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Solutions to exercise 5

Solution to exercise 5.1

We multiply the equation with a test function ϕ ∈ C∞0 (Ω) and integrate. By
partial integration we obtain∫

Ω

fϕ dx = −
∫

Ω

div(|∇u|p−2∇u)ϕ =

∫
Ω

|∇u|p−2〈∇u,∇ϕ〉 dx.

Hence we say, that u ∈ W 1,p
0 (Ω) solves the Dirichletproblem weakly, iff for all

ϕ ∈ C∞0 (Ω) we have ∫
Ω

|∇u|p−2〈∇u,∇ϕ〉 dx =

∫
Ω

fϕ dx.

We define the following energy functional E : W 1,p
0 (Ω)→ R by:

E(v) :=
1

p

∫
Ω

|∇v|p dx−
∫

Ω

fv dx.

Since 1 < p <∞, the space W 1,p
0 (Ω) is a reflexive Banachspace. Next we fixate

the integrability of f . Therefore we like the last term in the energy to be well
defined:
By Sobolevembedding we have thatW 1,p

0 (Ω) is continuously embedded in L
np

n−p (Ω).
The dual exponent r ∈ R to np

n−p is given by

1

r
+

1
np
n−p

= 1 ⇒ 1

r
=
np− (n− p)

np
.

Hence we set r := np
np−n+p and require f ∈ Lr(Ω). This yields for every v ∈

W 1,p
0 (Ω) by Hölders inequality∫

Ω

|fv| dx ≤ ‖f‖Lr(Ω)‖v‖
L

np
n−p (Ω)

≤ CSob‖f‖Lr(Ω)‖v‖W 1,p
0 (Ω) <∞.

Therefore this last term is well defined. Before we proceed with the minimisa-
tion, we calculate the Euler-Lagrange equation of E:
We assume E has a minimum in u ∈W 1,p

0 (Ω). Then for every ϕ ∈W 1,p
0 (Ω) we

have

0 =
d

dt
E(u+ tϕ)|t=0 =

d

dt

1

p

∫
Ω

|∇u+ t∇ϕ|p dx|t=0 −
∫

Ω

fϕ dx.

First we formally interchange integral and derivative. If we then see that the
integrand has a majorant for t ∈ [−1, 1] independent of t, we justified, that we
can interchange integral and derivative.

d

dt

1

p

∫
Ω

|∇u+ t∇ϕ|p dx =
1

p

∫
Ω

d

dt
|∇u+ t∇ϕ|p dx

=
1

p

∫
Ω

p|∇u+ t∇ϕ|p−2〈∇u+ t∇ϕ,∇ϕ〉 dx.



The integrand can be estimated by e.g. Ex. 4.3∣∣|∇u+ t∇ϕ|p−2〈∇u+ t∇ϕ,∇ϕ〉
∣∣ ≤ |∇u+ t∇ϕ|p−1|∇ϕ|

≤(|∇u|+ |t||∇ϕ|)p−1(|∇u|+ |t|∇ϕ|) = (|∇u|+ |t||∇ϕ|)p

≤C(p)(|∇u|p + |∇ϕ|p) ∈ L1(Ω).

Hence we are allowed to interchange integration and derivation. This yields

0 =
d

dt
E(u+ tϕ)|t=0 =

∫
Ω

|∇u|p−2〈∇u,∇ϕ〉 dx−
∫

Ω

fϕ dx,

which is exactly our weak formulation of the Dirichletproblem.
Now we proceed to show the existence of a minimiser: First we show a coerci-
tivity estimate. Let v ∈ W 1,p

0 (Ω). Then Ex. 4.3 and the Sobolev embedding
yields with 1

q + 1
p = 1

E(v) ≥ 1

p
‖v‖p

W 1,p
0 (Ω)

− CSob‖f‖Lr(Ω)‖v‖W 1,p
0 (Ω)

≥1

p
‖v‖p

W 1,p
0 (Ω)

− 1

2p
‖v‖p

W 1,p
0 (Ω)

− C(Ω, p)‖f‖qLr(Ω)

=
1

2p
‖v‖p

W 1,p
0 (Ω)

− C(Ω, p, f).

Hence if ‖v‖W 1,p
0 (Ω) →∞, then also E(v)→∞ and E is coercive. Furthermore

E is weakly lower semicontinuous, because

v 7→ ‖v‖p
W 1,p

0 (Ω)
=

∫
Ω

|∇v|p dx

is weakly lower semicontinuous by Thm. 2.16, because it is the power of a norm.
Furthermore

v 7→
∫

Ω

fv dx

is weakly continuous w.r.t. the weak convergence in W 1,p
0 (Ω), because by the

above calculation, it is a linear and continuous functional in W 1,p
0 (Ω). Since

W 1,p
0 (Ω) is reflexive, Thm. 2.17 yields the existence of a minimiser u, which

satisfies the Dirichletproblem weakly.

Solution to exercise 5.2

We proceed by contradiction and assume no such constant exists. Hence we find
a sequence um ∈W 1,2(Ω) with∫

Ω

|um − um|2 dx > m

∫
Ω

|∇um|2 dx.

We define

vm :=
1

‖um − um‖L2(Ω)
(um − um).



Hence ∫
Ω

|vm|2 dx =
1

‖um − um‖2L2(Ω)

∫
Ω

|um − um|2 dx

>
m

‖um − um‖2L2(Ω)

∫
Ω

|∇(um − um)|2 dx

=m

∫
Ω

|∇vm|2 dx.

Furthermore we have ‖vm‖L2(Ω) = 1. This yields

1

m
>

∫
Ω

|∇vm|2 dx.

Hence the Sobolevnorm ‖vm‖W 1,2(Ω) is bounded. The Sobolevembedding now
yields a subsequence and a v ∈W 1,2(Ω), such that

vm → v in L2(Ω), vm → v weakly in W 1,2(Ω).

Therefore ‖v‖L2(Ω) = 1. Furthermore the weak lower semicontinuity of a semi-
norm (i.e. a convex functional, see Ex. 3.1) yields∫

Ω

|∇v|2 dx ≤ lim inf
m→∞

∫
Ω

|∇vm|2 dx ≤ lim inf
m→∞

1

m
= 0.

Hence ∇v = 0 and therefore v = const. Since

0 =

∫
Ω

vm dx→
∫

Ω

v dx = constLn(Ω),

we have v = 0. This is a contradiction to ‖v‖L2(Ω) = 1.

Solution to exercise 5.3

1. Let v ∈W 1,2(Ω) and c ∈ R. Then

E(v + c) =
1

2

∫
Ω

|∇v|2 dx−
∫

Ω

f(v + c) dx

=
1

2

∫
Ω

|∇v|2 dx−
∫

Ω

fv dx− c
∫

Ω

f dx = E(v).

This allows us to manipulate a minimising sequence. Let um ∈ W 1,2(Ω)
be such that

E(um)→ inf
v∈W 1,2

E(v).

Then the above calulation yields for

vm := um −
∫

Ω

um dx

that we have
E(vm) = E(um),



i.e. it is also a minimising sequence. Since∫
Ω

vm dx = 0

Exercise 5.2 yields ∫
Ω

|vm|2 dx ≤ C
∫

Ω

|∇vm|2 dx.

As in the lecture with zero boundary values, we have

C ≥ E(vm) ≥ 1

2

∫
Ω

|∇vm|2 dx− ε‖vm‖2L2(Ω) − Cε‖f‖2L2(Ω)

for every ε > 0. Hence choosing ε > 0 small enough yields

E(vm) ≥1

2

∫
Ω

|∇vm|2 dx− εC
∫

Ω

|∇vm|2 dx− Cε

∫
Ω

|f |2 dx

≥1

4

∫
Ω

|∇vm|2 dx− C(Ω, f).

Putting everything together we obtain

‖vm‖2W 1,2(Ω) =

∫
Ω

|vm|2 dx+

∫
Ω

|∇vm|2 dx ≤ C.

Since W 1,2(Ω) is a Hilbertspace, we then obtain a weakly converging sub-
sequence vm → v ∈W 1,2(Ω). The term

u 7→
∫

Ω

|∇u|2 dx

is weakly lower semicontinuous because it is continuous and convex (it is
a seminorm). Furthermore

u 7→
∫
fu dx

is by Cauchy-Schwartz a linear continuous functional on W 1,2(Ω), hence
weakly continuous. All in all we have that, E is weakly lower semicontin-
uous. Therefore v is a desired minimiser.

2. Let ϕ ∈W 1,2(Ω) and u a smooth minimiser. Then

0 =
d

dt
E(u+ tϕ)|t=0 =

∫
Ω

〈∇u,∇ϕ〉 dx−
∫

Ω

fϕ dx.

The difference is now, that the testfunctions ϕ are allowed to have nonzero
boundary values. Take ϕ ∈ C∞(Rn) and assume u to be smooth. Then
partial integration, i.e. Gauss Theorem yields with ν being the outer
normal of ∂Ω∫

Ω

〈∇u,∇ϕ〉 dx =

∫
∂Ω

ϕ〈∇u, ν〉 darea∂Ω −
∫

Ω

∆uϕdx.



Choosing first ϕ ∈ C∞0 (Ω) yields the boundary term to disappear and
therefore by the fundamental lemma of variational calculus we have−∆u =
f in Ω. By applying the fundamental lemma of variational calculus in
charts on ∂Ω we also obtain

〈∇u, ν〉 = 0 on ∂Ω.

Hence u satisfies {
−∆u = f in Ω
〈∇u, ν〉 = 0 on ∂Ω.

Since we minimised E without any further conditions, the resulting bound-
ary value 〈∇u, ν〉 = 0 is also called natural boundary condition for E.

3. If
∫

Ω
f dx 6= 0 we do not have a minimiser. The above calculation shows

for any c ∈ R and any v ∈W 1,2(Ω)

E(v + c) = E(v)− c
∫

Ω

f dx.

Hence choosing c very small (or big), yields E to not have a finite infimum
or supremum.


