Solutions to exercise 3

Solution to exercise 3.1

Let epi(F):=\{(t,x)$\in \mathbb{R} \times B \mid F(x) \leq t\} \subseteq \mathbb{R} \times B$ the epigraph. We equip $\mathbb{R} \times B$ with the norm

$$
\|(t, x)\|_{\mathbb{R} \times B}:=|t|+\|x\| .
$$

Therefore it is a Banachspace as well. we first show, that epi(F) is weakly sequentially closed:
The epigraph is convex because take $\left(t_{1}, x_{1}\right),\left(t_{2}, x_{2}\right) \in \operatorname{epi}(F)$ and $\lambda \in[0,1]$. Then the convexity of F yields

$$
\left.F\left(\lambda x_{1}+(1-\lambda) x_{2}\right)\right) \leq \lambda F\left(x_{1}\right)+(1-\lambda) F\left(x_{2}\right) \leq \lambda t_{1}+(1-\lambda) t_{2}
$$

Hence the definition of epi(F) gives us

$$
\lambda\left(t_{1}, x_{1}\right)+(1-\lambda)\left(t_{2}, x_{2}\right)=\left(\lambda t_{1}+(1-\lambda) t_{2}, \lambda x_{1}+(1-\lambda) x_{2}\right) \in \operatorname{epi}(F)
$$

and $\operatorname{epi}(F)$ is convex.
Now epi(F) is also closed: Let $\left(t_{k}, x_{k}\right) \rightarrow(t, x)$ w.r.t. to the norm with $\left(t_{k}, x_{k}\right) \in$ $e p i(F)$. Hence for all $k \in \mathbb{N}$ we have $t_{k} \geq F\left(x_{k}\right)$ and the lower semicontinuity yields

$$
F(x) \leq \liminf _{k \rightarrow \infty} F\left(x_{k}\right) \leq \liminf _{k \rightarrow \infty} t_{k}=t,
$$

hence $(t, x) \in \operatorname{epi}(F)$.
By Theorem 2.18 epi(F) is weakly sequentially closed.
Now let $x_{k} \in B$ with $x_{k} \rightarrow x$ weakly. After extracting a subsequence we can assume

$$
\liminf _{k \rightarrow \infty} F\left(x_{k}\right)=\lim _{k \rightarrow \infty} F\left(x_{k}\right)=: t
$$

Let $L: \mathbb{R} \times B$ be linear and continuous. Then

$$
\left.L\left(F\left(x_{k}\right), x_{k}\right)\right)=L\left(\left(F\left(x_{k}\right), 0\right)\right)+L\left(\left(0, x_{k}\right)\right) \rightarrow L((t, 0))+L((0, x))=L((t, x)),
$$

because $\left.L\right|_{\mathbb{R}}$ and $\left.L\right|_{B}$ are still continuous. Hence $\left(F\left(x_{k}\right), x_{k}\right) \rightarrow(t, x)$ weakly. Since

$$
F\left(x_{k}\right) \leq F\left(x_{k}\right) \Rightarrow\left(F\left(x_{k}\right), x_{k}\right) \in \operatorname{epi}(F),
$$

we have $(t, x) \in e p i(F)$. This yields

$$
\liminf _{k \rightarrow \infty} F\left(x_{k}\right)=t \geq F(x)
$$

and F is sequentially weakly lower semicontinuous.

Solution to exercise 3.2

By density we can assume $u \in C_{0}^{\infty}(\Omega)$. Let $x_{0} \in \Omega$. Then

$$
\begin{aligned}
& \int_{\Omega}|u|^{p} d x=\int_{\Omega}|u|^{p} \operatorname{div}\left(x-x_{0}\right) \frac{1}{n} d x=-\frac{1}{n} \int_{\Omega}\left\langle\nabla\left(|u|^{p}\right), x-x_{0}\right\rangle d x \\
= & -\frac{1}{n} \int_{\Omega} p|u|^{p-1} \operatorname{sgn}(u)\left\langle\nabla u, x-x_{0}\right\rangle d x \leq C(n, p) \int_{\Omega}|u|^{p-1}|\nabla u|\left|x-x_{0}\right| d x \\
\leq & C(n, p, \operatorname{diam}(\Omega)) \int_{\Omega}|u|^{p-1}|\nabla u| d x \\
\leq & C\left(\int_{\Omega}|\nabla u|^{p} d x\right)^{\frac{1}{p}}\left(\int_{\Omega}\left(|u|^{p-1}\right)^{\frac{p}{p-1}} d x\right)^{\frac{p-1}{p}}=C\|\nabla u\|_{L^{p}(\Omega)}\left(\int_{\Omega}|u|^{p} d x\right)^{\frac{p-1}{p}}
\end{aligned}
$$

Rearranging yields

$$
\left(\int_{\Omega}|u|^{p} d x\right)^{1-\frac{p-1}{p}} \leq C\|\nabla u\|_{L^{p}(\Omega)}
$$

Since $1-\frac{p-1}{p}=\frac{1}{p}$, the result follows.

Solution to exercise 3.3

1. Let $v_{1}, v_{2} \in L_{l o c}^{1}(\Omega)$ be two possible weak derivatives of u. Then for every $\varphi \in C_{0}^{\infty}(\Omega)$ we have

$$
\int_{\Omega} v_{1} \varphi d x=-\int_{\Omega} u D^{(i)} \varphi d x=(-1) \cdot(-1) \int_{\Omega} v_{2} \varphi d x .
$$

Hence

$$
\int_{\Omega}\left(v_{1}-v_{2}\right) \varphi d x=0 .
$$

By the fundamental lemma of variational calculus, we have

$$
v_{1}(x)=v_{2}(x) \text { for } \mathcal{L}^{n} \text {-a.e } x \in \Omega
$$

2. Let $\varphi \in C_{0}^{2}(\Omega)$. Then by definition of the weak derivative and Schwarzes Theorem, we have

$$
\int_{\Omega} D^{(i, j)} u \varphi d x=\int_{\Omega} u D^{(i, j)} \varphi d x=\int_{\Omega} u D^{(j, i)} \varphi d x
$$

Hence by Definition 3.1 the weak derivative $D^{(j, i)} u$ exists and by the first part of the exercise (i.e. uniqueness) we have

$$
D^{(i, j)} u=D^{(j, i)} u \mathcal{L}^{n} \text {-a.e.. }
$$

Solution to exercise 3.4

We define the vector space

$$
V_{m}:=L^{p}(\Omega) \times \ldots \times L^{p}(\Omega)
$$

with $m+1$-factors. A norm is given by

$$
\left\|\left(u_{0}, \ldots, u_{m}\right)\right\|_{V_{m}}:=\sum_{j=0}^{m}\left\|u_{j}\right\|_{L^{p}(\Omega)}
$$

By Riesz-Fischer this space is complete. Furthermore by Example $2.13 V_{m}$ is reflexive, if $1<p<\infty$. Now we define an operator $L: W^{k, p}(\Omega) \rightarrow V_{m}$ for a suitable $m \in \mathbb{N}$:

$$
L(u):=\left(u, D^{(1,0, \ldots, 0)} u, D^{(0,1,0 \ldots, 0)} u, \ldots, D^{(k, \ldots, k)} u\right)
$$

Choosing m suitably, this map is well defined, linear, injective and by Remark 3.6 continuous (choosing the norms correctly, it becomes an isometry). Let $u_{k} \in L\left(W^{k, p}(\Omega)\right)$ be a Cauchy sequence (i.e. $L^{-1}\left(u_{k}\right)$ is as well). Then there exists a limit $u \in V_{m}$. Now let $\varphi \in C_{0}^{\infty}(\Omega) \subseteq L^{q}(\Omega)(q \in[1, \infty]$ arbitrary $)$ and α be a multiindex with $|\alpha| \leq k$. Since norm convergence is stronger than weak convergence and by Example 2.4
$\int_{\Omega} u_{0} D^{\alpha} \varphi d x \leftarrow \int_{\Omega}\left(u_{k}\right)_{0} D^{\alpha} \varphi d x=(-1)^{|\alpha|} \int_{\Omega} D^{\alpha}\left(u_{k}\right)_{0} \varphi d x \rightarrow(-1)^{|\alpha|} \int_{\Omega} u_{\alpha} \varphi d x$.
Hence u_{α} (i.e. the α-component of $u \in V_{m}$) is the α-th weak derivative of the first component u_{0}. Hence $u \in L\left(W^{k, p}(\Omega)\right)$. Therefore $L\left(W^{k, p}(\Omega)\right)$ is a closed subspace of V_{m}. By Exercise 2.4 it is reflexive. Since $L: W^{k, p}(\Omega) \rightarrow L\left(W^{k, p}(\Omega)\right)$ is a bijective isometry, the results follow.

