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Solutions to exercise 6

Solution to exercise 6.1

We start with the length: The substitution formula for one-dimensional integrals
and the chain rule yield
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The last part follows by a distinction of two cases. Since ¢ is a diffeomorphism,
we can either have ¢’ > 0 or ¢’ < 0. In the first case the above solution is clear,
in the second case we have p(d) = b and ¢(e) = a. Interchanging the limits of
the integral and using ¢’ < 0 yields the desired result.

Now we proceed with the elastic energy. The sign of ¢’ can be handled as has
been done with the length functional:
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Solution to exercise 6.2

O

By Sobolevembedding the function ¢ — |¢/(¢)| is Hélder continuous. Hence the

map ,
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is well defined and continuously differentiable. Furthermore

W'(s) =|c'(s)] >0,

hence 1 : [a,b] — [0, L(P)] is strictly increasing and therefore bijective and a
diffeomorphism. We set



and obtain
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Then we have
[(co@)| = |&llc" 0| = 1.
We define
p(t) == @(L(P) - 1).
Then ¢ : [0,1] — [a,b] is a diffecomorphism with ¢’ = L(P)¢’ > 0. Furthermore

[(co@)| = |L(P)§'c" o p| = L(P).

Solution to exercise 6.3

Let P, € M be a minimising sequence for W). By Exercise 6.2 we find ¢ €
W?22((0,1), R?) parametrising Py such that

¢l = L(Px).
Since Py is a minimising sequence and A > 0, we have

E(Py), L(Py) < C.
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Furthermore we have
1
loelBgoen = | 1P dt = LR < €.
The mean value theorem in integral form further yields for ¢ € [0, 1]
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This yields
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+|a| < C.
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All in all we have
||Ck||W2>2((0,1),]R2) <C.
Since W22((0,1),R?) is a Hilbertspace, we find a weakly converging subse-

quence. Hence using the Sobolevembedding theorem we can assume after rela-
beling, that there exists a ¢ € W22((0,1), R?) with

cx — ¢ weakly in W22((0,1),R?)



and
cx — ¢ in CH((0,1),R?)

for a given 0 < o < % The last convergence yields
|| = klirgo ek = kllngo L(Py).
Since the straight line from a to b always has lower length than any ¢k, we have
L(P,)>C

and therefore
|| > 0.

Hence P := ¢(0,1) is a W22-regular curve. We also have

1
L(P):/ ¢ di = lim L(Py),
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hence |¢/| = L(P) > 0. Since || - ||?/V2,2((O 1) R?) is weakly lower semicontinuous
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and L(-) is continuous, we therefore have
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Hence W)y, is weakly lower semicontinuous. The C!*“-convergence further yields,
that P satisfies the boundary values. Hence P € M and it is therefore a min-
imiser.



