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Solutions to exercise 3

Solution to exercise 3.1

Let epi(F ) := {(t, x) ∈ R × B| F (x) ≤ t} ⊆ R × B the epigraph. We equip
R×B with the norm

‖(t, x)‖R×B := |t|+ ‖x‖.

Therefore it is a Banachspace as well. we first show, that epi(F ) is weakly
sequentially closed:
The epigraph is convex because take (t1, x1), (t2, x2) ∈ epi(F ) and λ ∈ [0, 1].
Then the convexity of F yields

F (λx1 + (1− λ)x2)) ≤ λF (x1) + (1− λ)F (x2) ≤ λt1 + (1− λ)t2.

Hence the definition of epi(F ) gives us

λ(t1, x1) + (1− λ)(t2, x2) = (λt1 + (1− λ)t2, λx1 + (1− λ)x2) ∈ epi(F )

and epi(F ) is convex.
Now epi(F ) is also closed: Let (tk, xk)→ (t, x) w.r.t. to the norm with (tk, xk) ∈
epi(F ). Hence for all k ∈ N we have tk ≥ F (xk) and the lower semicontinuity
yields

F (x) ≤ lim inf
k→∞

F (xk) ≤ lim inf
k→∞

tk = t,

hence (t, x) ∈ epi(F ).
By Theorem 2.18 epi(F ) is weakly sequentially closed.
Now let xk ∈ B with xk → x weakly. After extracting a subsequence we can
assume

lim inf
k→∞

F (xk) = lim
k→∞

F (xk) =: t.

Let L : R×B be linear and continuous. Then

L(F (xk), xk)) = L((F (xk), 0)) + L((0, xk))→ L((t, 0)) + L((0, x)) = L((t, x)),

because L|R and L|B are still continuous. Hence (F (xk), xk) → (t, x) weakly.
Since

F (xk) ≤ F (xk) ⇒ (F (xk), xk) ∈ epi(F ),

we have (t, x) ∈ epi(F ). This yields

lim inf
k→∞

F (xk) = t ≥ F (x)

and F is sequentially weakly lower semicontinuous.



Solution to exercise 3.2

By density we can assume u ∈ C∞0 (Ω). Let x0 ∈ Ω. Then∫
Ω

|u|p dx =

∫
Ω

|u|p div(x− x0)
1

n
dx = − 1

n

∫
Ω

〈∇(|u|p), x− x0〉 dx

=− 1

n

∫
Ω

p|u|p−1 sgn(u)〈∇u, x− x0〉 dx ≤ C(n, p)

∫
Ω

|u|p−1|∇u||x− x0| dx

≤C(n, p,diam(Ω))

∫
Ω

|u|p−1|∇u| dx

≤C
(∫

Ω

|∇u|p dx
) 1

p
(∫

Ω

(
|u|p−1

) p
p−1 dx

) p−1
p

= C‖∇u‖Lp(Ω)

(∫
Ω

|u|p dx
) p−1

p

Rearranging yields (∫
Ω

|u|p dx
)1− p−1

p

≤ C‖∇u‖Lp(Ω).

Since 1− p−1
p = 1

p , the result follows.

Solution to exercise 3.3

1. Let v1, v2 ∈ L1
loc(Ω) be two possible weak derivatives of u. Then for every

ϕ ∈ C∞0 (Ω) we have∫
Ω

v1ϕdx = −
∫

Ω

uD(i)ϕdx = (−1) · (−1)

∫
Ω

v2ϕdx.

Hence ∫
Ω

(v1 − v2)ϕdx = 0.

By the fundamental lemma of variational calculus, we have

v1(x) = v2(x) for Ln-a.e x ∈ Ω.

2. Let ϕ ∈ C2
0 (Ω). Then by definition of the weak derivative and Schwarzes

Theorem, we have∫
Ω

D(i,j)uϕdx =

∫
Ω

uD(i,j)ϕdx =

∫
Ω

uD(j,i)ϕdx.

Hence by Definition 3.1 the weak derivative D(j,i)u exists and by the first
part of the exercise (i.e. uniqueness) we have

D(i,j)u = D(j,i)u Ln-a.e..

Solution to exercise 3.4

We define the vector space

Vm := Lp(Ω)× . . .× Lp(Ω)



with m+ 1-factors. A norm is given by

‖(u0, . . . , um)‖Vm
:=

m∑
j=0

‖uj‖Lp(Ω).

By Riesz-Fischer this space is complete. Furthermore by Example 2.13 Vm is
reflexive, if 1 < p < ∞. Now we define an operator L : W k,p(Ω) → Vm for a
suitable m ∈ N:

L(u) := (u,D(1,0,...,0)u,D(0,1,0...,0)u, . . . ,D(k,...,k)u).

Choosing m suitably, this map is well defined, linear, injective and by Remark
3.6 continuous (choosing the norms correctly, it becomes an isometry). Let
uk ∈ L(W k,p(Ω)) be a Cauchy sequence (i.e. L−1(uk) is as well). Then there
exists a limit u ∈ Vm. Now let ϕ ∈ C∞0 (Ω) ⊆ Lq(Ω) (q ∈ [1,∞] arbitrary) and
α be a multiindex with |α| ≤ k. Since norm convergence is stronger than weak
convergence and by Example 2.4∫

Ω

u0D
αϕdx←

∫
Ω

(uk)0D
αϕdx = (−1)|α|

∫
Ω

Dα(uk)0ϕdx→ (−1)|α|
∫

Ω

uαϕdx.

Hence uα (i.e. the α-component of u ∈ Vm) is the α-th weak derivative of the
first component u0. Hence u ∈ L(W k,p(Ω)). Therefore L(W k,p(Ω)) is a closed
subspace of Vm. By Exercise 2.4 it is reflexive. Since L : W k,p(Ω)→ L(W k,p(Ω))
is a bijective isometry, the results follow.


