Solutions to exercise 5

Solution to exercise 5.1

We multiply the equation with a test function $\varphi \in C_{0}^{\infty}(\Omega)$ and integrate. By partial integration we obtain

$$
\int_{\Omega} f \varphi d x=-\int_{\Omega} \operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right) \varphi=\int_{\Omega}|\nabla u|^{p-2}\langle\nabla u, \nabla \varphi\rangle d x .
$$

Hence we say, that $u \in W_{0}^{1, p}(\Omega)$ solves the Dirichletproblem weakly, iff for all $\varphi \in C_{0}^{\infty}(\Omega)$ we have

$$
\int_{\Omega}|\nabla u|^{p-2}\langle\nabla u, \nabla \varphi\rangle d x=\int_{\Omega} f \varphi d x .
$$

We define the following energy functional $E: W_{0}^{1, p}(\Omega) \rightarrow \mathbb{R}$ by:

$$
E(v):=\frac{1}{p} \int_{\Omega}|\nabla v|^{p} d x-\int_{\Omega} f v d x .
$$

Since $1<p<\infty$, the space $W_{0}^{1, p}(\Omega)$ is a reflexive Banachspace. Next we fixate the integrability of f. Therefore we like the last term in the energy to be well defined:
By Sobolevembedding we have that $W_{0}^{1, p}(\Omega)$ is continuously embedded in $L^{\frac{n p}{n-p}}(\Omega)$. The dual exponent $r \in \mathbb{R}$ to $\frac{n p}{n-p}$ is given by

$$
\frac{1}{r}+\frac{1}{\frac{n p}{n-p}}=1 \Rightarrow \frac{1}{r}=\frac{n p-(n-p)}{n p} .
$$

Hence we set $r:=\frac{n p}{n p-n+p}$ and require $f \in L^{r}(\Omega)$. This yields for every $v \in$ $W_{0}^{1, p}(\Omega)$ by Hölders inequality

$$
\int_{\Omega}|f v| d x \leq\|f\|_{L^{r}(\Omega)}\|v\|_{L^{\frac{n p}{n-p}}(\Omega)} \leq C_{S o b}\|f\|_{L^{r}(\Omega)}\|v\|_{W_{0}^{1, p}(\Omega)}<\infty .
$$

Therefore this last term is well defined. Before we proceed with the minimisation, we calculate the Euler-Lagrange equation of E :
We assume E has a minimum in $u \in W_{0}^{1, p}(\Omega)$. Then for every $\varphi \in W_{0}^{1, p}(\Omega)$ we have

$$
0=\left.\frac{d}{d t} E(u+t \varphi)\right|_{t=0}=\left.\frac{d}{d t} \frac{1}{p} \int_{\Omega}|\nabla u+t \nabla \varphi|^{p} d x\right|_{t=0}-\int_{\Omega} f \varphi d x .
$$

First we formally interchange integral and derivative. If we then see that the integrand has a majorant for $t \in[-1,1]$ independent of t, we justified, that we can interchange integral and derivative.

$$
\begin{aligned}
& \frac{d}{d t} \frac{1}{p} \int_{\Omega}|\nabla u+t \nabla \varphi|^{p} d x=\frac{1}{p} \int_{\Omega} \frac{d}{d t}|\nabla u+t \nabla \varphi|^{p} d x \\
= & \frac{1}{p} \int_{\Omega} p|\nabla u+t \nabla \varphi|^{p-2}\langle\nabla u+t \nabla \varphi, \nabla \varphi\rangle d x .
\end{aligned}
$$

The integrand can be estimated by e.g. Ex. 4.3

$$
\begin{aligned}
& \left||\nabla u+t \nabla \varphi|^{p-2}\langle\nabla u+t \nabla \varphi, \nabla \varphi\rangle\right| \leq|\nabla u+t \nabla \varphi|^{p-1}|\nabla \varphi| \\
\leq & (|\nabla u|+|t||\nabla \varphi|)^{p-1}(|\nabla u|+|t| \nabla \varphi \mid)=(|\nabla u|+|t||\nabla \varphi|)^{p} \\
\leq & C(p)\left(|\nabla u|^{p}+|\nabla \varphi|^{p}\right) \in L^{1}(\Omega) .
\end{aligned}
$$

Hence we are allowed to interchange integration and derivation. This yields

$$
0=\left.\frac{d}{d t} E(u+t \varphi)\right|_{t=0}=\int_{\Omega}|\nabla u|^{p-2}\langle\nabla u, \nabla \varphi\rangle d x-\int_{\Omega} f \varphi d x,
$$

which is exactly our weak formulation of the Dirichletproblem.
Now we proceed to show the existence of a minimiser: First we show a coercitivity estimate. Let $v \in W_{0}^{1, p}(\Omega)$. Then Ex. 4.3 and the Sobolev embedding yields with $\frac{1}{q}+\frac{1}{p}=1$

$$
\begin{aligned}
& E(v) \geq \frac{1}{p}\|v\|_{W_{0}^{1, p}(\Omega)}^{p}-C_{S o b}\|f\|_{L^{r}(\Omega)}\|v\|_{W_{0}^{1, p}(\Omega)} \\
\geq & \frac{1}{p}\|v\|_{W_{0}^{1, p}(\Omega)}^{p}-\frac{1}{2 p}\|v\|_{W_{0}^{1, p}(\Omega)}^{p}-C(\Omega, p)\|f\|_{L^{r}(\Omega)}^{q} \\
= & \frac{1}{2 p}\|v\|_{W_{0}^{1, p}(\Omega)}^{p}-C(\Omega, p, f) .
\end{aligned}
$$

Hence if $\|v\|_{W_{0}^{1, p}(\Omega)} \rightarrow \infty$, then also $E(v) \rightarrow \infty$ and E is coercive. Furthermore E is weakly lower semicontinuous, because

$$
v \mapsto\|v\|_{W_{0}^{1, p}(\Omega)}^{p}=\int_{\Omega}|\nabla v|^{p} d x
$$

is weakly lower semicontinuous by Thm. 2.16, because it is the power of a norm. Furthermore

$$
v \mapsto \int_{\Omega} f v d x
$$

is weakly continuous w.r.t. the weak convergence in $W_{0}^{1, p}(\Omega)$, because by the above calculation, it is a linear and continuous functional in $W_{0}^{1, p}(\Omega)$. Since $W_{0}^{1, p}(\Omega)$ is reflexive, Thm. 2.17 yields the existence of a minimiser u, which satisfies the Dirichletproblem weakly.

Solution to exercise 5.2

We proceed by contradiction and assume no such constant exists. Hence we find a sequence $u_{m} \in W^{1,2}(\Omega)$ with

$$
\int_{\Omega}\left|u_{m}-\overline{u_{m}}\right|^{2} d x>m \int_{\Omega}\left|\nabla u_{m}\right|^{2} d x .
$$

We define

$$
v_{m}:=\frac{1}{\left\|u_{m}-\overline{u_{m}}\right\|_{L^{2}(\Omega)}}\left(u_{m}-\overline{u_{m}}\right)
$$

Hence

$$
\begin{aligned}
& \int_{\Omega}\left|v_{m}\right|^{2} d x=\frac{1}{\left\|u_{m}-\overline{u_{m}}\right\|_{L^{2}(\Omega)}^{2}} \int_{\Omega}\left|u_{m}-\overline{u_{m}}\right|^{2} d x \\
> & \frac{m}{\left\|u_{m}-\overline{u_{m}}\right\|_{L^{2}(\Omega)}^{2}} \int_{\Omega}\left|\nabla\left(u_{m}-\overline{u_{m}}\right)\right|^{2} d x \\
= & m \int_{\Omega}\left|\nabla v_{m}\right|^{2} d x .
\end{aligned}
$$

Furthermore we have $\left\|v_{m}\right\|_{L^{2}(\Omega)}=1$. This yields

$$
\frac{1}{m}>\int_{\Omega}\left|\nabla v_{m}\right|^{2} d x
$$

Hence the Sobolevnorm $\left\|v_{m}\right\|_{W^{1,2}(\Omega)}$ is bounded. The Sobolevembedding now yields a subsequence and a $v \in W^{1,2}(\Omega)$, such that

$$
v_{m} \rightarrow v \text { in } L^{2}(\Omega), v_{m} \rightarrow v \text { weakly in } W^{1,2}(\Omega)
$$

Therefore $\|v\|_{L^{2}(\Omega)}=1$. Furthermore the weak lower semicontinuity of a seminorm (i.e. a convex functional, see Ex. 3.1) yields

$$
\int_{\Omega}|\nabla v|^{2} d x \leq \liminf _{m \rightarrow \infty} \int_{\Omega}\left|\nabla v_{m}\right|^{2} d x \leq \liminf _{m \rightarrow \infty} \frac{1}{m}=0 .
$$

Hence $\nabla v=0$ and therefore $v=$ const. Since

$$
0=\int_{\Omega} v_{m} d x \rightarrow \int_{\Omega} v d x=\operatorname{const} \mathcal{L}^{n}(\Omega)
$$

we have $v=0$. This is a contradiction to $\|v\|_{L^{2}(\Omega)}=1$.

Solution to exercise 5.3

1. Let $v \in W^{1,2}(\Omega)$ and $c \in \mathbb{R}$. Then

$$
\begin{aligned}
E(v+c) & =\frac{1}{2} \int_{\Omega}|\nabla v|^{2} d x-\int_{\Omega} f(v+c) d x \\
& =\frac{1}{2} \int_{\Omega}|\nabla v|^{2} d x-\int_{\Omega} f v d x-c \int_{\Omega} f d x=E(v) .
\end{aligned}
$$

This allows us to manipulate a minimising sequence. Let $u_{m} \in W^{1,2}(\Omega)$ be such that

$$
E\left(u_{m}\right) \rightarrow \inf _{v \in W^{1,2}} E(v)
$$

Then the above calulation yields for

$$
v_{m}:=u_{m}-\int_{\Omega} u_{m} d x
$$

that we have

$$
E\left(v_{m}\right)=E\left(u_{m}\right),
$$

i.e. it is also a minimising sequence. Since

$$
\int_{\Omega} v_{m} d x=0
$$

Exercise 5.2 yields

$$
\int_{\Omega}\left|v_{m}\right|^{2} d x \leq C \int_{\Omega}\left|\nabla v_{m}\right|^{2} d x
$$

As in the lecture with zero boundary values, we have

$$
C \geq E\left(v_{m}\right) \geq \frac{1}{2} \int_{\Omega}\left|\nabla v_{m}\right|^{2} d x-\varepsilon\left\|v_{m}\right\|_{L^{2}(\Omega)}^{2}-C_{\varepsilon}\|f\|_{L^{2}(\Omega)}^{2}
$$

for every $\varepsilon>0$. Hence choosing $\varepsilon>0$ small enough yields

$$
\begin{aligned}
E\left(v_{m}\right) & \geq \frac{1}{2} \int_{\Omega}\left|\nabla v_{m}\right|^{2} d x-\varepsilon C \int_{\Omega}\left|\nabla v_{m}\right|^{2} d x-C_{\varepsilon} \int_{\Omega}|f|^{2} d x \\
& \geq \frac{1}{4} \int_{\Omega}\left|\nabla v_{m}\right|^{2} d x-C(\Omega, f)
\end{aligned}
$$

Putting everything together we obtain

$$
\left\|v_{m}\right\|_{W^{1,2}(\Omega)}^{2}=\int_{\Omega}\left|v_{m}\right|^{2} d x+\int_{\Omega}\left|\nabla v_{m}\right|^{2} d x \leq C
$$

Since $W^{1,2}(\Omega)$ is a Hilbertspace, we then obtain a weakly converging subsequence $v_{m} \rightarrow v \in W^{1,2}(\Omega)$. The term

$$
u \mapsto \int_{\Omega}|\nabla u|^{2} d x
$$

is weakly lower semicontinuous because it is continuous and convex (it is a seminorm). Furthermore

$$
u \mapsto \int f u d x
$$

is by Cauchy-Schwartz a linear continuous functional on $W^{1,2}(\Omega)$, hence weakly continuous. All in all we have that, E is weakly lower semicontinuous. Therefore v is a desired minimiser.
2. Let $\varphi \in W^{1,2}(\Omega)$ and u a smooth minimiser. Then

$$
0=\left.\frac{d}{d t} E(u+t \varphi)\right|_{t=0}=\int_{\Omega}\langle\nabla u, \nabla \varphi\rangle d x-\int_{\Omega} f \varphi d x
$$

The difference is now, that the testfunctions φ are allowed to have nonzero boundary values. Take $\varphi \in C^{\infty}\left(\mathbb{R}^{n}\right)$ and assume u to be smooth. Then partial integration, i.e. Gauss Theorem yields with ν being the outer normal of $\partial \Omega$

$$
\int_{\Omega}\langle\nabla u, \nabla \varphi\rangle d x=\int_{\partial \Omega} \varphi\langle\nabla u, \nu\rangle d a r e a_{\partial \Omega}-\int_{\Omega} \Delta u \varphi d x .
$$

Choosing first $\varphi \in C_{0}^{\infty}(\Omega)$ yields the boundary term to disappear and therefore by the fundamental lemma of variational calculus we have $-\Delta u=$ f in Ω. By applying the fundamental lemma of variational calculus in charts on $\partial \Omega$ we also obtain

$$
\langle\nabla u, \nu\rangle=0 \text { on } \partial \Omega
$$

Hence u satisfies

$$
\left\{\begin{array}{cc}
-\Delta u=f & \text { in } \Omega \\
\langle\nabla u, \nu\rangle=0 & \text { on } \partial \Omega
\end{array}\right.
$$

Since we minimised E without any further conditions, the resulting boundary value $\langle\nabla u, \nu\rangle=0$ is also called natural boundary condition for E.
3. If $\int_{\Omega} f d x \neq 0$ we do not have a minimiser. The above calculation shows for any $c \in \mathbb{R}$ and any $v \in W^{1,2}(\Omega)$

$$
E(v+c)=E(v)-c \int_{\Omega} f d x
$$

Hence choosing c very small (or big), yields E to not have a finite infimum or supremum.

