Dr. S. Eichmann Winter 2022/23

Solutions to exercise 5

Solution to exercise 5.1

We multiply the equation with a test function $\varphi \in C_0^{\infty}(\Omega)$ and integrate. By partial integration we obtain

$$\int_{\Omega} f\varphi \, dx = -\int_{\Omega} \operatorname{div}(|\nabla u|^{p-2} \nabla u)\varphi = \int_{\Omega} |\nabla u|^{p-2} \langle \nabla u, \nabla \varphi \rangle \, dx$$

Hence we say, that $u \in W_0^{1,p}(\Omega)$ solves the Dirichlet problem weakly, iff for all $\varphi \in C_0^\infty(\Omega)$ we have

$$\int_{\Omega} |\nabla u|^{p-2} \langle \nabla u, \nabla \varphi \rangle \, dx = \int_{\Omega} f \varphi \, dx$$

We define the following energy functional $E: W_0^{1,p}(\Omega) \to \mathbb{R}$ by:

$$E(v) := \frac{1}{p} \int_{\Omega} |\nabla v|^p \, dx - \int_{\Omega} f v \, dx.$$

Since $1 , the space <math>W_0^{1,p}(\Omega)$ is a reflexive Banachspace. Next we fixate the integrability of f. Therefore we like the last term in the energy to be well defined:

By Sobolevembedding we have that $W_0^{1,p}(\Omega)$ is continuously embedded in $L^{\frac{n_p}{n-p}}(\Omega)$. The dual exponent $r \in \mathbb{R}$ to $\frac{n_p}{n-p}$ is given by

$$\frac{1}{r} + \frac{1}{\frac{np}{n-p}} = 1 \implies \frac{1}{r} = \frac{np - (n-p)}{np}.$$

Hence we set $r := \frac{np}{np-n+p}$ and require $f \in L^r(\Omega)$. This yields for every $v \in W_0^{1,p}(\Omega)$ by Hölders inequality

$$\int_{\Omega} \|fv\| \, dx \le \|f\|_{L^{r}(\Omega)} \|v\|_{L^{\frac{np}{n-p}}(\Omega)} \le C_{Sob} \|f\|_{L^{r}(\Omega)} \|v\|_{W^{1,p}_{0}(\Omega)} < \infty.$$

Therefore this last term is well defined. Before we proceed with the minimisation, we calculate the Euler-Lagrange equation of E:

We assume E has a minimum in $u \in W_0^{1,p}(\Omega)$. Then for every $\varphi \in W_0^{1,p}(\Omega)$ we have

$$0 = \frac{d}{dt}E(u+t\varphi)|_{t=0} = \frac{d}{dt}\frac{1}{p}\int_{\Omega}|\nabla u + t\nabla\varphi|^p \, dx|_{t=0} - \int_{\Omega}f\varphi \, dx.$$

First we formally interchange integral and derivative. If we then see that the integrand has a majorant for $t \in [-1, 1]$ independent of t, we justified, that we can interchange integral and derivative.

$$\frac{d}{dt}\frac{1}{p}\int_{\Omega}|\nabla u + t\nabla\varphi|^{p}\,dx = \frac{1}{p}\int_{\Omega}\frac{d}{dt}|\nabla u + t\nabla\varphi|^{p}\,dx$$
$$=\frac{1}{p}\int_{\Omega}p|\nabla u + t\nabla\varphi|^{p-2}\langle\nabla u + t\nabla\varphi,\nabla\varphi\rangle\,dx.$$

The integrand can be estimated by e.g. Ex. 4.3

$$\begin{aligned} \left| |\nabla u + t \nabla \varphi|^{p-2} \langle \nabla u + t \nabla \varphi, \nabla \varphi \rangle \right| &\leq |\nabla u + t \nabla \varphi|^{p-1} |\nabla \varphi| \\ \leq (|\nabla u| + |t| |\nabla \varphi|)^{p-1} (|\nabla u| + |t| |\nabla \varphi|) &= (|\nabla u| + |t| |\nabla \varphi|)^p \\ \leq C(p) (|\nabla u|^p + |\nabla \varphi|^p) \in L^1(\Omega). \end{aligned}$$

Hence we are allowed to interchange integration and derivation. This yields

$$0 = \frac{d}{dt} E(u + t\varphi)|_{t=0} = \int_{\Omega} |\nabla u|^{p-2} \langle \nabla u, \nabla \varphi \rangle \, dx - \int_{\Omega} f\varphi \, dx,$$

which is exactly our weak formulation of the Dirichletproblem. Now we proceed to show the existence of a minimiser: First we show a coercitivity estimate. Let $v \in W_0^{1,p}(\Omega)$. Then Ex. 4.3 and the Sobolev embedding yields with $\frac{1}{q} + \frac{1}{p} = 1$

$$E(v) \ge \frac{1}{p} \|v\|_{W_{0}^{1,p}(\Omega)}^{p} - C_{Sob} \|f\|_{L^{r}(\Omega)} \|v\|_{W_{0}^{1,p}(\Omega)}$$
$$\ge \frac{1}{p} \|v\|_{W_{0}^{1,p}(\Omega)}^{p} - \frac{1}{2p} \|v\|_{W_{0}^{1,p}(\Omega)}^{p} - C(\Omega, p) \|f\|_{L^{r}(\Omega)}^{q}$$
$$= \frac{1}{2p} \|v\|_{W_{0}^{1,p}(\Omega)}^{p} - C(\Omega, p, f).$$

Hence if $\|v\|_{W_0^{1,p}(\Omega)} \to \infty$, then also $E(v) \to \infty$ and E is coercive. Furthermore E is weakly lower semicontinuous, because

$$v \mapsto \|v\|_{W^{1,p}_0(\Omega)}^p = \int_{\Omega} |\nabla v|^p \, dx$$

is weakly lower semicontinuous by Thm. 2.16, because it is the power of a norm. Furthermore

$$v\mapsto \int_\Omega f v\,dx$$

is weakly continuous w.r.t. the weak convergence in $W_0^{1,p}(\Omega)$, because by the above calculation, it is a linear and continuous functional in $W_0^{1,p}(\Omega)$. Since $W_0^{1,p}(\Omega)$ is reflexive, Thm. 2.17 yields the existence of a minimiser u, which satisfies the Dirichletproblem weakly.

Solution to exercise 5.2

We proceed by contradiction and assume no such constant exists. Hence we find a sequence $u_m \in W^{1,2}(\Omega)$ with

$$\int_{\Omega} |u_m - \overline{u_m}|^2 \, dx > m \int_{\Omega} |\nabla u_m|^2 \, dx.$$

We define

$$v_m := \frac{1}{\|u_m - \overline{u_m}\|_{L^2(\Omega)}} (u_m - \overline{u_m})$$

Hence

$$\int_{\Omega} |v_m|^2 dx = \frac{1}{\|u_m - \overline{u_m}\|_{L^2(\Omega)}^2} \int_{\Omega} |u_m - \overline{u_m}|^2 dx$$
$$> \frac{m}{\|u_m - \overline{u_m}\|_{L^2(\Omega)}^2} \int_{\Omega} |\nabla (u_m - \overline{u_m})|^2 dx$$
$$= m \int_{\Omega} |\nabla v_m|^2 dx.$$

Furthermore we have $||v_m||_{L^2(\Omega)} = 1$. This yields

$$\frac{1}{m} > \int_{\Omega} |\nabla v_m|^2 \, dx.$$

Hence the Sobolevnorm $||v_m||_{W^{1,2}(\Omega)}$ is bounded. The Sobolevenbedding now yields a subsequence and a $v \in W^{1,2}(\Omega)$, such that

 $v_m \to v$ in $L^2(\Omega)$, $v_m \to v$ weakly in $W^{1,2}(\Omega)$.

Therefore $||v||_{L^2(\Omega)} = 1$. Furthermore the weak lower semicontinuity of a seminorm (i.e. a convex functional, see Ex. 3.1) yields

$$\int_{\Omega} |\nabla v|^2 \, dx \le \liminf_{m \to \infty} \int_{\Omega} |\nabla v_m|^2 \, dx \le \liminf_{m \to \infty} \frac{1}{m} = 0.$$

Hence $\nabla v = 0$ and therefore v = const. Since

$$0 = \int_{\Omega} v_m \, dx \to \int_{\Omega} v \, dx = const \mathcal{L}^n(\Omega),$$

we have v = 0. This is a contradiction to $||v||_{L^2(\Omega)} = 1$.

Solution to exercise 5.3

1. Let $v \in W^{1,2}(\Omega)$ and $c \in \mathbb{R}$. Then

$$E(v+c) = \frac{1}{2} \int_{\Omega} |\nabla v|^2 dx - \int_{\Omega} f(v+c) dx$$
$$= \frac{1}{2} \int_{\Omega} |\nabla v|^2 dx - \int_{\Omega} f v dx - c \int_{\Omega} f dx = E(v)$$

This allows us to manipulate a minimising sequence. Let $u_m \in W^{1,2}(\Omega)$ be such that

$$E(u_m) \to \inf_{v \in W^{1,2}} E(v).$$

Then the above calulation yields for

$$v_m := u_m - \int_\Omega u_m \, dx$$

that we have

$$E(v_m) = E(u_m),$$

i.e. it is also a minimising sequence. Since

$$\int_{\Omega} v_m \, dx = 0$$

Exercise 5.2 yields

$$\int_{\Omega} |v_m|^2 \, dx \le C \int_{\Omega} |\nabla v_m|^2 \, dx.$$

As in the lecture with zero boundary values, we have

$$C \ge E(v_m) \ge \frac{1}{2} \int_{\Omega} |\nabla v_m|^2 \, dx - \varepsilon \|v_m\|_{L^2(\Omega)}^2 - C_{\varepsilon} \|f\|_{L^2(\Omega)}^2$$

for every $\varepsilon > 0$. Hence choosing $\varepsilon > 0$ small enough yields

$$\begin{split} E(v_m) \geq &\frac{1}{2} \int_{\Omega} |\nabla v_m|^2 \, dx - \varepsilon C \int_{\Omega} |\nabla v_m|^2 \, dx - C_{\varepsilon} \int_{\Omega} |f|^2 \, dx \\ \geq &\frac{1}{4} \int_{\Omega} |\nabla v_m|^2 \, dx - C(\Omega, f). \end{split}$$

Putting everything together we obtain

$$\|v_m\|_{W^{1,2}(\Omega)}^2 = \int_{\Omega} |v_m|^2 \, dx + \int_{\Omega} |\nabla v_m|^2 \, dx \le C.$$

Since $W^{1,2}(\Omega)$ is a Hilbert space, we then obtain a weakly converging subsequence $v_m \to v \in W^{1,2}(\Omega)$. The term

$$u\mapsto \int_{\Omega}|\nabla u|^2\,dx$$

is weakly lower semicontinuous because it is continuous and convex (it is a seminorm). Furthermore

$$u\mapsto \int f u\,dx$$

is by Cauchy-Schwartz a linear continuous functional on $W^{1,2}(\Omega)$, hence weakly continuous. All in all we have that, E is weakly lower semicontinuous. Therefore v is a desired minimiser.

2. Let $\varphi \in W^{1,2}(\Omega)$ and u a smooth minimiser. Then

$$0 = \frac{d}{dt} E(u + t\varphi)|_{t=0} = \int_{\Omega} \langle \nabla u, \nabla \varphi \rangle \, dx - \int_{\Omega} f\varphi \, dx.$$

The difference is now, that the test functions φ are allowed to have nonzero boundary values. Take $\varphi \in C^{\infty}(\mathbb{R}^n)$ and assume u to be smooth. Then partial integration, i.e. Gauss Theorem yields with ν being the outer normal of $\partial\Omega$

$$\int_{\Omega} \langle \nabla u, \nabla \varphi \rangle \, dx = \int_{\partial \Omega} \varphi \langle \nabla u, \nu \rangle \, darea_{\partial \Omega} - \int_{\Omega} \Delta u \varphi \, dx.$$

Choosing first $\varphi \in C_0^{\infty}(\Omega)$ yields the boundary term to disappear and therefore by the fundamental lemma of variational calculus we have $-\Delta u = f$ in Ω . By applying the fundamental lemma of variational calculus in charts on $\partial \Omega$ we also obtain

$$\langle \nabla u, \nu \rangle = 0 \text{ on } \partial \Omega.$$

Hence u satisfies

$$\begin{cases} -\Delta u = f & \text{in } \Omega\\ \langle \nabla u, \nu \rangle = 0 & \text{on } \partial \Omega. \end{cases}$$

Since we minimised E without any further conditions, the resulting boundary value $\langle \nabla u, \nu \rangle = 0$ is also called natural boundary condition for E.

3. If $\int_{\Omega} f \, dx \neq 0$ we do not have a minimiser. The above calculation shows for any $c \in \mathbb{R}$ and any $v \in W^{1,2}(\Omega)$

$$E(v+c) = E(v) - c \int_{\Omega} f \, dx.$$

Hence choosing c very small (or big), yields E to not have a finite infimum or supremum.