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Solutions to exercise 5

Solution to exercise 5.1

We multiply the equation with a test function ¢ € C§°(2) and integrate. By
partial integration we obtain

/f(pdx:—/div(|Vu|p_2Vu)g0:/ |Vu|P~2(Vu, V) da.
Q Q Q

Hence we say, that u € WO1 "P(Q) solves the Dirichletproblem weakly, iff for all
v € CF° () we have

/|Vu|p_2<Vu,V<p>dx:/fgodx.
Q Q

We define the following energy functional E : W, "*(€2) — R by:

E(v) ::%/Q|Vv\pdx—/ﬂfvdx.

Since 1 < p < oo, the space Wol’p(Q) is a reflexive Banachspace. Next we fixate

the integrability of f. Therefore we like the last term in the energy to be well

defined:

By Sobolevembedding we have that W, () is continuously embedded in L75 (Q).
P

The dual exponent r € R to n”—_p is given by

1 1 1 —(n—
LIRS np—(n—p)
n—p r np

Hence we set r := npffl v and require f € L"(2). This yields for every v €

WyP(Q) by Hélders inequality

/ folde < |f]
Q

Therefore this last term is well defined. Before we proceed with the minimisa-
tion, we calculate the FEuler-Lagrange equation of E:

We assume E has a minimum in u € W, "”(2). Then for every ¢ € Wy () we
have

rr@lloll 2z o) < Csonllf]

L@ vl < oo

Cdt
First we formally interchange integral and derivative. If we then see that the

integrand has a majorant for ¢t € [—1, 1] independent of ¢, we justified, that we
can interchange integral and derivative.

d1 1 d
L2 VuttvePde == [ L |Vu+tveld
dtp/9| u+tVylP dz p/th| u+tVepl? dr

d d1l
0=—FE(u+tp)|i= = af/ [Vu + tVplP dx|i=o —/ fpdz.
pPJa Q

1
= / p|Vu + tVp|P~2(Vu + tVp, V) dr.
Q



The integrand can be estimated by e.g. Ex. 4.3
||Vu +tVp|P~2(Vu + tVep, ch>| < |Vu 4 tVe|P~ |V

(IVul + [t V)P~ (1Vul + [t]Vel) = ([Vul + [t][Ve])?
CE)(IVul’ + Vel € L1(Q).

IN A

Hence we are allowed to interchange integration and derivation. This yields

d
0:—E(u+tcp)|t:0:/ \Vu\p”(Vu,Vgo)dx—/fgodx,
dt Q Q

which is exactly our weak formulation of the Dirichletproblem.

Now we proceed to show the existence of a minimiser: First we show a coerci-
tivity estimate. Let v € Wy?(Q). Then Ex. 4.3 and the Sobolev embedding
yields with 1 +1 =1

1
p
E(v) = ];HUHWDW(Q) - CSOb||f||Lr(Q)||U||W01=P(Q)

1 1
Z p _ P _ q
zp”UHWOLP(Q) 2p||v||W(]1p(Q) C(Qap)Hf| L™(Q)
1
— p
_%”U”WOLP(Q) - C(vaa f)

Hence if ||v[[1.0(q) — 00, then also E(v) — oo and E is coercive. Furthermore
9
E is weakly lower semicontinuous, because

P —
v ||v||W01,p(Q) = /Q |Voul? dz

is weakly lower semicontinuous by Thm. 2.16, because it is the power of a norm.

Furthermore
v / fvdzx
Q

is weakly continuous w.r.t. the weak convergence in I/VO1 P(Q), because by the
above calculation, it is a linear and continuous functional in VVO1 P(Q). Since
WyP(Q) is reflexive, Thm. 2.17 yields the existence of a minimiser u, which
satisfies the Dirichletproblem weakly.

Solution to exercise 5.2

We proceed by contradiction and assume no such constant exists. Hence we find
a sequence u,, € W12(Q) with

/ [y, — T |* d > m/ |Vt |? d.
Q Q

1
Um = f(um *m)-
Hum _umHL2(Q)

We define



Hence

1
/|Um|2d$: T/ tn, — T | da
Q H“m_“m”Lz(Q) Q
>”+2/ ¥ (s — ) ?
um_um”L‘z(Q) Q

:m/ V| de.
Q

Furthermore we have ||vy,||r2(q) = 1. This yields

1
7>/ |V |? dz.
m Q

Hence the Sobolevnorm [|vy, [lw1.2(q) is bounded. The Sobolevembedding now
yields a subsequence and a v € W12(£), such that

Um — v in L*(Q), v, — v weakly in WH%(Q).

Therefore [|v||z2(q) = 1. Furthermore the weak lower semicontinuity of a semi-
norm (i.e. a convex functional, see Ex. 3.1) yields

1
/ |Vo|? do < liminf/ |V |? de < liminf — = 0.
Q m—oo Jo m—oo M
Hence Vv = 0 and therefore v = const. Since
0= / U dT — / vdx = constL™(Q),
Q Q

we have v = 0. This is a contradiction to [[v||z2(q) = 1.

Solution to exercise 5.3

1. Let v € Wh2(Q) and ¢ € R. Then
1
E(w+c) :7/ \Vv|2dx—/f(v+c)dx
2 Jo Q
1
=— \Vv|2da:—/ fvdx —c | fdx = E(v).
2 Jo Q Q

This allows us to manipulate a minimising sequence. Let u,, € W2()
be such that
E(um) — velglva2 E(v).

Then the above calulation yields for

Um = Um — / Um dx
Q

E(vm) = E(um)a

that we have



i.e. it is also a minimising sequence. Since

/vmdeO
Q

/|vm|2dx§C’/ |V |* de.
Q Q

As in the lecture with zero boundary values, we have

Exercise 5.2 yields

1
C2E(m) 25 | [Voul* de —cllvmlzq) — C:llflZ2(q)
2 Jo
for every € > 0. Hence choosing ¢ > 0 small enough yields
1 2 9. 29 2
E(vy) > [Vug|*de —eC | |[Vop,|*de—C: [ |f]*dx
2 Ja Q Q
1
27/ |V, |2 de — C(Q, f).
4 Ja

Putting everything together we obtain

lonlsay = [ fonldat [ [Vonfdo <.

Since W12(Q) is a Hilbertspace, we then obtain a weakly converging sub-
sequence v, — v € WH2(Q). The term

u / |Vu|? da
Q

is weakly lower semicontinuous because it is continuous and convex (it is
a seminorm). Furthermore
u— / fudz

is by Cauchy-Schwartz a linear continuous functional on W12(Q), hence
weakly continuous. All in all we have that, FE is weakly lower semicontin-
uous. Therefore v is a desired minimiser.

. Let p € W12(Q) and u a smooth minimiser. Then
d

0=—Fu+ty)li=o= | (Vu,Vo)de— | fedx.
dt Q Q

The difference is now, that the testfunctions ¢ are allowed to have nonzero
boundary values. Take ¢ € C*°(R"™) and assume u to be smooth. Then
partial integration, i.e. Gauss Theorem yields with v being the outer
normal of 02

/(Vu, V) dm:/ o(Vu,v) dareaag—/Augodx.
Q o9 Q



Choosing first ¢ € C5°(2) yields the boundary term to disappear and
therefore by the fundamental lemma of variational calculus we have —Au =
fin Q. By applying the fundamental lemma of variational calculus in
charts on 02 we also obtain

(Vu, vy =0 on 99.
Hence u satisfies

—Au=f in
(Vu,v) =0 on 99.

Since we minimised E without any further conditions, the resulting bound-
ary value (Vu,v) = 0 is also called natural boundary condition for E.

1f [, fdx # 0 we do not have a minimiser. The above calculation shows
for any ¢ € R and any v € WH2(Q)

E(v—i—c):E(v)—c/Qfdx.

Hence choosing ¢ very small (or big), yields F to not have a finite infimum
or supremum.



