Solutions to exercise 4

Solution to exercise 4.1

1. Let $x_{k} \in B_{1}(0) \subseteq B$ such that

$$
\left\|T\left(x_{k}\right)\right\|_{V} \rightarrow\|T\|_{B, V}=\sup _{x \in B_{1}(0)}\|T(x)\|_{V}
$$

Since x_{k} is a bounded sequence, the compactness of T yields a subsequence and an $y \in V$, such that

$$
\infty>\|y\|_{V} \leftarrow\left\|T\left(x_{k}\right)\right\|_{V}
$$

Hence T is bounded and therefore continuous.
2. By Remark 2.9 the sequence $x_{k} \in B$ is bounded, hence we find a subsequence $x_{k} \in B$ and $y \in V$ with

$$
\lim _{k \rightarrow \infty} T\left(x_{k}\right)=y .
$$

Let $L \in V^{*}$. Then $L \circ T \in B^{*}$, because T is continuous. Hence the weak convergence yields

$$
L \circ T\left(x_{k}\right) \rightarrow L \circ T(x) .
$$

Hence $T\left(x_{k}\right) \rightarrow T(x)$ weakly. Since norm convergence also induces weak convergence and weak limits are unique, we have

$$
T(x)=y .
$$

Solution to exercise 4.2

First we deal with the boundary data: Let $m(t):=(1-t) a+b t$. Then m is smooth and therefore $m \in W^{1,2}((0,1))$. Furthermore $m(0)=a$ and $m(1)=b$. Hence we say, that a function $u \in W^{1,2}(0,1)$ satisfies the boundary condition

$$
u(0)=a \text { and } u(1)=b,
$$

if and only if

$$
u-m \in W_{0}^{1,2}((0,1))
$$

Now we turn to the variational, i.e. weak formulation of the differential equation itself: Let $\varphi \in C_{0}^{\infty}(\Omega)$. Then if u solves $u^{\prime \prime}+\sin (u)=0$, we have by partial integration.

$$
0=\int_{0}^{1}-u^{\prime \prime} \varphi-\sin (u) \varphi d t=\int_{0}^{1} u^{\prime} \varphi^{\prime}-\sin (u) \varphi d t
$$

Hence we say that $u \in W^{1,2}((0,1))$ solves the boundary value problem weakly, if and only if for all $\varphi \in C_{0}^{\infty}(\Omega)$ we have

$$
u-m \in W_{0}^{1,2}((0,1)) \text { and } \int_{0}^{1} u^{\prime} \varphi^{\prime}-\sin (u) \varphi d t=0
$$

We now define an appropriate energy $E: W^{1,2}((0,1)) \rightarrow \mathbb{R}$ by

$$
E(u):=\frac{1}{2} \int_{0}^{1}\left(u^{\prime}\right)^{2} d t+\int_{0}^{1} \cos (u) d t .
$$

We calculate for $u \in W^{1,2}((0,1))$ and $\varphi \in C_{0}^{\infty}((0,1))$

$$
\begin{aligned}
& \left.\frac{d}{d s} E(u+s \varphi)\right|_{s=0}=\int_{0}^{1} u^{\prime} \varphi^{\prime} d t+\left.\frac{d}{d s} \int_{0}^{1} \cos (u+s \varphi) d t\right|_{s=0} \\
= & \int_{0}^{1} u^{\prime} \varphi^{\prime} d t+\left.\int_{0}^{1} \frac{d}{d s} \cos (u+s \varphi)\right|_{s=0} d t \\
= & \int_{0}^{1} u^{\prime} \varphi^{\prime} d t-\int_{0}^{1} \sin (u) \varphi d t .
\end{aligned}
$$

Interchanging the derivative and the integral is by

$$
\left|\frac{d}{d s} \cos (u+s \varphi)\right|=|-\sin (u+s \varphi) \varphi| \leq|\varphi| .
$$

Since $\varphi \in L^{1}((0,1))$ the dominated convergence theorem allows this interchanging.
Now we show existence of a weak solution:
We define

$$
M:=\left\{u \in W^{1,2}((0,1)) \mid u-m \in W_{0}^{1,2}((0,1))\right\}
$$

Let $\lambda \in[0,1]$ and $u_{1}, u_{2} \in M$. Then

$$
\lambda u_{1}+(1-\lambda) u_{2}-m=\lambda\left(u_{1}-m\right)+(1-\lambda)\left(u_{2}-m\right) \in W_{0}^{1,2}((0,1))
$$

hence M is convex. Furthermore M is closed w.r.t. $\|\cdot\|_{W^{1,2}((0,1))}$ because if $u_{k} \in M$ with $u_{k} \rightarrow u$ in $W^{1,2}((0,1))$, then

$$
u_{k}-m \in W_{0}^{1,2}((0,1)) \Rightarrow u-m \in W_{0}^{1,2}((0,1))
$$

since by Definition $W_{0}^{1,2}((0,1))$ is closed. Hence M is weakly closed by Thm. 2.18 .

Now let $u_{k} \in M$ be a minimising sequence for E in M, i.e.

$$
E\left(u_{k}\right) \rightarrow \inf _{v \in M} E(v)
$$

This yields

$$
C>E\left(u_{k}\right)=\int_{0}^{1}\left|u^{\prime}\right|^{2} d t-\int_{0}^{1} \cos \left(u_{k}\right) d t \geq \int_{0}^{1}\left|u^{\prime}\right|^{2} d t-1 .
$$

Hence

$$
\left\|u_{k}-m\right\|_{W_{0}^{1,2}((0,1))} \leq\left\|u_{k}\right\|_{W_{0}^{1,2}((0,1))}+\|m\|_{W_{0}^{1,2}((0,1))}<C .
$$

Therefore we find a weakly convergent subsequence and a limit $\tilde{u} \in W_{0}^{1,2}((0,1))$, i.e.

$$
u_{k}-m \rightarrow \tilde{u} \text { weakly. }
$$

Since m does not depend on k, we also have

$$
u_{k} \rightarrow \tilde{u}+m=: u \in M \text { weakly. }
$$

By the Sobolev embedding we have that after extracting another subsequence, that

$$
u_{k} \rightarrow u \text { uniformely. }
$$

Hence the lower semicontinuity of the norm and the continuity of $\cos (\cdot)$ yield

$$
E(u) \leq \liminf _{k \rightarrow \infty} E\left(u_{k}\right)
$$

Hence u is a minimum.
Let $\varphi \in C_{0}^{\infty}((0,1))$. Then $u+s \varphi \in M$ for all $s \in \mathbb{R}$, because by definition we find $\varphi_{k} \in C_{0}^{\infty}((0,1))$ with

$$
\varphi_{k} \rightarrow u-m \text { in } W^{1,2}((0,1))
$$

Then $\varphi_{k}+s \varphi \in C_{0}^{\infty}(\Omega)$ and

$$
\varphi_{k}+s \varphi \rightarrow u-m+s \varphi=u+s \varphi-m \in W_{0}^{1,2}((0,1)) .
$$

Hence $u+s \varphi \in M$ and the calculation above for the Euler-Lagrange equation applies. Hence u indeed solves our problem weakly.

Solution to exercise 4.3

1. Let $1<q<\infty$ with $\frac{1}{p}+\frac{1}{q}=1$, i.e.

$$
\frac{1}{q}=1-\frac{1}{p}=\frac{p-1}{p}
$$

Then Hölders inequality in \mathbb{R}^{n} yields

$$
\sum_{j=1}^{n}\left|x_{j}\right|=\sum_{j=1}^{n} 1 \cdot\left|x_{j}\right| \leq\left(\sum_{j=1}^{n} 1^{q}\right)^{\frac{1}{q}}\left(\sum_{j=1}^{n}\left|x_{j}\right|^{p}\right)^{\frac{1}{p}}=n^{\frac{p-1}{p}}\left(\sum_{j=1}^{n}\left|x_{j}\right|^{p}\right)^{\frac{1}{p}}
$$

Hence we have

$$
\left(\sum_{j=1}^{n}\left|x_{j}\right|\right)^{p} \leq n^{p-1} \sum_{j=1}^{n}\left|x_{j}\right|^{p} .
$$

2. The weighted inequality of arithmetic and geometric means is as follows: Let $x, y \geq 0$ and $w_{1}, w_{2} \geq 0$ with $w:=w_{1}+w_{2}$. Then

$$
\frac{w_{1} x+w_{2} y}{w} \geq\left(x^{w_{1}} y^{w_{2}}\right)^{\frac{1}{w}}
$$

This inequality can be shown with Jensens inequality and the concavity of the log.

Now we set $x=a^{p}, y=b^{q}, w_{1}=\frac{1}{p}$ and $w_{2}=\frac{1}{q}$. Then we have that $w=1$ and therefore

$$
\frac{w_{1} x+w_{2} y}{w}=\frac{1}{p} a^{p}+\frac{1}{q} b^{q} .
$$

On the other hand we have

$$
\left(x^{w_{1}} y^{w_{2}}\right)^{\frac{1}{w}}=\left(a^{p}\right)^{\frac{1}{p}}\left(b^{q}\right)^{\frac{1}{q}}=a b
$$

and we have

$$
a b \leq \frac{1}{p} a^{p}+\frac{1}{q} b^{q} .
$$

Now we define

$$
\tilde{a}:=(\varepsilon p)^{\frac{1}{p}} a, \tilde{b}=(\varepsilon p)^{-\frac{1}{p}} b
$$

Then we have

$$
a b=\tilde{a} \tilde{b} \leq \frac{1}{p} \tilde{a}^{p}+\frac{1}{q} \tilde{b}^{q}=\varepsilon a^{p}+\frac{1}{(\varepsilon p)^{\frac{q}{p}} q} b^{q}=\varepsilon a^{p}+\frac{(\varepsilon p)^{1-q}}{q} b^{q} .
$$

