Solutions to exercise 6

Solution to exercise 6.1

We start with the length: The substitution formula for one-dimensional integrals and the chain rule yield

$$
\begin{aligned}
& \int_{d}^{e}\left|(c \circ \varphi)^{\prime}\right| d t=\int_{d}^{e}\left|\varphi^{\prime}\right|\left|c^{\prime} \circ \varphi\right| d t=\operatorname{sign}\left(\varphi^{\prime}\right) \int_{d}^{e}\left|c^{\prime} \circ \varphi\right| \varphi^{\prime} d t \\
= & \operatorname{sign}\left(\varphi^{\prime}\right) \int_{\varphi(d)}^{\varphi(e)}\left|c^{\prime}\right| d t=\int_{a}^{b}\left|c^{\prime}(t)\right| d t
\end{aligned}
$$

The last part follows by a distinction of two cases. Since φ is a diffeomorphism, we can either have $\varphi^{\prime}>0$ or $\varphi^{\prime}<0$. In the first case the above solution is clear, in the second case we have $\varphi(d)=b$ and $\varphi(e)=a$. Interchanging the limits of the integral and using $\varphi^{\prime}<0$ yields the desired result.
Now we proceed with the elastic energy. The sign of φ^{\prime} can be handled as has been done with the length functional:

$$
\begin{aligned}
& \int_{d}^{e} \frac{1}{\left|(c \circ \varphi)^{\prime}\right|}\left|\frac{d}{d t}\left(\frac{(c \circ \varphi)^{\prime}}{\left|(c \circ \varphi)^{\prime}\right|}\right)\right|^{2} d t=\int_{d}^{e} \frac{1}{\left|\varphi^{\prime}\right|\left|c^{\prime} \circ \varphi\right|}\left(\frac{d}{d t} \frac{\varphi^{\prime} c^{\prime} \circ \varphi}{\left|\varphi^{\prime}\right|\left|c^{\prime} \circ \varphi\right|}\right)^{2} d t \\
= & \int_{d}^{e} \frac{1}{\left|\varphi^{\prime}\right|\left|c^{\prime} \circ \varphi\right|}\left(\operatorname{sign}\left(\varphi^{\prime}\right) \frac{d}{d t} \frac{c^{\prime} \circ \varphi}{\left|c^{\prime} \circ \varphi\right|}\right)^{2} d t=\int_{d}^{e} \frac{1}{\left|\varphi^{\prime}\right|\left|c^{\prime} \circ \varphi\right|}\left(\frac{d}{d t} \frac{c^{\prime} \circ \varphi}{\left|c^{\prime} \circ \varphi\right|}\right)^{2} d t \\
= & \int_{d}^{e} \frac{1}{\left|\varphi^{\prime}\right|\left|c^{\prime} \circ \varphi\right|}\left(\frac{\varphi^{\prime} c^{\prime \prime} \circ \varphi}{\left|c^{\prime} \circ \varphi\right|}-\varphi^{\prime} \frac{\left\langle c^{\prime} \circ \varphi, c^{\prime \prime} \circ \varphi\right\rangle}{\left|c^{\prime} \circ \varphi\right|^{2}}\right)^{2} d t \\
= & \int_{d}^{e} \frac{\left|\varphi^{\prime}\right|}{\left|c^{\prime} \circ \varphi\right|}\left(\frac{c^{\prime \prime} \circ \varphi}{\left|c^{\prime} \circ \varphi\right|}-\frac{\left\langle c^{\prime} \circ \varphi, c^{\prime \prime} \circ \varphi\right\rangle}{\left|c^{\prime} \circ \varphi\right|^{2}}\right)^{2} d t=\int_{a}^{b} \frac{1}{\left|c^{\prime}\right|}\left(\frac{c^{\prime \prime}}{\left|c^{\prime}\right|}-\frac{\left\langle c^{\prime}, c^{\prime \prime}\right\rangle}{\left|c^{\prime}\right|^{2}}\right)^{2} d t \\
= & \int_{a}^{b} \frac{1}{\left|c^{\prime}\right|}\left|\frac{d}{d t}\left(\frac{c^{\prime}}{\left|c^{\prime}\right|}\right)\right|^{2} d t .
\end{aligned}
$$

Solution to exercise 6.2

By Sobolevembedding the function $t \mapsto\left|c^{\prime}(t)\right|$ is Hölder continuous. Hence the map

$$
\psi(s):=\int_{a}^{s}\left|c^{\prime}(t)\right| d t
$$

is well defined and continuously differentiable. Furthermore

$$
\psi^{\prime}(s)=\left|c^{\prime}(s)\right|>0
$$

hence $\psi:[a, b] \rightarrow[0, L(P)]$ is strictly increasing and therefore bijective and a diffeomorphism. We set

$$
\tilde{\varphi}:=\psi^{-1} .
$$

and obtain

$$
\tilde{\varphi}^{\prime}=\frac{1}{\psi^{\prime} \circ \tilde{\varphi}}=\frac{1}{\left|c^{\prime} \circ \tilde{\varphi}\right|}
$$

Then we have

$$
\left|(c \circ \tilde{\varphi})^{\prime}\right|=\left|\tilde{\varphi}^{\prime}\right|\left|c^{\prime} \circ \tilde{\varphi}\right|=1 .
$$

We define

$$
\varphi(t):=\tilde{\varphi}(L(P) \cdot t)
$$

Then $\varphi:[0,1] \rightarrow[a, b]$ is a diffeomorphism with $\varphi^{\prime}=L(P) \tilde{\varphi}^{\prime}>0$. Furthermore

$$
\left|(c \circ \varphi)^{\prime}\right|=\left|L(P) \tilde{\varphi}^{\prime} c^{\prime} \circ \varphi\right|=L(P) .
$$

Solution to exercise 6.3

Let $P_{k} \in M$ be a minimising sequence for W_{λ}. By Exercise 6.2 we find $c_{k} \in$ $W^{2,2}\left((0,1), \mathbb{R}^{2}\right)$ parametrising P_{k} such that

$$
\left|c_{k}^{\prime}\right|=L\left(P_{k}\right)
$$

Since P_{k} is a minimising sequence and $\lambda>0$, we have

$$
E\left(P_{k}\right), L\left(P_{k}\right) \leq C
$$

Hence

$$
E\left(P_{k}\right)=\int_{0}^{1} \frac{1}{\left|c_{k}^{\prime}\right|}\left|\frac{d}{d t}\left(\frac{c_{k}^{\prime}}{\left|c_{k}^{\prime}\right|}\right)\right|^{2} d t=\int_{0}^{1} \frac{1}{L\left(P_{k}\right)^{3}}\left|c_{k}^{\prime \prime}\right|^{2} d t .
$$

Hence

$$
\left\|c_{k}\right\|_{W_{0}^{2,2}\left((0,1), \mathbb{R}^{2}\right)}^{2}=\int_{0}^{1}\left|c_{k}^{\prime \prime}\right|^{2} d t=E\left(P_{k}\right) L\left(P_{K}\right)^{3} \leq C
$$

Furthermore we have

$$
\left\|c_{k}\right\|_{W_{0}^{1,2}\left((0,1), \mathbb{R}^{2}\right)}^{2}=\int_{0}^{1}\left|c_{k}^{\prime}\right|^{2} d t=L\left(P_{k}\right)^{2} \leq C .
$$

The mean value theorem in integral form further yields for $t \in[0,1]$

$$
\begin{aligned}
& \left|c_{k}(t)\right| \leq\left|c_{k}(t)-c_{k}(0)\right|+\left|c_{k}(0)\right|=\left|\int_{0}^{1} \frac{d}{d s}\left(c_{k}(s t)\right) d s\right|+|a| \\
= & \left|\int_{0}^{1} s c_{k}^{\prime}(s t) d s\right|+|a| \leq \int_{0}^{1} s\left|c_{k}^{\prime}(s t)\right| d s+|a|=\frac{L\left(P_{k}\right)}{2}+|a| \leq C .
\end{aligned}
$$

This yields

$$
\left\|c_{k}\right\|_{L^{2}\left((0,1), \mathbb{R}^{2}\right)}^{2}=\int_{0}^{1}\left|c_{k}\right|^{2} d t \leq C .
$$

All in all we have

$$
\left\|c_{k}\right\|_{W^{2,2}\left((0,1), \mathbb{R}^{2}\right)} \leq C
$$

Since $W^{2,2}\left((0,1), \mathbb{R}^{2}\right)$ is a Hilbertspace, we find a weakly converging subsequence. Hence using the Sobolevembedding theorem we can assume after relabeling, that there exists a $c \in W^{2,2}\left((0,1), \mathbb{R}^{2}\right)$ with

$$
c_{k} \rightarrow c \text { weakly in } W^{2,2}\left((0,1), \mathbb{R}^{2}\right)
$$

and

$$
c_{k} \rightarrow c \text { in } C^{1, \alpha}\left((0,1), \mathbb{R}^{2}\right)
$$

for a given $0<\alpha<\frac{1}{2}$. The last convergence yields

$$
\left|c^{\prime}\right|=\lim _{k \rightarrow \infty}\left|c_{k}^{\prime}\right|=\lim _{k \rightarrow \infty} L\left(P_{k}\right)
$$

Since the straight line from a to b always has lower length than any c_{k}, we have

$$
L\left(P_{k}\right) \geq C
$$

and therefore

$$
\left|c^{\prime}\right|>0
$$

Hence $P:=c(0,1)$ is a $W^{2,2}$-regular curve. We also have

$$
L(P)=\int_{0}^{1}\left|c^{\prime}\right| d t=\lim _{k \rightarrow \infty} L\left(P_{k}\right)
$$

hence $\left|c^{\prime}\right|=L(P)>0$. Since $\|\cdot\|_{W_{0}^{2,2}\left((0,1), \mathbb{R}^{2}\right)}^{2}$ is weakly lower semicontinuous and $L(\cdot)$ is continuous, we therefore have

$$
\begin{aligned}
& \liminf _{k \rightarrow \infty} W_{\lambda}\left(P_{k}\right)=\liminf _{k \rightarrow \infty} \frac{1}{L\left(P_{k}\right)^{3}} \int_{0}^{1}\left|c_{k}^{\prime \prime}\right|^{2} d t+\lambda \lim _{k \rightarrow \infty} L\left(P_{k}\right) \\
\geq & \frac{1}{L(P)^{3}} \int_{0}^{1}\left|c^{\prime \prime}\right|^{2} d t+\lambda L(P)=E(P)+\lambda L(P)=W_{\lambda}(P) .
\end{aligned}
$$

Hence W_{λ} is weakly lower semicontinuous. The $C^{1, \alpha}$-convergence further yields, that P satisfies the boundary values. Hence $P \in M$ and it is therefore a minimiser.

