Dr. S. Eichmann Winter 2022/23

Solutions to exercise 3

Solution to exercise 3.1

Let $epi(F) := \{(t,x) \in \mathbb{R} \times B | F(x) \le t\} \subseteq \mathbb{R} \times B$ the epigraph. We equip $\mathbb{R} \times B$ with the norm

$$||(t,x)||_{\mathbb{R}\times B} := |t| + ||x||.$$

Therefore it is a Banachspace as well. we first show, that epi(F) is weakly sequentially closed:

The epigraph is convex because take $(t_1, x_1), (t_2, x_2) \in epi(F)$ and $\lambda \in [0, 1]$. Then the convexity of F yields

$$F(\lambda x_1 + (1-\lambda)x_2)) \le \lambda F(x_1) + (1-\lambda)F(x_2) \le \lambda t_1 + (1-\lambda)t_2.$$

Hence the definition of epi(F) gives us

$$\lambda(t_1, x_1) + (1 - \lambda)(t_2, x_2) = (\lambda t_1 + (1 - \lambda)t_2, \lambda x_1 + (1 - \lambda)x_2) \in epi(F)$$

and epi(F) is convex.

Now epi(F) is also closed: Let $(t_k, x_k) \to (t, x)$ w.r.t. to the norm with $(t_k, x_k) \in epi(F)$. Hence for all $k \in \mathbb{N}$ we have $t_k \ge F(x_k)$ and the lower semicontinuity yields

$$F(x) \le \liminf_{k \to \infty} F(x_k) \le \liminf_{k \to \infty} t_k = t,$$

hence $(t, x) \in epi(F)$.

By Theorem 2.18 epi(F) is weakly sequentially closed.

Now let $x_k \in B$ with $x_k \to x$ weakly. After extracting a subsequence we can assume

$$\liminf_{k \to \infty} F(x_k) = \lim_{k \to \infty} F(x_k) =: t.$$

Let $L : \mathbb{R} \times B$ be linear and continuous. Then

$$L(F(x_k), x_k)) = L((F(x_k), 0)) + L((0, x_k)) \to L((t, 0)) + L((0, x)) = L((t, x)),$$

because $L|_{\mathbb{R}}$ and $L|_B$ are still continuous. Hence $(F(x_k), x_k) \to (t, x)$ weakly. Since

$$F(x_k) \le F(x_k) \implies (F(x_k), x_k) \in epi(F),$$

we have $(t, x) \in epi(F)$. This yields

$$\liminf_{k \to \infty} F(x_k) = t \ge F(x)$$

and F is sequentially weakly lower semicontinuous.

Solution to exercise 3.2

By density we can assume $u \in C_0^{\infty}(\Omega)$. Let $x_0 \in \Omega$. Then

$$\int_{\Omega} |u|^p dx = \int_{\Omega} |u|^p \operatorname{div}(x - x_0) \frac{1}{n} dx = -\frac{1}{n} \int_{\Omega} \langle \nabla(|u|^p), x - x_0 \rangle dx$$
$$= -\frac{1}{n} \int_{\Omega} p |u|^{p-1} \operatorname{sgn}(u) \langle \nabla u, x - x_0 \rangle dx \le C(n, p) \int_{\Omega} |u|^{p-1} |\nabla u| |x - x_0| dx$$
$$\le C(n, p, \operatorname{diam}(\Omega)) \int_{\Omega} |u|^{p-1} |\nabla u| dx$$
$$\le C \left(\int_{\Omega} |\nabla u|^p dx \right)^{\frac{1}{p}} \left(\int_{\Omega} \left(|u|^{p-1} \right)^{\frac{p}{p-1}} dx \right)^{\frac{p-1}{p}} = C \|\nabla u\|_{L^p(\Omega)} \left(\int_{\Omega} |u|^p dx \right)^{\frac{p-1}{p}}$$

Rearranging yields

$$\left(\int_{\Omega} |u|^p \, dx\right)^{1-\frac{p-1}{p}} \le C \|\nabla u\|_{L^p(\Omega)}.$$

Since $1 - \frac{p-1}{p} = \frac{1}{p}$, the result follows.

Solution to exercise 3.3

1. Let $v_1, v_2 \in L^1_{loc}(\Omega)$ be two possible weak derivatives of u. Then for every $\varphi \in C_0^\infty(\Omega)$ we have

$$\int_{\Omega} v_1 \varphi \, dx = -\int_{\Omega} u D^{(i)} \varphi \, dx = (-1) \cdot (-1) \int_{\Omega} v_2 \varphi \, dx.$$

Hence

$$\int_{\Omega} (v_1 - v_2)\varphi \, dx = 0.$$

By the fundamental lemma of variational calculus, we have

$$v_1(x) = v_2(x)$$
 for \mathcal{L}^n -a.e $x \in \Omega$.

2. Let $\varphi \in C_0^2(\Omega)$. Then by definition of the weak derivative and Schwarzes Theorem, we have

$$\int_{\Omega} D^{(i,j)} u\varphi \, dx = \int_{\Omega} u D^{(i,j)} \varphi \, dx = \int_{\Omega} u D^{(j,i)} \varphi \, dx.$$

Hence by Definition 3.1 the weak derivative $D^{(j,i)}u$ exists and by the first part of the exercise (i.e. uniqueness) we have

$$D^{(i,j)}u = D^{(j,i)}u \mathcal{L}^n$$
-a.e..

Solution to exercise 3.4

We define the vector space

$$V_m := L^p(\Omega) \times \ldots \times L^p(\Omega)$$

with m + 1-factors. A norm is given by

$$||(u_0,\ldots,u_m)||_{V_m} := \sum_{j=0}^m ||u_j||_{L^p(\Omega)}.$$

By Riesz-Fischer this space is complete. Furthermore by Example 2.13 V_m is reflexive, if $1 . Now we define an operator <math>L : W^{k,p}(\Omega) \to V_m$ for a suitable $m \in \mathbb{N}$:

$$L(u) := (u, D^{(1,0,\dots,0)}u, D^{(0,1,0\dots,0)}u, \dots, D^{(k,\dots,k)}u).$$

Choosing *m* suitably, this map is well defined, linear, injective and by Remark 3.6 continuous (choosing the norms correctly, it becomes an isometry). Let $u_k \in L(W^{k,p}(\Omega))$ be a Cauchy sequence (i.e. $L^{-1}(u_k)$ is as well). Then there exists a limit $u \in V_m$. Now let $\varphi \in C_0^{\infty}(\Omega) \subseteq L^q(\Omega)$ ($q \in [1, \infty]$ arbitrary) and α be a multiindex with $|\alpha| \leq k$. Since norm convergence is stronger than weak convergence and by Example 2.4

$$\int_{\Omega} u_0 D^{\alpha} \varphi \, dx \leftarrow \int_{\Omega} (u_k)_0 D^{\alpha} \varphi \, dx = (-1)^{|\alpha|} \int_{\Omega} D^{\alpha} (u_k)_0 \varphi \, dx \to (-1)^{|\alpha|} \int_{\Omega} u_{\alpha} \varphi \, dx$$

Hence u_{α} (i.e. the α -component of $u \in V_m$) is the α -th weak derivative of the first component u_0 . Hence $u \in L(W^{k,p}(\Omega))$. Therefore $L(W^{k,p}(\Omega))$ is a closed subspace of V_m . By Exercise 2.4 it is reflexive. Since $L: W^{k,p}(\Omega) \to L(W^{k,p}(\Omega))$ is a bijective isometry, the results follow.