Dr. S. Eichmann Winter 2022/23

Solutions to exercise 2

Solution of exercise 2.1

1. • Positive definite: Let $L \in B^*$ with $||L||_{B^*} = 0$. Then for all $x \in B$ with $||x||_B \le 1$ we have

$$|L(x)| \le \sup_{y \in B, \ \|y\|_B \le 1} |L(y)| = \|L\|_{B^*} = 0,$$

hence L(x) = 0. Now let $x \in B \setminus \{0\}$ be arbitrary. Then by linearity of L we have

$$L(x) = \|x\|_B L\left(\frac{x}{\|x\|_B}\right) = \|x\|_B \cdot 0 = 0$$

and it follows, that L = 0.

• Homogenity: Let $L \in B^*$ and $\alpha \in \mathbb{R}$. Then

$$\|\alpha L\|_{B^*} = \sup_{x \in B, \|x\|_B \le 1} |\alpha L(x)| = |\alpha| \sup_{x \in B, \|x\|_B \le 1} |L(x)| = |\alpha| \|L\|_{B^*}.$$

• Triangle inequality: Let $L, G \in B^*$. Then

$$||L + G||_{B^*} = \sup_{x \in B, ||x||_B \le 1} |L(x) + G(x)| \le \sup_{x \in B, ||x||_B \le 1} |L(x)| + |G(x)|$$

$$\le \sup_{x \in B, ||x||_B \le 1} |L(x)| + \sup_{x \in B, ||x||_B \le 1} |G(x)| = ||L||_{B^*} + ||G||_{B^*}.$$

2. Let $L: B \to V$ be linear and continuous. Since L is continuous in x = 0, we find a $\delta > 0$, such that for all $y \in B_{\delta}(0)$ we have

$$||L(y)||_V = ||L(0) - L(y)||_V < 1.$$

Now let $y \in B$ with $||y||_B \le 1$. Then $||\frac{\delta}{2}y||_B < \delta$ and therefore

$$\|L(\frac{\delta}{2}y)\|_V < 1$$

Hence by linearity

$$\|L(y)\|_V < \frac{2}{\delta} < \infty.$$

Therefore the operatornorm is bounded. Now let $||L||_{B,V} < \infty$. Furthermore let $x, y \in B$ with $x - y \neq 0$. Then

$$\left|L\left(\frac{x-y}{\|x-y\|_B}\right)\right\|_V \le \|L\|_{B,V}.$$

Since L is linear, we then obtain

$$||L(x) - L(y)||_V \le ||L||_{B,V} ||x - y||_B.$$

Therefore L is Lipschitz and also continuous.

3. Let $x \in B \setminus \{0\}$. Then

$$\frac{\|L(x)\|_{V}}{\|x\|_{B}} = \|L\left(\frac{x}{\|x\|_{B}}\right)\|_{V} \le \sup_{y \in B, \|y\|_{B} \le 1} \|L(y)\|_{V} = \|L\|_{B,V}.$$

On the other hand let $x \in B \setminus \{0\}$ with $||x||_B \leq 1$. Then

$$||L(x)||_V \le \frac{||L(x)||_V}{||x||_B} \le \sup_{y \in B \setminus \{0\}} \frac{||L(y)||_V}{||y||_B}.$$

Solution of exercise 2.2

1. Let $L \in B^*$ be arbitrary. Since L is Lipschitz by Ex. 2.1 we have

$$|L(x_k) - L(x)| = |L(x_k - x)| \le ||L||_{B^*} ||x_k - x|| \to 0 \text{ for } k \to \infty.$$

2. Let x_k weakly converge to $x \in B$ and $y \in B$. We proceed by contradiction and assume $x \neq y$. By Hahn-Banach 2.5 3) we find an $L \in B^*$ and $\gamma_1, \gamma_2 \in \mathbb{R}$ such that

$$\lim_{k \to \infty} L(x_k) = L(x) < \gamma_1 < \gamma_2 < L(y) = \lim_{k \to \infty} L(x_k)$$

a contradiction.

3. Let $x_k \in \mathbb{R}^n$ weakly converge to $x \in \mathbb{R}^n$. We define $L_j : \mathbb{R}^n \to \mathbb{R}$ by $L_j(x) = \langle e_j, x \rangle$. Then the *j*-th component converges, i.e.

$$x_k^j = \langle e_j, x \rangle = L_j(x_k) \to L_j(x) = x^j.$$

Since j = 1, ..., n is finite, all components converge and we have $||x_k - x|| \to 0$ for $k \to \infty$. Please note that since we are in a finite dimensional normed space, all norms are equivalent and therefore the choice of norm does not matter.

Solution of exercise 2.3

Let H be a seperable Hilbert space and $p_n \in H$ a sequence, such that there exists a C>0 with

$$||p_n|| \le C < \infty$$
 for all $n \in \mathbb{N}$.

Let $\{q_{\ell}, \ell \in \mathbb{N}\} \subset H$ be dense. Via Cauchy-Schwartzes inequality we have

$$|\langle p_n, q_\ell \rangle| \le C ||q_\ell||.$$

With Bolzano-Weierstraßwe can successively extract subsequences and we obtain

$$\begin{array}{cccc} \langle p_{1_1}, q_1 \rangle, & \langle p_{1_2}, q_1 \rangle, & \langle p_{1_3}, q_1 \rangle, & \dots \to f(q_1) \\ \langle p_{2_1}, q_2 \rangle, & \langle p_{2_2}, q_2 \rangle, & \langle p_{2_3}, q_1 \rangle, & \dots \to f(q_2) \\ \langle p_{3_1}, q_3 \rangle, & \langle p_{3_2}, q_3 \rangle, & \langle p_{3_3}, q_3 \rangle, & \dots \to f(q_3) \\ \vdots & \ddots \end{array}$$

Here n_j is a subsequence of k_j if $n \ge k$. Choosing the diagonal as a subsequence, i.e.

$$p_n := p_{n_n}$$

we have

$$\langle p_n, q_\ell \rangle \to f(q_\ell)$$
 for all $\ell \in \mathbb{N}$.

This defines a function $f : \{q_{\ell}, \ell \in \mathbb{N}\} \to \mathbb{R}$. In the next step we use the density of the q_{ℓ} to extend f continuously to the whole of H: Let $q \in H$ be arbitrary, $\varepsilon > 0$ and q_{ℓ} such that $||q - q_{\ell}|| < \varepsilon$. Then

$$\begin{split} \limsup_{n,j\to\infty} |\langle p_n,q\rangle - \langle p_j,q\rangle| &\leq \limsup_{n,j\to\infty} |\langle p_n,q-q_\ell\rangle| + |\langle p_n-p_j,q_\ell\rangle| \\ &+ |\langle p_j,q_\ell-q\rangle| \leq 2C\varepsilon \end{split}$$

Hence $\langle p_n, q \rangle$ is a Cauchy sequence and since H is complete, it converges to a limit f(q). Therefore

$$\forall q \in H: \langle p_n, q \rangle \to f(q), \ n \to \infty.$$

Since the scalar product is linear, f is as well. We also have

$$|f(q)| = \lim_{n \to \infty} |\langle p_n, q \rangle \le \lim_{n \to \infty} ||p_n|| ||q|| \le C ||q||,$$

hence f is bounded and by Ex. 2.1 it is continuous. By the Riesz representation theorem we therefore find a unique $p \in H$, such that for all $q \in H$ we have

$$\lim_{n \to \infty} \langle p_n, q \rangle = f(q) = \langle p, q \rangle.$$

Again by the Riesz representation theorem we can represent any linear $L \in h^*$ by such a q. Hence $p_n \to p$ weakly.

Solution of exercise 2.4

Let $x^{**} \in X^{**}$ be arbitrary. We define

$$\tilde{x}^{**} \in B^{**}$$
 by $\tilde{x}^{**}(G) = x^{**}(G|_X)$.

Since B is reflexive, we find an $x \in B$ such that

$$i_B(x) = \tilde{x}^{**}.$$

We proceed by contradiction and assume $x \notin X$. Then the Hahn-Banach seperation theorem 2.5 3) yields an $L \in B^*$ and $\gamma_1, \gamma_2 \in \mathbb{R}$ such that

$$L(x) < \gamma_1 < \gamma_2 < L(y)$$
 for all $y \in X$.

Since X is a subspace, we could scale the right hand of the inequality as much as we like, if $L|_X \neq 0$. Hence $L|_X = 0$. This yields

$$0 > L(x) = i_B(x)(L) = \tilde{x}^{**}(L) = x^{**}(L|_X) = x^{**}(0) = 0,$$

a contradiction. Hence $x \in X$.

Now let $G \in X^*$. Since X is closed we can find by Hahn-Banach 2.5 2) a $\tilde{G} \in B^*$, such that $\tilde{G}|_X = G$. Hence

$$x^{**}(G) = \tilde{x}^{**}(\tilde{G}) = i_B(x)(\tilde{G}) = \tilde{G}(x) \stackrel{x \in X}{=} G(x) = i_X(x)(G).$$

Hence $i_X(x) = x^{**}$ and X is reflexive.