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Solutions to exercise 4

Solution to exercise 4.1

1. Let xk ∈ B1(0) ⊆ B such that

‖T (xk)‖V → ‖T‖B,V = sup
x∈B1(0)

‖T (x)‖V .

Since xk is a bounded sequence, the compactness of T yields a subsequence
and an y ∈ V , such that

∞ > ‖y‖V ← ‖T (xk)‖V .

Hence T is bounded and therefore continuous.

2. By Remark 2.9 the sequence xk ∈ B is bounded, hence we find a subse-
quence xk ∈ B and y ∈ V with

lim
k→∞

T (xk) = y.

Let L ∈ V ∗. Then L ◦ T ∈ B∗, because T is continuous. Hence the weak
convergence yields

L ◦ T (xk)→ L ◦ T (x).

Hence T (xk) → T (x) weakly. Since norm convergence also induces weak
convergence and weak limits are unique, we have

T (x) = y.

Solution to exercise 4.2

First we deal with the boundary data: Let m(t) := (1 − t)a + bt. Then m is
smooth and therefore m ∈ W 1,2((0, 1)). Furthermore m(0) = a and m(1) = b.
Hence we say, that a function u ∈W 1,2(0, 1) satisfies the boundary condition

u(0) = a and u(1) = b,

if and only if
u−m ∈W 1,2

0 ((0, 1)).

Now we turn to the variational, i.e. weak formulation of the differential equation
itself: Let ϕ ∈ C∞0 (Ω). Then if u solves u′′ + sin(u) = 0, we have by partial
integration.

0 =

∫ 1

0

−u′′ϕ− sin(u)ϕdt =

∫ 1

0

u′ϕ′ − sin(u)ϕdt.



Hence we say that u ∈ W 1,2((0, 1)) solves the boundary value problem weakly,
if and only if for all ϕ ∈ C∞0 (Ω) we have

u−m ∈W 1,2
0 ((0, 1)) and

∫ 1

0

u′ϕ′ − sin(u)ϕdt = 0.

We now define an appropriate energy E : W 1,2((0, 1))→ R by

E(u) :=
1

2

∫ 1

0

(u′)2 dt+

∫ 1

0

cos(u) dt.

We calculate for u ∈W 1,2((0, 1)) and ϕ ∈ C∞0 ((0, 1))

d

ds
E(u+ sϕ)|s=0 =

∫ 1

0

u′ϕ′ dt+
d

ds

∫ 1

0

cos(u+ sϕ) dt|s=0

=

∫ 1

0

u′ϕ′ dt+

∫ 1

0

d

ds
cos(u+ sϕ)|s=0 dt

=

∫ 1

0

u′ϕ′ dt−
∫ 1

0

sin(u)ϕdt.

Interchanging the derivative and the integral is by

| d
ds

cos(u+ sϕ)| = | − sin(u+ sϕ)ϕ| ≤ |ϕ|.

Since ϕ ∈ L1((0, 1)) the dominated convergence theorem allows this interchang-
ing.
Now we show existence of a weak solution:
We define

M := {u ∈W 1,2((0, 1))| u−m ∈W 1,2
0 ((0, 1))}.

Let λ ∈ [0, 1] and u1, u2 ∈M . Then

λu1 + (1− λ)u2 −m = λ(u1 −m) + (1− λ)(u2 −m) ∈W 1,2
0 ((0, 1)),

hence M is convex. Furthermore M is closed w.r.t. ‖ · ‖W 1,2((0,1)) because if
uk ∈M with uk → u in W 1,2((0, 1)), then

uk −m ∈W 1,2
0 ((0, 1)) ⇒ u−m ∈W 1,2

0 ((0, 1)),

since by Definition W 1,2
0 ((0, 1)) is closed. Hence M is weakly closed by Thm.

2.18.
Now let uk ∈M be a minimising sequence for E in M , i.e.

E(uk)→ inf
v∈M

E(v).

This yields

C > E(uk) =

∫ 1

0

|u′|2 dt−
∫ 1

0

cos(uk) dt ≥
∫ 1

0

|u′|2 dt− 1.

Hence

‖uk −m‖W 1,2
0 ((0,1)) ≤ ‖uk‖W 1,2

0 ((0,1)) + ‖m‖W 1,2
0 ((0,1)) < C.



Therefore we find a weakly convergent subsequence and a limit ũ ∈W 1,2
0 ((0, 1)),

i.e.
uk −m→ ũ weakly.

Since m does not depend on k, we also have

uk → ũ+m =: u ∈M weakly.

By the Sobolev embedding we have that after extracting another subsequence,
that

uk → u uniformely.

Hence the lower semicontinuity of the norm and the continuity of cos(·) yield

E(u) ≤ lim inf
k→∞

E(uk).

Hence u is a minimum.
Let ϕ ∈ C∞0 ((0, 1)). Then u + sϕ ∈ M for all s ∈ R, because by definition we
find ϕk ∈ C∞0 ((0, 1)) with

ϕk → u−m in W 1,2((0, 1)).

Then ϕk + sϕ ∈ C∞0 (Ω) and

ϕk + sϕ→ u−m+ sϕ = u+ sϕ−m ∈W 1,2
0 ((0, 1)).

Hence u + sϕ ∈ M and the calculation above for the Euler-Lagrange equation
applies. Hence u indeed solves our problem weakly.

Solution to exercise 4.3

1. Let 1 < q <∞ with 1
p + 1

q = 1, i.e.

1

q
= 1− 1

p
=
p− 1

p
.

Then Hölders inequality in Rn yields

n∑
j=1

|xj | =
n∑

j=1

1 · |xj | ≤

 n∑
j=1

1q

 1
q
 n∑

j=1

|xj |p
 1

p

= n
p−1
p

 n∑
j=1

|xj |p
 1

p

.

Hence we have  n∑
j=1

|xj |

p

≤ np−1
n∑

j=1

|xj |p.

2. The weighted inequality of arithmetic and geometric means is as follows:
Let x, y ≥ 0 and w1, w2 ≥ 0 with w := w1 + w2. Then

w1x+ w2y

w
≥ (xw1yw2)

1
w .

This inequality can be shown with Jensens inequality and the concavity
of the log.



Now we set x = ap, y = bq, w1 = 1
p and w2 = 1

q . Then we have that w = 1
and therefore

w1x+ w2y

w
=

1

p
ap +

1

q
bq.

On the other hand we have

(xw1yw2)
1
w = (ap)

1
p (bq)

1
q = ab

and we have

ab ≤ 1

p
ap +

1

q
bq.

Now we define
ã := (εp)

1
p a, b̃ = (εp)−

1
p b.

Then we have

ab = ãb̃ ≤ 1

p
ãp +

1

q
b̃q = εap +

1

(εp)
q
p q
bq = εap +

(εp)1−q

q
bq.


