangle .
$$

Again by the Riesz representation theorem we can represent any linear $L \in h^{*}$ by such a q. Hence $p_{n} \rightarrow p$ weakly.

Solution of exercise 2.4

Let $x^{* *} \in X^{* *}$ be arbitrary. We define

$$
\tilde{x}^{* *} \in B^{* *} \text { by } \tilde{x}^{* *}(G)=x^{* *}\left(\left.G\right|_{X}\right)
$$

Since B is reflexive, we find an $x \in B$ such that

$$
i_{B}(x)=\tilde{x}^{* *}
$$

We proceed by contradiction and assume $x \notin X$. Then the Hahn-Banach seperation theorem 2.53) yields an $L \in B^{*}$ and $\gamma_{1}, \gamma_{2} \in \mathbb{R}$ such that

$$
L(x)<\gamma_{1}<\gamma_{2}<L(y) \text { for all } y \in X
$$

Since X is a subspace, we could scale the right hand of the inequality as much as we like, if $\left.L\right|_{X} \neq 0$. Hence $\left.L\right|_{X}=0$. This yields

$$
0>L(x)=i_{B}(x)(L)=\tilde{x}^{* *}(L)=x^{* *}\left(\left.L\right|_{X}\right)=x^{* *}(0)=0
$$

a contradiction. Hence $x \in X$.
Now let $G \in X^{*}$. Since X is closed we can find by Hahn-Banach 2.5 2) a $\tilde{G} \in B^{*}$, such that $\left.\tilde{G}\right|_{X}=G$. Hence

$$
x^{* *}(G)=\tilde{x}^{* *}(\tilde{G})=i_{B}(x)(\tilde{G})=\tilde{G}(x) \stackrel{x \in X}{=} G(x)=i_{X}(x)(G)
$$

Hence $i_{X}(x)=x^{* *}$ and X is reflexive.

