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These lecture notes are mainly based on a lecture given by Hans-Christoph
Grunau in 2014 in Magdeburg, see [5], which itself is based on [11]. Another
great source is the book by Evans, [1], which encompasses a big part of the
content in this lecture.
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Part I: Direct Method of variational calculus

1 Introduction

One of the most classical boundary value problems in the theory of partial
differential equations is the Dirichlet problem for the Laplace operator: Given
an f ∈ C0(Ω) with Ω ⊆ Rn open and bounded, we look for a u ∈ C2(Ω)∩C0(Ω)
such that {

−∆u = f, in Ω
u = 0, on ∂Ω.

(1.1)

To show existence, we introduce the so called Dirichlet energy E : C1(Ω) → R
by

E(v) :=
1

2

∫
Ω

|∇v|2 − f · v dLn. (1.2)

Let us assume, we have found a minimiser u of E in the following set

u ∈M := {v ∈ C2(Ω)| v|∂Ω = 0},

i.e. for all v ∈ M we have E(u) ≤ E(v). Now let ϕ ∈ C∞0 (Ω) be arbitrary.
Then the one-dimensional function

t 7→ E(u+ tϕ)

has a minimum at t = 0, hence

d

dt
E(u+ tϕ)|t=0 = 0.

Let us calculate this derivative:

d

dt
E(u+ tϕ)|t=0 =

d

dt

1

2

∫
Ω

|∇u+ t∇ϕ|2 dLn −
∫

Ω

f(u+ tϕ) dLn|t=0

=
d

dt

(
1

2

∫
Ω

|∇u|2 dLn +
1

2
2t

∫
Ω

〈∇u,∇ϕ〉 dLn +
1

2
t2
∫

Ω

|∇ϕ|2 dLn
)
|t=0

−
∫

Ω

fϕ dLn

=

∫
Ω

〈∇u,∇ϕ〉 dLn −
∫

Ω

fϕ dLn p.I.
= −

∫
Ω

∆uϕdLn −
∫

Ω

fϕ dLn

=

∫
ϕ(−∆u− f) dLn.

Since ϕ ∈ C∞0 (Ω) is arbitrary, the fundamental lemma of the calculus of varia-
tions (exercise) yields

−∆u = f.

Since u is trivially zero on the boundary, the boundary data hold as well. Hence
u solves (1.1). We say, that u is a critical point of E or that u satisfies the Euler-
Lagrange equation of E.
The first part of the lecture is now concerned with showing the existence of such
minimisers. The method to do this is called the direct method of the calculus of
variations. The main idea is already encapsulated in the proof of the following
Theorem, which is usually done in Analysis 1:
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Theorem 1.1. Let a < b and E : [a, b] → R be lower semicontinuous, i.e. for
all converging sequences xk ∈ [a, b] with limit x ∈ [a, b] we have

E(x) ≤ lim inf
k→∞

E(xk).

Then there exists an xMin ∈ [a, b] such that

E(xMin) = inf
x∈[a,b]

E(x).

Proof. Let xk ∈ [a, b] be a minimising sequence for E, i.e.

E(xk)→ inf
x∈[a,b]

E(x).

Since [a, b] ⊆ R is bounded and closed (hence it is sequentially compact), we
find a converging subsequence, such that after relabeling we have

xk → xMin ∈ [a, b].

By lower semicontinuity we get

inf
x∈[a,b]

E(x) ≤ E(xMin) ≤ lim inf
k→∞

E(xk) = inf
x∈[a,b]

E(x).

Hence xMin is a desired minimiser.

The plan of the lecture is now as follows:
Since we like to adapt the proof of Thm. 1.1 to function spaces, which are
usually infinite dimensional, the classical notion of sequential compactness and
convergence will not suffice. In §2 we will therefore define another notion of con-
vergence called weak convergence and introduce a theorem, which will guarantee
good compactness properties. In §3 we will examine Sobolev spaces, which are
suitable function spaces for our direct method. This will also lead to the notion
of weak solutions.
Starting from section 4 we will make the notion of a critical point more precise
and introduce a so called mountain-pass lemma. This lemma will guarantee the
existence of such critical points of saddle point type and is usually employed to
show nonuniqueness.
Due to time constraints, we will not be able to prove everything, but there will
be appropriate references.

Remark 1.2.

1. The Dirichlet energy (1.2) only controls the first derivative, hence we
cannot expect a-priori that a limit of a minimising sequence will have a
second derivative. Therefore we will introduce so called weak solutions in
section 3.
This principle will also be applied to other equations. Depending on the
specific equation, one may be able to do some regularity theory, see e.g. [4,
Chapter 8] to obtain more derivatives. This is out of the scope of this
lecture though.

2. These energies, which we will minimise, usually do have a physical back-
ground. In Physics these type of energies are usually called actions.
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2 Functionalanalytic background

We repeat some of the most important facts for variational calculus about Ba-
nach spaces. These can be found in e.g. [8].

Definition 2.1. Let B be a real vector space. Furthermore let ‖·‖ : B → [0,∞)
be a norm. We then call (B, ‖ · ‖) a normed space. If (B, ‖ · ‖) is complete w.r.t.
to ‖ · ‖, we call it a Banach space.
If additionally ‖ · ‖ is induced by an inner product 〈·, ·〉, we call (B, 〈·, ·〉) a
Hilbert space.

Our goal is to find a suitable notion of convergence, for which we will have
good compactness properties. To this end we need dual spaces:

Definition 2.2. Let (B, ‖ · ‖) be a normed real vectorspace. Then we define
the dualspace B∗ of B to consist of all linear continuous functionals, i.e.

B∗ := {L : B → R| L continuous w.r.t. ‖ · ‖}.

We equip B∗ with the following operatornorm:

‖L‖B∗ := sup
x∈B, ‖x‖≤1

|Lx|.

Remark 2.3. Let (B, ‖ · ‖) be a normed space. Then we have the following
results (see also the exercises)

1. Let L : B → R be linear. Then L is continuous if and only if ‖L‖B∗ <∞
or equivalently there exists a C > 0 such that for all x ∈ B

|L(x)| ≤ C‖x‖.

If L satisfies this last condition, it is called bounded.

2. Since R is complete, the normed vectorspace (B∗, ‖ · ‖B∗) is always com-
plete, i.e. a Banach space, see e.g. [8, Thm. 4.1].

3. If (B, 〈·, ·〉) is a Hilbert space, the Riesz representation theorem states (see
e.g. [4, Thm .5.7]) that for any L ∈ B∗ we find a unique xL ∈ B such that
for all y ∈ B we have

L(y) = 〈xL, y〉 and ‖L‖B∗ = ‖xL‖.

Hence B∗ is isometric to B and we can define an inner product on B∗ by

〈L,G〉B∗ := 〈xL, xG〉B = L(xG) = G(xL).

Example 2.4. Let µ be a σ-finite measure on some set Ω and 1 ≤ p < ∞.
Then by the Riesz-Fischer Theorem the space of p-integrable functions Lp(µ)
is a Banach space. Furthermore by [9, Thm. 6.16] we can characterise the dual
space:
Let q ∈ (1,∞] such that

1

p
+

1

q
= 1.
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Then the map
Λp : Lq(µ)→ (Lp(µ))∗

given by

Λp(g)(f) :=

∫
Ω

g · f dµ

is a bijective isometry.

The following theorem (or set of theorems) is a very important buildung
block in functional analysis, see [8, §3.1] for proofs.

Theorem 2.5 (Hahn-Banach). Let (B, ‖ ·‖) be a normed vectorspace. Then we
have the following theorems:

1. Let p : B → R be sublinear, i.e. satisfy

(i) p(x+ y) ≤ p(x) + p(y) ∀x, y ∈ B
(ii) p(αx) = αp(x) ∀α ≥ 0, ∀x ∈ B.

Let M ⊆ B be linear subspace, ` : M → R linear such that for all x ∈ M
we have

`(x) ≤ p(x).

Then there exists an extension L : B → R (i.e. L|M = `) such that L is
linear and for all x ∈ B we have

L(x) ≤ p(x).

2. Let W ⊆ B be a subspace. Then every bounded linear functional ` ∈ W ∗
admits an extension L ∈ B∗ (i.e. L|W = `) and such that

‖`‖W∗ = ‖L‖B∗ .

3. (Seperation Theorem) Let A,C ⊆ B be non-empty disjoint convex sets. If
A is open, then there exists an L ∈ B∗ and γ ∈ R, such that

∀a ∈ A ∀c ∈ C : L(a) < γ ≤ L(c).

If A is compact and C is closed, there also exists an L ∈ B∗ and γ1, γ2 ∈ R
such that

∀a ∈ A ∀c ∈ C : L(a) < γ1 < γ2 < L(c).

Before we proceed we apply the above theorem to show a useful characteri-
sation of a norm:

Lemma 2.6. Let (B, ‖ · ‖) be a normed vectorspace. Then for every x ∈ B we
have

‖x‖ = sup
L∈B∗,‖L‖B∗≤1

|L(x)|. (2.1)

Proof. W.l.o.g we assume x 6= 0. By the definition of the operatornorm we have

sup
L∈B∗,‖L‖B∗≤1

|L(x)| ≤ sup
L∈B∗,‖L‖B∗≤1

‖L‖B∗‖x‖ ≤ ‖x‖.
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The other estimates needs the Hahn-Banach theorem 2.5. We define a one-
dimensional subspace V ⊆ B by

V := span(x)

and a linear continuous functional LV : V → R by

LV (x) := ‖x‖.

Then for any y ∈ V we find a unique ry ∈ R, such that y = ryx. Hence

LV (y) = ryLV (x) = ry‖x‖,

by which we get

‖LV ‖V ∗ = sup
y∈V \{0}

|LV (y)|
‖y‖

= sup
y∈V \{0}

|ry|
‖y‖
|LV (x)| = sup

y∈V \{0}

‖y‖
‖x‖‖y‖

‖x‖ = 1.

By Hahn-Banach we can extend LV to a continuous linear functional on the
whole of B with the same operatornorm. Hence

‖x‖ = |LV (x)| ≤ sup
L∈B∗,‖L‖B∗≤1

|L(x)|,

which finishes the proof.

From this point on (B, ‖·‖) is always a Banach space (although some results
and Definitions carry over to normed spaces).
We introduce the notion of convergence, which we will mainly use in our direct
method of variations. As we will see in Theorem 2.14 this notion will enjoy good
compactness properties.

Definition 2.7. Let (B, ‖ · ‖) be a Banach space.

1. Let xk, x ∈ B. We say xk → x weakly, if and only if for all L ∈ B∗ we
have

L(xk)→ L(x).

2. Let Lk, L ∈ B∗. We say Lk → L weak* (or in a weak* sense), if and only
if for all x ∈ B we have

Lk(x)→ L(x).

Example 2.8. Let ν be the counting measure on N. We define the sequence
ei ∈ L2(ν) to be

ei(j) := δij .

Then
ei → 0 weakly,

but ei and every subsequence does not converge w.r.t. ‖ · ‖L2(ν).

Proof. First we check, that the sequence does not converge in the norm:

‖ei−ek‖2L2(ν) =

∫
N
|ei−ek|2 dν =

∞∑
j=1

|ei(j)−ek(j)|2 =

∞∑
j=1

|δij−δkj |2 = 2(1−δik).

7



Hence this sequence and all its subsequences are not Cauchy and therefore
cannot converge.
For the weak convergence we use Remark 2.3 3). Hence we have to check for
every f ∈ L2(ν), that

〈f, ei〉L2(ν) =

∫
f · ei dν =

∞∑
j=1

f(j)ei(j) = f(i)

converges to zero. Since f ∈ L2(ν) we have

‖f‖2L2(ν) =

∞∑
j=1

|f(j)|2 <∞,

hence
lim
j→∞

f(j) = 0

and the result follows.

Remark 2.9. Let (B, ‖ · ‖) be a Banach space. Then we have the following
properties concerning weak and weak* convergence (see also the exercises):

1. Limits of weak and weak* converging sequences are unique, see e.g. [8, §
3.1].

2. If xk ∈ B converges w.r.t. to ‖ · ‖ it also weakly converges to the same
limit (Exercise).

3. If xk ∈ B weakly converges, then the sequence is bounded (see [8, Thm
3.18]), i.e. there exists a C > 0 such that for all k ∈ N we have

‖xk‖ ≤ C.

Not all Banach spaces will enjoy good compactness properties. The ones we
are examining here are called reflexive. To define this, we need the canonical
embedding or also called evaluation map:

Definition 2.10. Let (B, ‖ · ‖) be a Banach space. We call

B∗∗ := (B∗)∗

the bidual of B. Furthermore we define the canonical embedding iB : B → B∗∗

to be
iB(x)(L) = L(x).

Remark 2.11. By Hahn-Banach Theorem 2.5 rsp. Lemma 2.6 we see that iB
is always linear, injective and norm preserving (exercise).

Now we can define one of the central assumptions for the direct method to
work.

Definition 2.12. Let (B, ‖ · ‖) be a Banach space. We call it reflexive if the
canonical embedding iB is surjective.

Example 2.13. We have the following examples of reflexive spaces:
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1. By Rieszs representation theorem (see Remark 2.3 3)), every Hilbert space
(H, 〈·, ·〉H) is reflexive:
Let q∗∗ ∈ H∗∗ be arbitrary. Then by the Riesz representation theorem we
find a unique q∗ ∈ H∗ such that for all z∗ ∈ H∗ we have

〈z∗, q∗〉H∗ = q∗∗(z∗).

Repeating this step, yields a q ∈ H, such that for every z ∈ H we have

〈z, q〉H = q∗(z).

For every L ∈ H∗ we find a zL ∈ H with

L(q) = 〈zL, q〉H

Hence applying the canonical embedding to q yields for every L ∈ H∗

iH(q)(L) = L(q) = 〈zL, q〉H = q∗(zL) = 〈q∗, L〉H∗ = q∗∗(L)

hence iH(q) = q∗∗ and the result follows.

2. Let 1 < p < ∞ and µ be a σ-finite measure on some set Ω. Then by
Example 2.4 Lp(µ) is reflexive:
Let Λp : Lq(µ)→ (Lp(µ))∗ (again with 1

p + 1
q = 1) be as in Example 2.4,

i.e. an isometry given by

Λp(g)(f) =

∫
gf dµ.

Now let f∗∗ ∈ (Lp(µ))∗∗ be arbitrary but fixated. Since Λp is bijective,
we can define an f∗ := f∗∗ ◦ Λp ∈ (Lq(µ))∗, and for all g∗ ∈ (Lp(µ))∗ we
find a unique g ∈ Lq(µ) with g∗ = Λp(g). Therefore

f∗∗(g∗) = f∗∗(Λp(g)) = f∗∗ ◦ Λp(g) =: f∗(g).

Let f := Λ−1
q (f∗) ∈ Lp(µ). Then

f∗∗(g∗) = f∗(g) = Λq(f)(g) =

∫
fg dµ.

Hence

iLp(µ)(f)(g∗) = g∗(f) = Λp(g)(f) =

∫
fg dµ = f∗∗(g∗)

and therefore iLp(µ)(f) = f∗∗ and this map is surjective.

The following theorem encompasses the needed compactness properties. Since
we do not have the time needed for a complete proof, we will just give a citation.

Theorem 2.14. Let (B, ‖ · ‖) be a Banach space. Then

1. (see [8, § 4, Ex. 1 c)]) Let B be reflexive. Let xk ∈ B be a bounded
sequence w.r.t. to ‖ · ‖. Then there exists a weakly converging subsequence
of xk.
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2. (Banach-Alaoglu, [8, Thm. 3.15 and Thm. 3.16]) Let B be seperable
(i.e. there exists a countable dense set in B). Let Lk ∈ B∗ be a bounded
sequence w.r.t. ‖ · ‖B∗ . Then there exists a subsequence, which converges
in the weak* sense.

Now we turn our focus to lower semicontinuity:

Definition 2.15. Let (B, ‖ ·‖) be a Banach space. Furthermore let X ⊆ B and
F : X → R. We call F weakly lower semicontinuous, if for all sequences xk ∈ X
weakly converging to an x ∈ X, we have

F (x) ≤ lim inf
k→∞

F (xk)

The following gives a very important example for weakly lower semicontin-
uous functions:

Theorem 2.16. Let (B, ‖ · ‖) be a Banach space. Then the norm ‖ · ‖ is weakly
lower semicontinuous on B.

Proof. Let xk ∈ B with xk → x ∈ B weakly. With the help of Hahn-Banachs
theorem 2.5 rsp. Lemma 2.6 we can write

‖x‖ = sup
L∈B∗,‖L‖≤1

|L(x)|.

Now for every ε > 0 we can find an L̃ ∈ B∗ with ‖L̃‖ ≤ 1 such that

‖x‖ ≤ L̃(x) + ε = lim
k→∞

L̃(xk) + ε ≤ lim inf
k→∞

sup
L∈B∗,‖L‖≤1

|L(xk)|+ ε

= lim inf
k→∞

‖xk‖+ ε.

Letting ε ↓ 0 finishes the proof of the lower semicontinuity.

Now we are ready to prove a theorem encompassing the direct method. The
proof itself is more important than the theorem itself, since one usually has to
adapt the method to the situation at hand.

Theorem 2.17 (Direct method). Let (B, ‖ · ‖) be a reflexive Banach space,
∅ 6= X ⊆ B weakly sequentially closed, i.e. for all xk ∈ X weakly converging to
an x ∈ B we have x ∈ X and F : X → R. Furthermore F should satisfy

1. F is coercive, i.e. if yk ∈ X with ‖yk‖ → ∞, then F (yk)→∞.

2. F is weakly lower semicontinuous.

Then F is bounded below and admits a minimum in X, i.e. we find an xmin ∈
X, such that

F (xmin) = inf
x∈X

F (x).

Proof. We have infx∈X F (x) <∞ and let xk ∈ X be a minimising sequence for
F , i.e.

F (xk)→ inf
x∈X

F (x) <∞.
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Suppose ‖xk‖ → ∞. Since F is coercive we would have F (xk) → ∞, a contra-
diction. Hence we find a C > 0, such that for all k ∈ N

‖xk‖ ≤ C.

By Theorem 2.14 we find a weakly converging subsequence with limit y ∈ B,
i.e. after relabeling

xk → y weakly.

Since X is weakly sequentially closed, we have y ∈ X. Since F is weakly lower
semicontinuous, we finally have

inf
x∈X

F (x) ≤ F (y) ≤ lim inf
k→∞

F (xk) = inf
x∈X

F (x).

Hence we have equality and y is a desired minimiser.

The next theorem identifies weakly sequentially closed sets and shows that
convexity in the context of variational calculus is usually desired.

Theorem 2.18. Let (B, ‖ · ‖) be a Banach space. Let X ⊆ B be closed and
convex. Then X is sequentially weakly closed.

Proof. We proceed by contradiction and assume we find a sequence xk ∈ X
weakly converging to an x ∈ B \X. By Hahn-Banach 2.5 3) we find an L ∈ B∗,
and γ1, γ2 ∈ R, such that for all y ∈ X we have

L(x) < γ1 < γ2 < L(y).

Hence
γ2 < L(xk)→ L(x) < γ1,

which yields
γ2 ≤ γ1,

a contradiction.
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3 Sobolev Spaces and weak solutions to PDEs

In this section we introduce a notion of weak derivatives and weak solutions to
differential equations. As before due to time constraints we will not be able to
prove everything. Details can be found in e.g. [4, Chapter 7] or [2, Chapter 4].
We start with the notion of weak derivatives, which are inspired by the funda-
mental lemma of variational calculus and partial integration:

Definition 3.1. Let Ω ⊆ Rn be open, u ∈ L1
loc(Ω) and α be a multiindex. We

then call a locally integrable function v ∈ L1
loc(Ω) the αth weak derivative of u,

if for all ϕ ∈ C |α|0 (Ω) we have∫
Ω

ϕv dLn = (−1)|α|
∫

Ω

uDαϕdLn.

In this case we write
Dαu := v.

Remark 3.2.

1. Every function u ∈ Ck(Ω) possesses weak derivatives to the k-th order.
These are given by the classical derivatives of u. To show this, let α

be a multiindex with |α| ≤ k and ϕ ∈ C
|α|
0 (Ω) be arbitrary. In the

following calculation we denote with Dαu the classical derivative. By
partial integration, the compact support of ϕ and Schwarzes theorem we
obtain∫

DαuϕdLn =

∫
Dα1Dα2 . . . Dα|α|uϕdLn

=(−1)

∫
Dα2 . . . Dα|α|uDα1ϕdLn = . . . = (−1)|α|

∫
uDα|α| . . . Dα1ϕdLn

=(−1)|α|
∫

Ω

uDαϕdLn.

Hence the classical derivatives are weak derivatives as well.

2. The weak derivative is unique up to a set of Lebesgue measure zero (Ex-
ercise).

3. Weak derivatives always interchange, i.e. we always have up to a set of
Lebesgue measure zero

DαDβu = DβDαu,

if the weak derivatives exist (Exercise).

4. By ∇u we also denote the weak gradient and with Du the first weak
derivative, i.e.

Du = (D(1)u, . . . ,D(n)u) = (∇u)T .

5. With the help of some smoothing techniques, it is actually enough to

require ϕ ∈ C∞0 (Ω) instead of C
|α|
0 (Ω).
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The following example illustrates, that even if a function is smooth outside
of a set of zero measure, it may not be weakly differentiable:

Example 3.3. Let u : R → R be given by u(x) = |x|. Then u does possess a
first weak derivative, but is not twice weakly differentiable on R:
By Remark 3.2 1), the weak derivative (if it exists) should coincide with the
classical derivative, where it exists. Outside of x = 0 the function u is smooth.
Hence we make an Ansatz for the first derivative v : R→ R to be

v(x) = sign(x) =

 1, x > 0
0, x = 0
−1, x < 0.

Now let ϕ ∈ C1
0 (R). Then we have by partial integration∫

R
vϕ dx =

∫ 0

−∞
vϕ dx+

∫ ∞
0

vϕ dx

=(−1)

∫ 0

−∞
dx(x)ϕdx+

∫ ∞
0

dx(x)ϕdx

=(−1)ϕ(0) · 0− (−1)

∫ 0

−∞
xD(1)ϕdx− ϕ(0) · 0−

∫ ∞
0

xD(1)ϕdx

=−
∫ 0

−∞
|x|D(1)ϕ(x) dx−

∫ ∞
0

|x|D(1)ϕ(x) dx =

∫
R
u(x)D(1)ϕdx.

Hence v is the first weak derivative of u on R, although u is not differentiable
at zero.
Now we show, that v does not possess a weak derivative: We proceed by con-
tradiction and assume g ∈ L1

loc(R) is such a weak derivative. Choosing a
ϕ ∈ C1

0 ((0,∞)) yields∫
R
gϕ dx = −

∫
R
vD(1)ϕdx = −

∫ ∞
0

D(1)ϕdx = 0

by the Fundamental theorem of calculus. Then the fundamental lemma of
variational calculus yields

g|(0,∞) = 0, L1 − a.e..

The same argument works on (−∞, 0), hence g = 0 almost everywhere. Now
the definition of a weak derivative yields for a ϕ ∈ C1

0 (R):

0 =

∫
R
gϕ dx = −

∫
R
vD(1)ϕdx = −

(∫ 0

−∞
(−1)D(1)ϕdx+

∫ ∞
0

D(1)ϕdx

)
=− ((−1)ϕ(0) + (−1)ϕ(0)) = 2ϕ(0).

Choosing a ϕ ∈ C1
0 (R) with ϕ(0) 6= 0 results in a contradiction.

We summarize some rules for calculating weak derivatives. A proof of these
rules would involve a mollification scheme, see e.g. [4, Ch. 7.2, Thm 7.4], hence
it is out of scope of this lecture.

Theorem 3.4. Let Ω ⊆ Rn be open, furthermore let u, v ∈ L1
loc(Ω). Then
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1. If u, v are weakly differentiable w.r.t. the i-th coordinate, then we have a
product rule

D(i)(u · v) = D(i)uv + uD(i)v.

(see e.g. [4, Eq. 7.18])

2. If Ω is connected and u is weakly differentiable, i.e. D(1)u, . . .D(n)u exist,
we have

u = const ⇔ D(1)u = . . . = D(n)u = 0.

(see e.g. [4, Lemma 7.6/7.7])

3. Let f ∈ C1(R), such that f ′ ∈ L∞(R). Furthermore D(i)u should exists
weakly. Then we have a chain rule, i.e. f ◦u is weakly differentiable w.r.t.
to the i-th component and

D(i)(f ◦ u) = f ′(u)D(i)u.

(see e.g. [4, Lemma 7.5])

Now we introduce Sobolev spaces, in which we will actually implement our
direct method.

Definition 3.5. Let Ω ⊆ Rn be open. Let k ∈ N and 1 ≤ p ≤ ∞. We define
the Sobolev space W k,p(Ω) by

W k,p(Ω) = {u ∈ Lp(Ω)|Dαu exists weakly for all α with |α| ≤ k, Dαu ∈ Lp(Ω)}.

If p <∞, we equip this space with the following norm

‖u‖Wk,p(Ω) =

∫
Ω

∑
|α|≤k

|Dαu|p dx

 1
p

.

If p =∞, we equip it with

‖u‖Wk,∞(Ω) =
∑
|α|≤k

‖Dαu‖L∞(Ω)

instead.

Remark 3.6. By some standard estimates on finite dimensional spaces, we
have some freedom in the definition of ‖ · ‖Wk,p(Ω). For example

u 7→
∑
|α|≤k

‖Dαu‖Lp(Ω)

yields an equivalent norm for all p ∈ [1,∞).

Sobolev spaces have the needed functional analytic properties, cf. Theorem
2.14:

Theorem 3.7. Let Ω ⊆ Rn be open, k ∈ N and 1 ≤ p ≤ ∞. Then we have the
following:

1. W k,p(Ω) is a complete normed space, i.e. a Banach space.
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2. If furthermore 1 < p <∞, we have that W k,p(Ω) is reflexive.

3. If p = 2, then W k,2(Ω) is a Hilbert space.

Proof. Sketch: Identify W k,p(Ω) with a closed subspace of (Lp(Ω))m with a
suitable m ∈ N. Since (Lp(Ω))m is complete rsp. reflexive if 1 < p <∞ (by e.g.
the same argument as in Example 2.13, 2)), the result follows. Working out the
details is an exercise.

Since ∂Ω is a zero set if it is for example a C1-submanifold, we cannot pre-
scribe boundary values pointwise. Here we go another route via approximations:

Definition 3.8. Let Ω ⊆ Rn be open, k ∈ N, 1 ≤ p ≤ ∞. We define the Sobolev
space with zero boundary data W k,p

0 (Ω) as the closure of C∞0 (Ω) ⊆ W k,p(Ω)
w.r.t. ‖ · ‖Wk,p(Ω).

Remark 3.9.

1. By definition W k,p
0 (Ω) ⊆ W k,p(Ω) is a closed subspace, hence complete

and reflexive if 1 < p <∞.

2. If k ≥ 1, we interprete u ∈ W k,p
0 (Ω) as having zero boundary values, i.e.

we think of it as

Dαu|∂Ω = 0 for all multiindicees α with |α| ≤ k − 1,

with D0u := u.
This notion can be made precise, if ∂Ω is of e.g. Ck−1,1 regularity, see
e.g. [2, Ch. 4.3, Thm 1].

3. If we want to prescribe certain nontrivial boundary values g for a Sobolev-
function u ∈W k,p(Ω), we assume g ∈W k,p(Ω) and require

u− g ∈W k,p
0 (Ω).

Theorem 3.10 (Poincaré inequality). Let Ω ⊆ Rn be open and bounded, 1 ≤
p < ∞. Then there exists a C = C(diam(Ω), n, p) > 0, such that for all
u ∈W 1,p

0 (Ω) we have
‖u‖Lp(Ω) ≤ C‖Du‖Lp(Ω).

Proof. Sketch: By Definition 3.8 it suffices to show the estimate if u ∈ C∞0 (Ω).

Then write 1 = div(x−x0)
n , use partial integration and the Hölder inequality to

obtain the result. Working out the details is an exercise.

Remark 3.11. Iterating Theorem 3.10 yields that

‖u‖Wk,p
0 (Ω) :=

∫
Ω

∑
|α|=k

|Dαu|p dx

 1
p

is an equivalent norm to ‖ · ‖Wk,p(Ω) on W k,p
0 (Ω), if Ω ⊆ Rn is open and bound-

end.
A nontrivial constant function shows that ‖ · ‖Wk,p

0 (Ω) is not even a norm on

W k,p(Ω), although it is always a semi-norm.
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Next we will introduce the so called Sobolev embedding theorems. They
give a notion on how good a weakly differentiable function in a classical sense
is. More importantly they yield certain compactness results, which will be very
valuable for our variational calculus.
First we introduce the notion of compact operators:

Definition 3.12 (Compact operator). Let (B, ‖ · ‖B), (V, ‖ · ‖V ) be Banach
spaces and T : B → V be linear. We call T compact, if for every bounded
sequence xk ∈ B there exists a subsequence xkj and y ∈ V , such that

T (xkj )→ y w.r.t. ‖ · ‖V .

Before we can state the embedding, we have to introduce the spaces in which
the embedding will happen:

Definition 3.13 (Hölder spaces). Let Ω ⊆ Rn be open, 0 < α ≤ 1. We define
the Hölder seminorm | · |α,Ω for a function u : Ω→ Rm by

|u|α,Ω := sup
x,y∈Ω,x 6=y

|u(x)− u(y)|
|x− y|α

.

We define on Ck(Ω) for k ∈ N the Höldernorm

‖u‖Ck,α(Ω) := ‖u‖Ck(Ω) +
∑
|β|≤k

|Dβu|α,Ω

For k ∈ N0 we can then define the Hölderspaces

Ck,α(Ω) := {u ∈ Ck(Ω) : ‖u‖Ck,α(Ω) <∞},

which is a complete subspace of Ck(Ω).

Now we can state our embedding result:

Theorem 3.14 (Sobolev embedding, see e.g. [4] p. 168, Thm. 7.26). Let
Ω ⊆ Rn be open, bounded and connected. 1 ≤ p <∞, k ∈ N and

1. Let ` ∈ N, 1 ≤ q <∞ with

k − n

p
≥ `− n

q
.

Then the embedding T : W k,p
0 (Ω) → W `,q

0 (Ω) given by T (u) = u is well
defined and continuous. Moreover if k > ` and the the above inequality is
strict, i.e.

k − n

p
> `− n

q

we even have that T is compact.

2. If 0 ≤ m < k − n
p < m + 1 the operator T : W k,p

0 (Ω) → Cm,α(Ω) with

T (u) = u is well defined and continuous for all 0 < α ≤ k − n
p −m. It is

compact, if we have strict inequality, i.e. 0 < α < k − n
p −m.

If Ω is additionally a C0,1 domain, i.e. the boundary is Lipschitz, the results
above are true for W k,p(Ω) instead of W k,p

0 (Ω) as well.
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Remark: The continuity of T is equivalent to the so called Sobolev inequality:
For Ω ⊂ Rn open, bounded and connected exists a C > 0, such that for all
u ∈W k,p

0 (Ω) we have

‖u‖W `,q
0 (Ω) ≤ C‖u‖Wk,p

0 (Ω) rsp.

‖u‖Cm,α(Ω) ≤ C‖u‖Wk,p
0 (Ω).

If ∂Ω is a C0,1-domain, we have the same kind of estimates in W k,p(Ω).

Now our preparations concerning Sobolev spaces are complete and we turn
our attention to weak solutions of PDEs. We start with the Dirichlet problem
for the Laplace operator, see (1.1):{

−∆u = f, in Ω
u = 0, on ∂Ω.

(3.1)

Here Ω ⊆ Rn open, bounded and f ∈ L2(Ω). The goal is to find a formulation
of (3.1), which satisfies the following requirements:

1. In the new formulation a solution does not have to be twice differentiable.

2. If a smooth solution satisfies the reformulation, it is also a classical solution
in the sense of (3.1).

For this let ϕ ∈ C∞0 (Ω). We multiply the differential equation with ϕ and
integrate: ∫

Ω

fϕ dx = −
∫

Ω

∆uϕdx =

∫
Ω

〈∇u,∇ϕ〉 dx. (3.2)

The last step is partial integration and using that ϕ has compact support in Ω.
This now yields our weak formulation of the partial differential equation:

Definition 3.15 (weak solution). We say a u : Ω → R solves (3.1) weakly, if
u ∈W 1,2

0 (Ω) and such that for all ϕ ∈ C∞0 (Ω) we have∫
Ω

〈∇u,∇ϕ〉 dx =

∫
Ω

fϕ dx.

Remark 3.16.

1. u ∈W 1,2
0 (Ω) represents the boundary condition u|∂Ω = 0.

2. If u is smooth, the calculation in (3.2) can be made backwards and then
the fundamental lemma of variational calculus yields u to be a classical
solution of (3.1).

3. By density, one can also use ϕ ∈W 1,2
0 (Ω).

4. ϕ is usually called test function, i.e. one tests the equation with ϕ.

5. Since we can write ∆ = div∇, we say, that (3.1) is in divergence form.
If an equation is in such a form, we can employ partial integration and
define a weak formulation of the differential equation.

Our direct method now yields a solution to our new weak formulation:
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Theorem 3.17. Let Ω ⊆ Rn be bounded, open and connected. Let f ∈ L2(Ω).
Then there exists a weak solution u ∈W 1,2

0 (Ω) in the sense of Definition 3.15.

Proof. We define the Dirichlet energy (cf. (1.2)) E : W 1,2
0 (Ω)→ R by

E(v) :=
1

2

∫
Ω

|∇v|2 dx−
∫

Ω

fv dx. (3.3)

If u ∈W 1,2
0 (Ω) would be a minimiser in W 1,2

0 (Ω), i.e.

∀v ∈W 1,2
0 (Ω) E(v) ≥ E(u),

then the one dimensional function defined by ϕ ∈ C∞0 (Ω) ⊆W 1,2
0 (Ω)

t 7→ E(u+ tϕ)

has a minimum in t = 0. Furthermore by linearity of the integral, it is smooth
in t. Hence

0 =
d

dt
E(u+ tϕ)|t=0

=
d

dt

(
1

2

∫
Ω

|∇u|2 + 2t〈∇u,∇ϕ〉+ t2|∇ϕ|2 dx−
∫

Ω

f(u+ tϕ) dx

)
|t=0

=

∫
〈∇u,∇ϕ〉 − fϕ dx.

Since ϕ ∈ C∞0 (Ω) is arbitrary, u is then a weak solution to (3.1) in the sense of
Definition 3.15.
Now we need to find a minimiser: Let uk ∈W 1,2

0 (Ω) be a minimising sequence,
i.e.

inf
v∈W 1,2

0 (Ω)
E(v) = lim

k→∞
E(uk).

First we show a coercivity estimate for E:

E(uk) =
1

2

∫
Ω

|∇uk|2 dx−
∫

Ω

fuk dx

C.S.
≥ 1

2

∫
Ω

|∇uk|2 dx−

√∫
Ω

f2 dx

√∫
Ω

u2
k dx

Poincaré
≥ 1

2

∫
Ω

|∇uk|2 dx− C

√∫
Ω

f2 dx

√∫
Ω

|∇uk|2 dx

Young
≥ 1

2

∫
Ω

|∇uk|2 dx− C(ε)

∫
Ω

f2 dx− Cε
∫

Ω

|∇uk|2 dx.

Choosing ε < 1
4C yields, that there exists another constant C > 0 (independent

of k), such that (please note, that the energy has to be bounded above, since
uk is a minimising sequence)

C ≥
∫

Ω

|∇uk|2 dx.
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By Remark 3.11 we have that ‖ · ‖W 1,2
0 (Ω) is a norm on W 1,2

0 (Ω), such that that

space is a Hilbert space. Hence by Theorem 2.14 we find u ∈ W 1,2
0 (Ω) and a

weakly converging subsequence such that

uk → u weakly in W 1,2
0 (Ω).

The Sobolev embedding 3.14 yields another subsequence (please note that the
limit is the same although we work in different spaces. This can bee seen in more
general terms and is an exercise. This is also the only time the connectedness
has to be employed. By seeing, that L : W 1,2

0 (Ω)→ R, L(v) =
∫
fv dx is linear

and continuous, we would get the same final result without connectedness.),
such that

uk → u in L2(Ω).

Since norms are weakly lower semicontinuous (cf. Theorem 2.16), we then have

inf
v∈W 1,2

0 (Ω)
E(v) ≤ E(u) =

1

2

∫
Ω

|∇u|2 dx−
∫
fu dx

≤ lim inf
k→∞

∫
Ω

|∇uk|2 dx− lim
k→∞

∫
Ω

fuk dx

= lim inf
k→∞

1

2

∫
Ω

|∇uk|2 dx−
∫

Ω

fuk dx = inf
v∈W 1,2

0 (Ω)
E(v)

and u is the desired minimiser.

Remark 3.18.

1. The Riesz representation theorem for Hilbert spaces would also yield a
weak solution, but that method is not as suited for nonlinear problems.

2. One can do regularity theory and show that u is as smooth as the data,
i.e. f and ∂Ω, allows, see e.g. [4, Ch. 8.3/8.4].

3. By testing Definition 3.15 with the solution itself, we see, that it is actually
unique.
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Part II: A MinMax Method

In the second chapter we like to find sufficient conditions for an energy to just
have a critical point instead of a minimum. A critical point will be defined be-
low, but is essentially a point in which the first derivative vanishes. This critical
point, which we will construct, will be a so called saddle Point.
Moreover we will only work in Hilbert spaces. The whole theory can be ex-
panded into Banach spaces but dealing with the Dualspace is by the Rieszs
representation theorem (see Remark 2.3) more easily. The general theory can
be found in e.g. [11, Ch. 2.2-2.3]. Another source which is more appropiate for
beginners may be [1, §8.5].
Along the way we will also develop an example on how to apply this theory
(see [5, §9-11] and [11, Thm 6.2]).

4 Palais-Smale Condition

Constructing these saddle points will require good compactness properties. The
space itself will not be able to do that, hence the functional (or energy) has to
shoulder some of that burden. In essence this is what the Palais-Smale condition
embodies. We will make it precise in this section.
Throughout this expositionH will always be a real Hilbert space with scalarprod-
uct 〈·, ·〉 and norm ‖ · ‖. First we define what it means for an energy (or func-
tional) E : H → R to be differentiable:

Definition 4.1. Let H be a Hilbert space, E : H → R is called (Fréchet-)
differentiable in u ∈ H, iff there exists a bounded linear functional DE(u) ∈ H∗,
δ > 0 and a function φ : Bδ(u)→ R, such that for all v ∈ Bδ(u) we have

E(v) = E(u) +DE(u)(v − u) + φ(v) and lim
v→u

φ(v)

‖v − u‖
= 0.

Furthermore E is called continuously differentiable on H (written as E ∈
C1(H) = C1(H,R)), iff DE(u) ∈ H∗ exists for all u ∈ H and the map

u 7→ DE(u)

is continuous w.r.t. the topology of H and H∗.

Remark 4.2.

1. Rieszs representation theorem yields an ∇E(u) ∈ H, such that for all
ϕ ∈ H we have

DE(u)(ϕ) = 〈∇E(u), ϕ〉.
Be careful, in H = Rn this identification is canonical, but in infinite
dimensions, this can be quite tricky to do explicitly. For example H =
W 1,2

0 (Ω) with Ω ⊆ Rn open and bounded is a Hilbert space. Given f :=
DE(u) and v = ∇E(u) we have the following correlation for all ϕ ∈
W 1,2

0 (Ω):

f(ϕ) = 〈v, ϕ〉W 1,2
0 (Ω) =

∫
Ω

〈∇v,∇ϕ〉 dx,

i.e. we would have to solve in a weak sense

−∆v = f in Ω and v|∂Ω = 0.
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2. With 〈·, ·〉 we will denote the H-scalarproduct as well as the dual H −H∗
pairing, i.e.

〈DE(u), ϕ〉 := 〈DE(u), ϕ〉H−H∗ := DE(u)(ϕ) = 〈∇E(u), ϕ〉H =: 〈∇E(u), ϕ〉.

3. The condition limv→u
φ(v)
‖v−u‖ = 0 is often also written as o(‖v − u‖), i.e.

φ(v) = o(‖v − u‖),

if the above limit holds.

4. If E : H → R is Fréchet-differentiable, then one calculates DE(u) with
the help of the so called directional or Gâteaux -derivative: Let ϕ ∈ H be
arbitrary and |t| close to zero. Then by the definition we would have in
small o-notation

E(u+ tϕ) = E(u) + t〈DE(u), ϕ〉+ o(|t|).

Hence for t→ 0

〈DE(u), ϕ〉 = lim
t→0

(
1

t
(E(u+ tϕ)− E(u)) +

1

t
o(|t|)

)
= lim
t→0

E(u+ tϕ)− E(u)

t
=

d

dt
E(u+ tϕ)|t=0.

This opens a way to show differentiability: First one calculates d
dtE(u +

tϕ)|t=0 uses the result as a candidate for DE(u) and verifies Definition
4.1

5. This last calculation shows, that satisfying an Euler-Lagrange equation as
in section 1 means, that the Gâteaux derivative vanishes. Hence we say
that we have found a critical point.

Now we introduce our running example, which will accompany us in the
development of this theory:

Example 4.3. We consider the following Dirichlet boundary value problem

−∆u = g(·, u) in Ω, u|∂Ω = 0. (4.1)

Here g : Ω× R→ R is an x-dependent nonlinearity.
We assume the following:
Ω ⊆ Rn (n ≥ 2) is open, bounded and connected, i.e. a bounded domain. The
boundary ∂Ω is supposed to be sufficiently smooth. Furthermore

g : Ω× R→ R, (x, t) 7→ g(x, t) is continuous. (4.2)

We introduce an integrability exponent p > 0, which satisfies

1 < p <

{
∞, n = 2
n+2
n−2 , n > 2

(4.3)

There exists also a constant C > 0, such that we have the following growths
condition

|g(x, t)| ≤ C(1 + |t|p) for all (x, t) ∈ Ω× R. (4.4)
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We denote with G the primitive of g, i.e. we set

G(x, t) :=

∫ t

0

g(x, τ) dτ, (4.5)

which exists, since g is continuous. Finally for u ∈W 1,2
0 (Ω) we define the energy

E(u) =
1

2

∫
Ω

|∇u|2 dx−
∫

Ω

G(x, u(x)) dx. (4.6)

Our goal is to show, that there exists a nontrivial weak solution u 6= 0 to (4.1).

Lemma 4.4. The energy E : W 1,2
0 (Ω) → R defined in Example 4.3 is well

defined and satisfies E ∈ C1(W 1,2
0 (Ω)).

For the proof of this Lemma and other related theorems, we need the fol-
lowing facts, which are usually done in Analysis 1-4:

1. Youngs inequality:
Let x, y ≥ 0, 1 < p, q <∞ with 1

p + 1
q = 1 and ε > 0. Then

xy ≤ εxp +
(pε)1−p

q
yq.

2. Addendum to Riesz-Fischer theorem:
Let fk, f ∈ L1(µ) with µ being a measure, Furthermore let fk → f in
L1(µ). Then there exists a subsequence fkj ∈ L1(µ) such that

fkj (x)→ f(x) for µ− almost every x.

3. Vitalis convergence theorem:
Let Ω ⊆ Rn be bounded, fk, f ∈ L1(Ω) with fk → f pointwise Ln-
a.e.. Further let the sequence fk have uniformely absolutely continuous
integrals, i.e. for all ε > 0 exists a δ > 0, such that for all measurable sets
A ⊆ Ω with Ln(A) < δ we have for all k ∈ N∫

A

|fk| dx < ε.

Thenfk → f in L1(Ω), especially integral and pointwise limit interchanges,
i.e. ∫

Ω

f(x) dx = lim
k→∞

∫
Ω

fk(x) dx.

As a remark: If f ∈ L1(Ω), then f has an absolutely continuous integral,
i.e. for all ε > 0 there exists a δ > 0, such that for all measurable A ⊆ Ω
with Ln(A) < δ, we have ∫

A

|f | dx < ε.

Let us turn to the Proof of Lemma 4.4:
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Proof. 1. We start with E being well defined:
By the Sobolev embedding theorem 3.14 there exists a constant C =
C(n, p,Ω) > 0, such that for all v ∈W 1,2

0 (Ω) we have

‖v‖Lp+1(Ω) ≤ C‖v‖W 1,2
0 (Ω). (4.7)

This yields for all x ∈ Ω and u ∈W 1,2
0 (Ω)

|G(x, u(x))| ≤ max
|τ |≤|u(x)|

|g(x, τ)||u(x)|
(4.4)

≤ C(1 + |u(x)|p)|u(x)|

Young
≤ C(1 + |u(x)|p+1).

Since Ω ⊆ Rn is bounded, (4.7) yields

E(u) =
1

2

∫
Ω

|∇u|2 −G(x, u(x)) dx

to be well defined.

2. Finding a candidate for the derivative:
Let u, ϕ ∈ W 1,2

0 (Ω). Then we calculate the Gâteaux derivative (cf. Re-
mark 4.2 4)). For this we need to calculate the derivative of the integrand
and afterwards verify, that we can interchange integral and derivative:

d

dt
G(x, u(x) + tϕ(x)) = ϕ(x)g(x, u(x) + tϕ(x)).

For |t| ≤ 1 we need to find a dominating integrable function independent
of t:

|ϕ(x)g(x, u(x) + tϕ(x))| ≤ C|ϕ|(1 + |u+ tϕ|p)

≤C|ϕ(x)|(1 + |u(x)|p + |ϕ(x)|p)
Young
≤ C(1 + |u|p+1 + |ϕ|p+1).

In the second inequality we used (which is a result of Hölders inequality)

|x|+ |y| ≤ 2
p−1
p (|x|p + |y|p)

1
p . (4.8)

By (4.7) this is an integrable function. Hence by the dominated conver-
gence theorem

d

dt
E(u+ tϕ)|t=0

=
d

dt

1

2

∫
Ω

|∇(u+ tϕ)|2 dx|t=0 −
d

dt

∫
Ω

G(x, u(x) + tϕ(x)) dx|t=0

=

∫
Ω

〈∇u,∇ϕ〉 dx−
∫

Ω

d

dt
G(x, u(x) + tϕ(x))|t=0 dx

=

∫
Ω

〈∇u,∇ϕ〉 dx−
∫

Ω

ϕ(x)g(x, u(x)) dx.
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Hence if u is a critical point of E, it satisfies (4.1) weakly.
Now let us define DE(u) and check aftwerwards, that it is indeed the
(Fréchet-) derivative of E:

〈DE(u), ϕ〉 = DE(u)(ϕ) :=

∫
Ω

〈∇u,∇ϕ〉 dx−
∫

Ω

ϕ(x)g(x, u(x)) dx. (4.9)

Trivially DE(u) : W 1,2
0 (Ω)→ R is linear. Let us also show it is bounded,

i.e. continuous: By (4.4) and Hölders inequality we obtain

|〈DE(u), ϕ〉| ≤ ‖u‖W 1,2
0 (Ω)‖ϕ‖W 1,2

0 (Ω) + C

∫
Ω

(1 + |u|p)|ϕ| dx

≤‖u‖W 1,2
0 (Ω)‖ϕ‖W 1,2

0 (Ω) + C(‖ϕ‖L1(Ω) + ‖u‖pLp+1(Ω)‖ϕ‖Lp+1(Ω))

≤‖u‖W 1,2
0 (Ω)‖ϕ‖W 1,2

0 (Ω) + C(C‖ϕ‖Lp+1(Ω) + ‖u‖pLp+1(Ω)‖ϕ‖Lp+1(Ω))

(4.7)

≤ ‖ϕ‖W 1,2
0 (Ω)C

(
‖u‖W 1,2

0 (Ω) + 1 + ‖u‖p
W 1,2

0 (Ω)

)
Hence by Youngs inequality

‖DE(u)‖(W 1,2
0 (Ω))∗ ≤ C(1 + ‖u‖p

W 1,2
0 (Ω)

)

with C = C(n, p,Ω) > 0. Therefore DE(u) ∈ (W 1,2
0 (Ω))∗.

3. Check that DE(u) is indeed the Fréchet-derivative of E:
For ϕ ∈W 1,2

0 (Ω) \ {0} we define

Ψ(ϕ) :=
1

‖ϕ‖W 1,2
0 (Ω)

(E(u+ ϕ)− E(u)− 〈DE(u), ϕ〉) .

We need to show
lim

‖ϕ‖
W

1,2
0 (Ω)

→0
Ψ(ϕ) = 0.

Since the limit is supposed to be unique, it is enough to show the following:
For all sequences ϕk ∈W 1,2

0 (Ω)\{0} with ϕk → 0 w.r.t. ‖ ·‖W 1,2
0 (Ω) exists

a subsequence k`, such that Ψ(ϕk`)→ 0.
Let ϕk be such a sequence. By (4.7) and the addendum of the Riesz-
Fischer theorem we have after extracting a subsequence

ϕk → 0 in Lp+1(Ω), ϕk → 0 a.e.

Furthermore by Definition and Hölders inequality we have

|Ψ(ϕk)|

=
1

‖ϕk‖W 1,2
0 (Ω)

∣∣∣∣12
∫

Ω

|∇u|2 + 2〈∇u,∇ϕk〉+ |∇ϕk|2 − 2G(x, u(x) + ϕk(x)) dx

− 1

2

∫
Ω

|∇u|2 − 2G(x, u(x)) dx−
∫

Ω

〈∇u,∇ϕk〉+ ϕkg(x, u(x)) dx

∣∣∣∣
≤1

2
‖ϕk‖W 1,2

0 (Ω) +
1

‖ϕk‖W 1,2
0 (Ω)

∣∣∣∣ ∫
Ω

∫ 1

0

d

dt
G(x, u(x) + tϕk(x)) dt dx
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−
∫

Ω

ϕkg(x, u(x))) dx

∣∣∣∣
≤1

2
‖ϕk‖W 1,2

0 (Ω)

+
1

‖ϕ‖W 1,2
0 (Ω)

∫
Ω

∫ 1

0

|ϕk||g(x, u(x) + tϕk(x))− g(x, u(x))| dt dx
∣∣∣∣

≤1

2
‖ϕk‖W 1,2

0 (Ω)

+
‖ϕk‖Lp+1(Ω)

‖ϕk‖W 1,2
0 (Ω)

(∫
Ω

∫ 1

0

|g(x, u(x) + tϕk(x))− g(x, u(x))|
p+1
p dt dx

) p
p+1

(4.7)

≤ 1

2
‖ϕk‖W 1,2

0 (Ω) + C

(∫
Ω

∫ 1

0

|g(x, u(x) + tϕk(x))− g(x, u(x))|
p+1
p dt dx

) p
p+1

.

Now we only need to show∫
Ω

∫ 1

0

|g(x, u(x) + tϕk(x))− g(x, u(x))|
p+1
p dt dx→ 0 for k →∞.

We apply Vitalis convergence theorem:
Since ϕk → 0 a.e. and since g is continuous, we have

|g(x, u(x) + tϕk(x))− g(x, u(x))|
p+1
p → 0 pointwise a.e.

Now we need to check that the integral is uniformely absolutely continu-
ous. For that let ε > 0 A ⊆ Ω × (0, 1) be measurable with Ln+1(A) < δ
and δ > 0 to be found. The growth condition (4.4), norms in Rn are all
equivalent and (4.8) yield∫

A

|g(x, u(x) + tϕk(x))− g(x, u(x))|
p+1
p dLn+1(x, t)

≤C
∫
A

(1 + |u+ tϕk|p + |u|p)
p+1
p dLn+1

≤C
∫
A

(1 + |u+ tϕk|+ |u|)p+1
dLn+1 ≤ C

∫
A

(1 + |u|+ |ϕk|)p+1
dLn+1

≤C
∫
A

1 + |u|p+1 + |ϕk|p+1 dLn+1

Since u ∈ Lp+1(Ω) we can employ, that it is absolutely continuous w.r.t.
to the integral, i.e. we find a δu > 0, such that

C

∫
A

|u|p+1 dx ≤ ε

2

if Ln+1(A) < δu. By (4.7) we have∫
A

|ϕk|p+1 dLn+1 ≤
∫

Ω

|ϕk|p+1 dLn ≤ C‖ϕk‖p+1

W 1,2
0 (Ω)

<
ε

2
,

if k ≥ k0(ε) ∈ N by the convergence to zero inW 1,2
0 (Ω). For k = 1, . . . , k0−

1 we can employ the same argument as for u and obtain δ1, . . . , δk0−1.
Choosing

δ := min{δu, δ1, . . . , δk0−1}

25



yields

C

∫
A

1 + |u|p+1 + |ϕk|p+1 dLn+1 < ε.

Hence by Vitalis convergence theorem we have shown, that E is Fréchet-
differentiable in u ∈W 1,2

0 (Ω) arbitrary with

DE(u)(ϕ) =

∫
Ω

〈∇u,∇ϕ〉 − ϕg(x, u(x)) dx.

4. To finish the proof we have to show, that the map

W 1,2
0 (Ω) 3 u 7→ DE(u) ∈W 1,2

0 (Ω)∗

is continuous. This then finally yields E ∈ C1(W 1,2
0 (Ω)).

Again it is enough to show that for uk → u in W 1,2
0 (Ω) we find a subse-

quence k`, such that

sup
ϕ∈W 1,2

0 (Ω), ‖ϕ‖
W

1,2
0 (Ω)

≤1

|〈DE(uk`)−DE(u), ϕ〉| → 0 for `→∞.

Let uk, u be as above. Then by (4.7) we find a subsequence such that

uk → u in Lp+1(Ω) and uk → u pointwise a.e..

Cauchy-Schwartzes and Hölders inequality yield

sup
‖ϕ‖

W
1,2
0 (Ω)

≤1

|〈DE(uk`)−DE(u), ϕ〉|

= sup
‖ϕ‖

W
1,2
0 (Ω)

≤1

∣∣∣∣∫
Ω

〈∇uk −∇u,∇ϕ〉 dx−
∫

Ω

(g(x, uk(x))− g(x, u(x))ϕ(x) dx

∣∣∣∣
≤‖uk − u‖W 1,2

0 (Ω) +

(∫
Ω

|g(x, uk(x))− g(x, u(x))|
p+1
p dx

) p
p+1

.

The right term can now be handled with Vitalis theorem as above. Working
out the details is an exercise. All in all this yields, that it all converges to 0.
Therefore we finally have E ∈ C1(W 1,2

0 (Ω)).

Remark 4.5. The integrability p is choosen (see (4.3)), such that the Sobolev
embedding Theorem 3.14 yields a compact embedding (see the proof of Lemma
4.5). This is not necessary for the differentiability of E, but will prove central
for the later introduced Palais-Smale condition. The condition on p is also called
subcritical.
If p = n+2

n−2 , the case is called critical . Then the variational formulation (i.e.
weak formulation) still makes sense, but the behaviour of the existence of solu-
tions completely changes, see e.g. [3, Thm 7.31].
If p > n+2

n−2 , the variational formulation looses its value completely (this case is
called supercritical). Nevertheless other methods can be employed to examine
such problems and again yield a different behaviour, see e.g. [3, §7.11].

Next we introduce the concept of a Palais-Smale condition, which let the
energy shoulder the burden of sequential compactness:

26



Definition 4.6. Let H be a Hilbert space and E ∈ C1(H).

1. A sequence (uk)k∈N ⊆ H is called Palais-Smale sequence for E, iff

(a) limk→∞E(uk) exists in R.

(b) ‖DE(uk)‖H∗ → 0 for k →∞.

2. We say E satisfies a Palais-Smale condition, iff every Palais-Smale se-
quence for E admits a (strongly, i.e. in norm) convergent subsequence.

Example 4.7. Every coercive and continuously differentiable E : Rn → R sat-
isfies a Palais-Smale condition. This is due to the fact, that every Palais-Smale
sequence of E is bounded by the coercivity and since Rn is finite dimensional,
it admits a converging subsequence.

Now we examine our running example 4.3 in view of a Palais-Smale condi-
tion. Please note, that if the growth would be critical (see Remark 4.5), then
the following Lemma 4.8 is not correct.
Furthermore in the Lemma we will have to add a ’superlinearity’ condition at
infinity, see (4.10).

Lemma 4.8. E, g and G are the same as in example 4.3 and satisfy the same
assumptions, i.e. (4.2)-(4.6). Furthermore we require that there exists an R0 > 0
and q > 2, such that for all x ∈ Ω and all |t| ≥ R0 we have

qG(x, t) ≤ g(x, t)t. (4.10)

Then E satisfies a Palais-Smale condition.

Proof. Let uk ∈W 1,2
0 (Ω) be a Palais-Smale sequence for

E(u) =
1

2

∫
Ω

|∇u|2 −G(x, u(x)) dx.

First we show this that this sequence is bounded:
The Palais-Smale properties of the sequence yield

qE(uk)− 〈DE(uk)uk〉 ≤ C + ‖DE(uk)‖W 1,2
0 (Ω)∗‖uk‖W 1,2

0 (Ω)

≤C + o(1)‖uk‖W 1,2
0 (Ω).

On the other hand the definition of E and (4.10) yield

qE(uk)− 〈DE(uk), uk〉 =
q

2

∫
Ω

|∇uk|2 dx−
∫

Ω

qG(x, uk(x)) dx

−
∫

Ω

|∇uk|2 dx+

∫
Ω

g(x, uk(x))uk(x) dx

≥q − 2

2

∫
Ω

|∇uk|2 dx− Ln(Ω) sup
x∈Ω,t∈R

(qG(x, t)− g(x, t)t)

(4.10)

≥ q − 2

2
‖uk‖2W 1,2

0 (Ω)
−max

{
0, sup
x∈Ω,|t|≤R0

(qG(x, t)− g(x, t)t)

}
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By the growth condition G and g are bounded, if |t| ≤ R0, which yields that
the last term is a finite constant. By combining both inequality we obtain

O(1) + o(1)‖uk‖W 1,2
0 (Ω) ≥

q − 2

2
‖uk‖2W 1,2

0 (Ω)
−O(1).

By rearranging and using q > 2 we get

‖uk‖W 1,2
0 (Ω) ≤ O(1).

Here we used O(1) to denote some constant.
Theorem 2.14, the Sobolev embedding Theorem 3.14 and the addendum to the
Riesz-Fischer Theorem yield a subsequence and a u ∈W 1,2

0 (Ω) such that

uk → u weakly in W 1,2
0 (Ω), strongly in Lp+1(Ω) and pointwise a.e.

We claim, that u satisfies the following boundary problem weakly:

for all ϕ ∈W 1,2
0 (Ω) we have

∫
Ω

〈∇u,∇ϕ〉 dx =

∫
Ω

g(x, u(x))ϕ(x) dx. (4.11)

We show this claim now: Let ϕ ∈ W 1,2
0 (Ω) be arbitrary but fixated. The idea

of the proof is contained in the next calculation: Since uk is a Palais-Smale
sequence for E, we have by (4.9)

o(1) =〈DE(uk), ϕ〉 =

∫
Ω

〈∇uk,∇ϕ〉 dx−
∫

Ω

g(x, uk(x))ϕ(x) dx

=

∫
Ω

〈∇u,∇ϕ〉 − g(x, u(x))ϕdx+ o(1).

The last equality still has to be shown. For this we prove

g(·, uk(·))→ g(·, u(·)) in L
p+1
p (Ω), (4.12)

which will be a consequence of Vitalis Theorem. The Rest of the proof of (4.11)
is then Hölders inequality. The argument will be similar to the one given in
Lemma 4.5.
First we note, that by the pointwise a.e. convergence and g being continuous,
we get

|g(x, uk(x))− g(x, uk(x))|
p+1
p → 0 for almost every x ∈ Ω.

Next we show the uniform absolute continuity w.r.t. the integral:
Let ε > 0 be arbitrary. Let δ > 0 to be calulated later and let A ⊆ Ω be
measurable with Ln(A) < δ. Then the growth condition (4.4) yields

|g(x, uk(x))− g(x, u(x))|
p+1
p ≤ C(1 + |u|p + |uk|p)

p+1
p

≤C(1 + |u|p + |(uk − u) + u|p)
p+1
p

(4.8)

≤ C(1 + |u|p + |uk − u|p)
p+1
p

≤C(1 + |u|+ |uk − u|)p+1
(4.8)

≤ C(1 + |u|p+1 + |uk − u|p+1)
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The second to last inequality comes from the fact, that ‖ · ‖1 and ‖ · ‖p are
equivalent norms on Rn. Hence∫
A

|g(x, uk(x))− g(x, u(x))|
p+1
p dx ≤ C

∫
A

1 + |u|p+1 dx+ C

∫
A

|uk − u|p+1 dx

Since 1 + |u|p+1 ∈ L1(Ω) we can find a δu > 0 such that

C

∫
A

1 + |u|p+1 <
ε

2
.

Furthermore the other term converges and therefore there is a k0 ∈ N, such that
for all k > k0 we have

C

∫
A

|uk − u|p+1 dx ≤ C
∫

Ω

|uk − u|p+1 dx <
ε

2
.

For k = 1, . . . , k0 we argue in an analogue way to the u-term. Since these are
only finitely many, we find an appropriate δ > 0. This shows (4.12).
Hölders inequality now yields∫

Ω

|g(x, uk(x))−g(x, u(x))||ϕ(x)| dx ≤ ‖g(·, uk(·))−g(·, u(·))‖
L
p+1
p (Ω)

‖ϕ‖Lp+1(Ω) → 0

which now shows (4.11). Next by Hölders inequality we have∣∣∣∣∫
Ω

g(x, uk(x))uk(x) dx−
∫

Ω

g(x, u(x))u(x) dx

∣∣∣∣
≤
∫

Ω

|g(x, uk(x))− g(x, u(x))||uk(x)| dx+

∫
Ω

|g(x, u(x))||uk(x)− u(x)| dx

≤‖g(·, uk(·))− g(·, u(·))‖
L
p+1
p (Ω)

‖uk‖Lp+1(Ω) + ‖g(·, u(·))‖
L
p+1
p (Ω)

‖uk − u‖Lp+1(Ω)

(4.12)
= o(1) ·O(1) +O(1) · o(1)→ 0 for k →∞.

This in turn together with the Palais-Smale condition ‖DE(uk)‖W 1,2
0 (Ω)∗ → 0

yields

o(1) = ‖DE(uk)‖W 1,2
0 (Ω)∗‖uk‖W 1,2

0 (Ω) ≥ 〈DE(uk), uk〉

=

∫
Ω

|∇uk|2 dx−
∫

Ω

g(x, uk(x))uk(x) dx =

∫
Ω

|∇uk|2 dx−
∫

Ω

g(x, u(x)) dx+ o(1)

(4.11)
=

∫
Ω

|∇uk|2 dx−
∫

Ω

|∇u|2 dx+ o(1).

Together with the weak lower semicontinuity of a norm (see Lemma 2.16)∫
Ω

|∇u|2 dx ≥ lim sup
k→∞

∫
Ω

|∇uk|2 dx ≥ lim inf
k→∞

∫
Ω

|∇uk|2 dx ≥
∫

Ω

|∇u|2 dx,

hence

lim
k→∞

∫
Ω

|∇uk|2 dx =

∫
Ω

|∇u|2 dx.
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The weak convergence in conjunction with the norms converging to each other
yield convergence w.r.t. the norm in a Hilbert space:

‖uk − u‖2W 1,2
0 (Ω)

= ‖uk‖2W 1,2
0 (Ω)

− 2〈uk, u〉W 1,2
0 (Ω) + ‖u‖2

W 1,2
0 (Ω)

=‖uk‖2W 1,2
0 (Ω)

− 2‖u‖2
W 1,2

0 (Ω)
+ ‖u‖2

W 1,2
0 (Ω)

+ o(1)

=‖uk‖2W 1,2
0 (Ω)

− ‖u‖2
W 1,2

0 (Ω)
+ o(1) = o(1)→ 0.

All in all we have
uk → u in W 1,2

0 (Ω),

which is the desired result.

Next we define some important technical sets, in which we will look for our
saddle points:

Definition 4.9. Let H be a Hilbert space and E ∈ C1(H). Furthermore let
β ∈ R and δ, ρ > 0. We then define

Eβ :={u ∈ H| E(u) < β}
Kβ :={u ∈ H| E(u) = β and DE(u) = 0}
Nβ,δ :={u ∈ H| |E(u)− β| < δ and ‖DE(u)‖H∗ < δ}

Uβ,ρ :={v ∈ H| ∃u ∈ Kβ : ‖u− v‖H < ρ} =
⋃
u∈Kβ

Bρ(u) =: Uρ(Kβ).

Lemma 4.10. Let H be a Hilbert space and E ∈ C1(H) satisfy a Palais-Smale
condition. Then we have

1. Kβ is compact.

2. The system (Nβ,δ)δ>0 is a neighbourhood basis of Kβ, i.e. for all open
sets U ⊇ Kβ exists a δ > 0, such that

Nβ,δ ⊆ U.

3. The system (Uβ,ρ)ρ>0 is a neighbourhood basis of Kβ.

Proof. 1. Let uk ∈ Kβ be a sequence. Since E(uk) = β and DE(uk) = 0, the
sequence uk is a Palais-Smale sequence of E. Since E satisfies a Palais-
Smale condition, it has a convergent subsequence, i.e. we can assume

uk → u ∈ H.

Since E is continuous, we have E(u) = β. Since E ∈ C1(H) we fur-
thermore have, that DE(u) = 0. Hence u ∈ Kβ and therefore the set is
sequentially compact.

2. We proceed by contradiction and assume there exists an open set U ⊇ Kβ ,
such that for all δ > 0 we have Nβ,δ * U . Hence we find a sequence
uk ∈ Nβ, 1k with uk /∈ U . So

E(uk)→ β, DE(uk)→ 0 in H∗ and uk /∈ U.
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This yields uk to be a Palais-Smale sequence of E. Therefore we find a
converging subsequence uk → u ∈ H. Since E ∈ C1(H) we have

E(u) = β, DE(u) = 0 ⇒ u ∈ Kβ .

Since u ∈ Kβ ⊆ U is open, this is a contradiction.

3. We again proceed by contradiction and assume there exists an open U ⊇
Kβ , such that for all ρ > 0 we have Uβ,ρ * U . As above we find sequences
vk ∈ Uβ, 1k with vk /∈ U . Hence there are uk ∈ Kβ with ‖uk − vk‖ < 1

k .

Therefore ‖uk − vk‖ → 0. Since Kβ is compact, we find a converging sub-
sequence for uk, i.e we can assume uk → u ∈ Kβ . By triangle inequality
we then have

‖u− vk‖ ≤ ‖u− uk‖+ ‖uk − vk‖ → 0,

i.e. vk → u, which is a contradiction to u ∈ Kβ ⊆ U being open.
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5 A deformation Lemma

This section is essentially taken from [11, § II.3], see also [5, § 10].
Here we develop a useful Lemma, which allows us to deform a Hilbert space H,
such that the energy E : H → R we are examining is decreased, i.e. we look for
a one parameter homeomorphism Φ : R×H → H, such that t 7→ E(Φ(t, x)) is
decreasing for all x ∈ H. This will allow us to approach critical points, if Φ is
choosen well. Its construction will be similar to a gradient flow of E. Because
of a lack of regularity for E, we will have to construct a pseudo-gradient, which
will be Lipschitz. Then we can invoke a suitable version of Picard-Lindelöfs
theorem to obtain a flow. This is not possible with just ∇E, because ∇E is just
continuous. The Peano existence theorem (which works in finite dimensions) is
not applicable here, because it essentially builds upon the Arzelá-Ascoli, wich
only works in compact sets in H. Since we will work on open sets, this is not
enough.
Before we start though, we have to collect some useful topological results, which
we formulate in metric spaces (X, d), i.e. X a set and d : X ×X → R a metric
on X.

Definition 5.1. Let (X, d) be a metric space and (Ui)i∈I ⊆ X be a cover of X,
i.e.

⋃
i∈I Ui = X. We call (Vj)j∈J a refinement of the cover (Ui)i∈I , if (Vj)j∈J

covers X and for all j ∈ J we find an i ∈ I, such that

Vj ⊆ Ui.

Remark: A subcover is always a refinement, but the inverse is in general
false.

Definition 5.2. A cover (Ui)i∈I of a metric space (X, d) is called locally finite,
if for all x ∈ X exists an open neighbourhood U ⊆ X, such that only for finitely
many i ∈ I we have

U ∩ Ui 6= ∅.

The following theorem cannot be proven here, due to time constraints, but
it is a central tool in developing our pseudo-gradient:

Theorem 5.3 (see e.g. [6], Corollary 5.35, p. 160). Let (X, d) be a metric space.
Then it is paracompact, i.e. it is

1. Hausdorff: ∀x 6= y ∈ X exists U, V ⊆ X open with x ∈ U , y ∈ V and
U ∩ V = ∅.

2. For every open cover of X exists an open locally finite refinement.

Now we define precisely what we mean with pseudo-gradient:

Definition 5.4. Let H be a Hilbert space and E ∈ C1(H). We define the set
of regular points of E by

H̃ := {u ∈ H : ∇E(u) 6= 0}.

We call a locally Lipschitz-continuous map G : H̃ → H a pseudo-gradient of E,
if for all u ∈ H̃ we have

‖G(u)‖H < 2 min{1, ‖∇E(u)‖} (5.1)
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and

〈∇E(u), G(u)〉H >
1

2
min{1, ‖∇E(u)‖} · ‖∇E(u)‖. (5.2)

Theorem 5.5. Let H be a Hilbert space and E ∈ C1(H). Then E admits a
(locally Lipschitz continuous) pseudo-gradient G : H̃ → H.

Proof. As a preliminary we define for u ∈ H̃ = {v ∈ H| ∇E(v) 6= 0}

G̃(u) :=

{
∇E(u), if ‖∇E(u)‖ < 1
∇E(u)
‖∇E(u)‖ , if ‖∇E(u)‖ ≥ 1.

(5.3)

Let u ∈ H̃ be fixated. Since v 7→ ∇E(v) is continuous, we find an open neigh-
bourhood W (u) ⊆ H̃ of u, such that for all v ∈W (u) we have

1. ‖G̃(u)‖ < 2 min{‖∇E(v)‖, 1}

2. 〈∇E(v), G̃(u)〉 > 1
2 min{‖∇E(v)‖, 1}‖∇E(v)‖

and W (u) is bounded. Since G̃ is not necessarily locally Lipschitz, we have to
invest more work: Since

H̃ =
⋃
v∈H̃

W (v)

is an open cover, by Thm. 5.3 we find an open locally finite refinement (Wi)i∈I ,
Wi ⊆ H̃ open, hence e.g.

H̃ =
⋃
i∈I

Wi, ∀i ∈ I ∃ui ∈ H̃ such that Wi ⊆W (ui).

Now we define a locally Lipschitz continuous seperation of unity w.r.t. (Wi)i∈I :
We start with

ϕ̃i(v) := dist(v,H \Wi).

Since Wi is open, we then have

ϕ̃i(v) 6= 0 ⇔ v ∈Wi.

The triangle inequality yields for v, v′ ∈ H

dist(v,H \Wi) ≤‖v − v′‖+ dist(v′, H \Wi)

dist(v′, H \Wi) ≤‖v − v′‖+ dist(v,H \Wi),

hence
|ϕ̃i(v)− ϕ̃i(v′)| ≤ ‖v − v′‖

and ϕ̃i is Lipschitz. Since Wi ⊆ W (ui) with W (ui) bounded, ϕ̃i is bounded as
well. Since (Wi)i∈I is a locally finite cover, the following is well defined, because
the denominator only has finitely many nontrivial summands:

ϕi(v) :=
ϕ̃i(v)∑
j∈I ϕ̃j(v)

.

This yields

0 ≤ ϕi ≤ 1,
∑
i∈I

ϕi(v) = 1 for v ∈ H̃
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and
ϕi(v) 6= 0 ⇔ v ∈Wi.

Furthermore ϕi is locally Lipschitz, because at least one ϕ̃j is bounded locally
below by some constant. Here the definition of ϕ̃j is needed.
Finally we define our pseudo-gradient

H̃ 3 v 7→ G(v) :=
∑
i∈I

ϕi(v)G̃(ui).

G is locally Lipschitz, because locally the sum above is finite and ϕi is locally
Lipschitz. Let us now check the requirements of Definition 5.4: The properties
of G̃ yield for all v ∈ H̃

‖G(v)‖ ≤
∑
i∈I

ϕi(v)‖G̃(ui)‖ =
∑

i∈I, v∈Wi⊆W (ui)

ϕi(v)‖G̃(ui)‖

<2

(∑
i∈I

ϕi(v)

)
min{‖∇E(v)‖, 1} = 2 min{‖∇E(v)‖, 1},

which is (5.1). Similarly we have

〈∇E(v), G(v)〉 =
∑

i∈I, v∈W (ui)

ϕi(v)〈∇E(v), G̃(ui)〉

>
1

2

(∑
i∈I

ϕi(v)

)
min{1, ‖∇E(v)‖}‖∇E(v)‖ =

1

2
min{1, ‖∇E(v)‖}‖∇E(v)‖,

which yields (5.2) and therefore finishes the proof.

Theorem 5.6 (Deformation lemma). Let H be a Hilbert space and E ∈ C1(H)
satisfies a Palais-Smale condition. Let β ∈ R, ε0 > 0 and N a neighbourhood
of Kβ = {u ∈ H| E(u) = β, ∇E(u) = 0}. Then there exists an ε ∈ (0, ε0) and
continuous 1-parameter family of homeomorphisms (Φ(t, ·))t∈R of H, such that

a) Φ(t, u) = u, if t = 0 or ∇E(u) = 0 or |E(u)− β| ≥ ε0;

b) ∀u ∈ H the mapping t 7→ E(Φ(t, u)) is non-increasing.

c) Φ(1, Eβ+ε \N) ⊆ Eβ−ε and Φ(1, Eβ+ε) ⊆ Eβ−ε ∪N

Proof. As a reminder: Eβ := {u ∈ H| E(u) < β}, Nβ,δ = {u ∈ H| |E(u)− β| <
δ, ‖∇E(u)‖ < δ} and Uβ,ρ :=

⋃
u∈Kβ Bρ(u).

We proceed in several steps:

1. First we construct suitable neighbourhoods:
Since E satisfies a Palais-Smale condition, Lemma 4.10 is applicable.
Hence (Nβ,δ)δ>0 and (Uβ,ρ)ρ>0 are neighbourhood bases for Kβ . There-
fore we find ρ ∈ (0, 1) and δ ∈ (0, 1) such that

Kβ ⊆ Nβ,δ ⊆ Uβ,ρ ⊆ Uβ,2ρ ⊆ N.

Furthermore there are ρ∗, δ∗ ∈ (0, δ2 ) with

Nβ,δ∗ ⊆ Uβ,ρ∗ ⊆ Uβ,2ρ∗ ⊆ Nβ,δ.
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This allows us to find an η ∈ C0,1(H,R) satisfying

0 ≤ η ≤ 1, η(u) =

{
1, if u ∈ H \Nβ,δ
0, if u ∈ Nβ,δ∗ .

For example we can set

η(u) = min{1, 1

ρ∗
dist(u,Nβ,δ∗)}.

Please note, that in case of N = Kβ = ∅ the whole argument still makes
sense by setting η = 1 and the other open sets to be ∅ as well.

2. We construct a suitable vectorfield:
Let ϕ ∈ C0,1(R,R) be with

0 ≤ ϕ ≤ 1, ϕ(s) =

{
1, if |s− β| ≤ min{ δ

∗

4 ,
ε0
2 }

0, if |s− β| ≥ min{ δ
∗

2 , ε0}.

This ϕ is needed to extend the pseudo-gradient from Lemma 5.5 to the
whole of H.
Since ∇E is continuous, E is locally Lipschitz. Be careful, since H is
usually infinite dimensional, the continuity of ∇E is really required:
Let u ∈ H be fixated. Since ∇E is continuous, so is v 7→ ‖∇E(v)‖. Hence

W := (v 7→ ‖∇E(v)‖)−1(]‖∇E(u)‖ − 1, ‖∇E(u)‖+ 1[)

is open. Furthermore W is a neighbourhood of u, such that∇E is bounded
on it. Let Br(u) ⊆ W with r > 0 small enough. Integrating yields for
v ∈ Br(u)

|E(u)− E(v)| = |
∫ 1

0

d

dt
E(u+ t(v − u)) dt|

=|
∫ 1

0

〈∇E(u+ t(v − u)), v − u〉 dt| ≤
∫ 1

0

sup
w∈Br(u)

‖∇E(w)‖‖v − u‖ dt

≤ sup
w∈Br(u)

‖∇E(w)‖‖v − u‖.

Since supw∈Br(u) ‖∇E(w)‖ <∞, E is locally Lipschitz. Furthermore ϕ◦E
is locally Lipschitz as well.
Now let G : H̃ → H be a pseudo-gradient as in Def. 5.4 (H̃ = {u ∈
H| ∇E(u) 6= 0}) We define

e(u) :=

{
−η(u)ϕ(E(u))G(u), if u ∈ H̃

0, if u /∈ H̃.

Now we show, that e : H → H is well defined and locally Lipschitz:
Let u0 /∈ H̃, i.e. ∇E(u0) = 0. Since ∇E is continuous, there exists an
open neighbourhood V of u0, such that ‖∇E(u)‖ < δ∗ for all u ∈ V .
Therefore for all u ∈ V we have e(u) = 0, because

(a) Case |E(u)− β| < δ∗ yields u ∈ Nβ,δ∗ . Hence η(u) = 0 which results
in e(u) = 0.
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(b) Case |E(u) − β| ≥ δ∗ yields ϕ(E(u)) = 0, which also results in
e(u) = 0.

This yields e to be well defined and locally Lipschitz. Finally we have

‖G(u)‖ ≤ 2 min{1, ‖∇E(u)‖} ≤ 2,

which gives us
∀u ∈ H : ‖e(u)‖ ≤ 2. (5.4)

3. Here we integrate the vectorfield from the last step to obtain a correspond-
ing flow, which will yield the desired properties:
We consider the following initial value problem:

∂

dt
Φ(t, u) = e(Φ(t, u)), Φ(0, u) = u. (5.5)

The arguments for the Picard-Lindelöf theorem also apply here. Beware
though that one would need to introduce integration with Hilbert space
valued integrands to make it precise. This can be done similarly to the
measure and integration theory in Rn, but due to time constraints it is out
of the scope of this lecture. Details can be found in [10], more precisely
in [10, Thm 4.2.6] for the Hilbert space variant of Picard-Lindelöf. By
(5.4) we have for a solution of (5.5)

‖∂Φ

∂t
(t, u)‖ ≤ 2 ⇒ ‖Φ(t, u)− Φ(t′, u)‖ ≤ 2|t− t′|

for all t, t′ in the existence domain of Φ(·, u). Hence there is no blow-up
and we have together with [10, Thm 4.2.6] a unique, and continuous

Φ : R×H → H

satisfying (5.5). The continuity w.r.t. u can be shown via Gronwalls
Lemma and the proof is mostly analogue to the finite dimensional case.
Hence we skip that part as well.
The uniqueness also yields as in the finite dimensional case

Φ(t,Φ(s, u))) = Φ(s+ t, u),

and therefore
Φ(t, ·)−1 = Φ(−t, ·).

Hence Φ(t, ·) : H → H is a homeomorphism for all t ∈ R.

4. Here we check the desired properties:

(a) Since (5.5) has a unique solution, we have Φ(t, u) = u, if e.g. t = 0 or
if e.g. ∇E(u) = 0 In the latter case we have e(u) = 0 and therefore
t 7→ u is a solution to (5.5).
Furthermore if |E(u)−β| ≥ ε0, then ϕ(E(u)) = 0 and hence e(u) = 0.
Again t 7→ u then solves (5.5). Uniqueness then yields the first point.
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(b) We assume (t, u) ∈ R×H to satisfy

∇E(Φ(t, u)) 6= 0.

Then

∂

∂t
E(Φ(t, u)) = 〈∇E(Φ(t, u)),

∂

∂t
Φ(t, u)〉

=− η(Φ(t, u))ϕ(E(Φ(t, u)))〈∇E(Φ(t, u)), G(Φ(t, u))〉 ≤ 0,

because the scalar product is by Def. 5.4 nonnegative and the other
terms are nonnegative as well.
Finally if t0 ∈ R is with ∇E(Φ(t0, u)) = 0, then from than point
onwards the constant mapping t 7→ Φ(t0, u) solves (5.5) with initial
value Φ(t0, u). By the uniqueness property we therefore have for all
t

Φ(t, u) = Φ(t0, u)

and therefore the energy is non-increasing.

(c) We choose

0 < ε < min

{
ε0

2
,
δ∗

4
,
ρδ2

8

}
. (5.6)

Let u ∈ H satisfy

u ∈ Eβ+ε, i.e. E(u) < β + ε

and
u /∈ N or Φ(1, u) /∈ N.

Then we have to show, that

Φ(1, u) ∈ Eβ−ε, i.e. E(Φ(1, u)) < β − ε.

We proceed by contradiction and assume

E(Φ(1, u)) ≥ β − ε.

Since t 7→ E(Φ(t, u)) is nondecreasing and by the assumptions on u,
we have

∀t ∈ [0, 1] |E(Φ(t, u))− β| ≤ ε < min

{
ε0

2
,
δ∗

2

}
.

Hence we have ϕ(Φ(t, u)) = 1 for these t. We define

S := {t ∈ [0, 1]| Φ(t, u) /∈ Nβ,δ}.

For all t ∈ S we have

‖∇E(Φ(t, u))‖ ≥ δ.
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By a distinction of cases (and showing in each case, that the inte-
grands are nonnegativ), whether the gradient of E is zero or not, we
get by chain rule

E(Φ(1, u)) = E(Φ(0, u)) +

∫ 1

0

∂

∂t
E(Φ(t, u)) dt

=E(u) +

∫ 1

0

〈∇E(Φ(t, u)), ∂tΦ(t, u)〉 dt

≤E(u) +

∫
S

〈∇E(Φ(t, u)), ∂tΦ(t, u)〉 dt

=E(u)−
∫
S

η(Φ(t, u))〈∇E(Φ(t, u)), G(Φ(t, u))〉 dt

<β + ε− 1

2

∫
S

η(Φ(t, u)) min{1, ‖∇E(Φ(t, u))‖}‖∇E(Φ(t, u))‖ dt.

Since for all t ∈ S we have

Φ(t, u) /∈ Nβ,δ ⇒ η(Φ(t, u)) = 1.

Furthermore S 6= ∅: Since Φ(t0, u) /∈ N for t0 = 0 or t0 = 1 we have

Φ(t0, u) /∈ Nβ,δ ⊂ N.

Therefore t0 ∈ S. Hence we have S 6= ∅.
Since for all t ∈ S we have ‖∇E(Φ(t, u)‖ ≥ δ, we get

E(Φ(1, u))

<β + ε− 1

2

∫
S

η(Φ(t, u)) min{1, ‖∇E(Φ(t, u))‖}‖∇E(Φ(t, u))‖ dt

≤β + ε− δ2

2
L1(S) = β + ε− δ2

2
L1({t ∈ [0, 1]| Φ(t, u) /∈ Nβ,δ}).

Since t0 ∈ {0, 1} with Φ(t0, u) /∈ N ⊇ Nβ,δ and Nβ,δ ⊆ Uβ,ρ ⊆
Uβ,2ρ ⊆ N the map t 7→ Φ(t, u) has to be outside of Nβ,δ for at least
a length of ρ. By ‖e(·)‖ ≤ 2 we have

L1({t ∈ [0, 1]| Φ(t, u) /∈ Nβ,ε} ≥
ρ

2
.

Hence

E(Φ(1, u)) < β + ε− 1

2
δ2 ρ

2
= β + ε− δ2ρ

4
< β + ε− 2ε = β − ε,

which is a contradiction.

Remark 5.7.

1. Kβ = ∅ is explicitly allowed. In this case N = ∅ can be choosen. The
resulting homeomorphism then yields

Φ(1, Eβ+ε) ⊆ Eβ−ε,

which will be central in the proof of Mountain-Pass-Lemma 6.1 in the next
section.

2. Φ is also called pseudo-gradient flow of E.
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6 Mountain-Pass Lemma (by Ambrosetti-Rabinowitz)

Theorem 6.1 (Mountain-Pass Lemma). Let H be a Hilbert space and E ∈
C1(H) satisfies a Palais-Smale condition. Furthermore we assume

1. E(0) = 0;

2. ∃α, ρ > 0 such that ‖u‖ = ρ ⇒ E(u) ≥ α,

3. ∃u1 ∈ H with ‖u1‖ > ρ satisfying E(u1) < α.

We denote
P := {p ∈ C0([0, 1], H)| p(0) = 0, p(1) = u1}.

Then
β := inf

p∈P
sup

u∈p([0,1])

E(u)

is a critical value of E. Furthemore E admits a critical point ucrit ∈ H with
E(ucrit) = β ≥ α > 0 and ∇E(ucrit) = 0.

Proof. If we show

Kβ = {u ∈ H| E(u) = β, ∇E(u) = 0} 6= ∅

we are done. Hence we proceed by contradication and assume

Kβ = {u ∈ H| E(u) = β, ∇E(u) = 0} = ∅.

We set
ε0 := min{α, α− E(u1)} > 0.

We are therefore allowed to choose N = ∅ in Theorem 5.6 and obtain a pseudo-
gradient flow

Φ : R×H → H

with Φ being continuous and

Φ(1, u) = u, if |E(u)− β| ≥ ε0.

Furthermore there exists an ε ∈ (0, ε0) with

Φ(1, Eβ+ε) ⊆ Eβ−ε.

By the definition of β we find a path p0 ∈ P, such that for all s ∈ [0, 1] we have

E(p0(s)) < β + ε.

We define a new path p̃ by

p̃(s) := Φ(1, p0(s)).

p̃ ∈ P because

|E(p0(0))− β| = |E(0)− β| = β ≥ α ≥ ε0
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and

|E(p0(1))− β| = |E(u1)− β| = β − E(u1) ≥ α− E(u1) ≥ ε0 > 0.

Hence the properties of Φ yield p̃(0) = 0 and p̃(1) = u1, which in turn gives
us p̃ ∈ P. Furthermore we have for all s ∈ [0, 1], that p0(s) ∈ Eβ+ε, hence the
pseudo-gradient flow yields for all s ∈ [0, 1]

p̃(s) = Φ(1, p0(s)) ∈ Eβ−ε.

Hence
β = inf

p∈P
sup

u∈p([0,1])

E(u) ≤ sup
u∈p̃([0,1])

E(u) < β − ε,

which is a contradiction. So Kβ 6= ∅ and the result follows.

Now we return to example 4.3, i.e. we like to find a weak solution u 6= 0 of{
−∆u = g(·, u), in Ω

u = 0, on ∂Ω
(6.1)

The final theorem is as follows:

Theorem 6.2. Let Ω ⊆ Rn be a bounded domain, i.e. open, connected and
bounded, n ≥ 2. The nonlinearity g : Ω×R→ R shall be continuous and satisfy

1. There exists a p > 1 with

p <

{
∞, n = 2
n+2
n−2 , n > 2

and a constant C > 0, such that for all x ∈ Ω, t ∈ R we have subcritical
growth, i.e.

|g(t, x)| ≤ C(1 + |t|p)

2. We assume g(x, 0) = 0. This yields u = 0 to be a weak solution to (6.1).

3. We define G(x, t) :=
∫ t

0
g(x, τ) dτ . We assume there exists a q > 2 and

R0 > 0 such that for all x ∈ Ω and t ∈ R we have

|t| ≥ R0 ⇒ 0 < qG(x, t) ≤ tg(x, t),

i.e. a superlinearity at ∞.

4. ∀ε > 0 exists a δ > 0 such that for all t ∈ R and all x ∈ Ω we have

0 < |t| < δ ⇒ g(x, t)

t
≤ ε,

i.e. a superlinearity at zero.

If we assume the above, there exists a weak nontrivial solution u ∈W 1,2
0 (Ω)\{0}

to (6.1).
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Proof. The lemmata 4.4 and 4.8 yield

E : W 1,2
0 (Ω)→ R, v 7→ 1

2

∫
Ω

|∇u|2 dx−
∫

Ω

G(x, u(x)) dx

to be in C1(W 1,2
0 (Ω)) and satisfy a Palais-Smale condition. Now we have to

check the assumptions for the Mountain-Pass lemma 6.1:

1. E(0) = 0 is readily given, because G(x, 0) =
∫ 0

0
g(x, τ) dτ = 0.

2. We combine the subcritical growth condition with the superlinearity at
zero and obtain that for all ε > 0 there exists a C(ε) > 0 such that for all
t ∈ R and x ∈ Ω we have

sgn(t)g(x, t) ≤ ε|t|+ C(ε)(p+ 1)|t|p.

(The first term is for |t| ≤ δ, δ from the superlinearity comndition, and the

second term comes from the subcritical growth, i.e. writing 1 = δ
δ ≤

|t|
δ

to estimate 1 + |t|p ≤ C(δ)|t|p). This yields

G(x, t) ≤ ε

2
t2 + C(ε)|t|p+1.

We define the frist eigenvalue of the Laplace operator

λ1 := inf
v∈W 1,2

0 (Ω)\{0}

‖v‖W 1,2
0 (Ω)

‖v‖L2(Ω)
.

By the direct method one can show that this infimum is actually attained
and therefore a minimum. Moreover λ1 > 0. This is left as an exercise.
All in all we estimate for v ∈W 1,2

0 (Ω) by Sobolev embedding 3.14

E(v) ≥ 1

2

∫
Ω

|∇v|2 dx− ε

2

∫
Ω

v2 dx− C(ε)

∫
Ω

|v|p+1 dx

≥1

2
(1− ε

λ2
1

)

∫
Ω

|∇v|2 dx− C(ε,Ω)‖v‖p+1

W 1,2
0 (Ω)

=

(
1

2
− ε

2λ2
1

− C(ε,Ω)‖v‖p−1

W 1,2
0 (Ω)

)
‖v‖2

W 1,2
0 (Ω)

.

We choose ε > 0 in such a way, that ε
2λ2

1
= 1

4 . Then we choose ρ = ρ(λ1) >

0 suitably, i.e. small enough, such that

inf
‖v‖

W
1,2
0 (Ω)

=ρ
E(v) ≥

(
1

4
− C(λ1,Ω)ρp−1

)
ρ2 =: α > 0.

This yields the second assumption of the Mountain-Pass lemma.

3. Now we need to show, that there exists a u1 ∈W 1,2
0 (Ω) with

‖u1‖W 1,2
0 (Ω) > ρ, E(u1) < α :

The superlinearity at ∞ yields for |t| ≥ R0

t|t|q ∂
∂t

(
|t|−qG(x, t)

)
= −qt|t|q|t|−q−2tG(x, t) + t|t|q|t|−qg(x, t)

=− qG(x, t) + tg(x, t) ≥ 0.
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Hence t ≥ R0 gives us

∂

∂t

(
|t|−qG(x, t)

)
≥ 0,

which in turn yields monotinicity and therefore

|t|−qG(x, t) ≥ R−q0 G(x,R0).

If t ≤ −R0 we similarly have

∂

∂t

(
|t|−qG(x, t)

)
≤ 0 ⇒ |t|−qG(x, t) ≥ R−q0 G(x,−R0).

All in all we have for |t| ≥ R0

G(x, t) ≥ γ0(x)|t|q

with
γ0(x) := R−q0 min{G(x,R0), G(x,−R0)}.

The superlinearity condition further yields

∀x ∈ Ω G(x,R0) > 0 and G(x,−R0) > 0, i.e. γ0(x) > 0.

The subcritical growth condition implies that γ0(·) is bounded.
Let u0 ∈ C∞0 (Ω) ⊆ W 1,2

0 (Ω) with u0 6= 0. Further let σ ≥ σ0 with σ0 to
be suitably given later. We then have∫

Ω

G(x, σu0(x)) dx =

∫
{x∈Ω| σ|u0(x)|≥R0}

G(x, σu0(x)) dx

+

∫
{x∈Ω| σ|u0(x)|<R0}

G(x, σu0(x)) dx

≥
∫
{x∈Ω| σ|u0(x)|≥R0}

γ0(x)|σu0(x)|q dx− Ln(Ω) sup
x∈Ω,|t|≤R0

|G(x, t)|

≥σq
∫
{x∈Ω| σ0|u0(x)|≥R0}

γ0(x)|u0(x)|q dx− Ln(Ω) sup
x∈Ω,|t|≤R0

|G(x, t)|

=:σqC0(u0)− Ln(Ω) sup
x∈Ω,|t|≤R0

|G(x, t)|

Since γ0(·) > 0 we have if σ0 > 0 is big enough, that C0(u0) > 0. For
σ ≥ σ0 we then have

E(σu0) =
1

2

∫
Ω

|∇(σu0)|2 dx−
∫

Ω

G(x, σu0(x)) dx

≤σ
2

2

∫
Ω

|∇u0|2 dx− σqC0(u0) + Ln(Ω) sup
x∈Ω,|t|≤R0

|G(x, t)|.

Since q > 2 we therefore have

lim
σ→∞

E(σu0) = −∞.

Hence we can choose σ ≥ σ0 to be so big, that

‖σu0‖W 1,2
0 (Ω) > ρ and E(σu0) < 0 < α.

Setting u1 := σu0 finishes this part of the proof.
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All in all the Mountain-Pass lemma 6.1 is now applicable and it yields a critical
point ucrit ∈ W 1,2

0 (Ω) for E with E(ucrit) > 0, i.e. DE(ucrit) = 0. Since
E(0) = 0 we therefore have ucrit 6= 0 and the result follows.

Remark: By a distinction of cases, i.e. t > 0 or t < 0, one can show, that
assumption 4 implies assumption 2 in Thm. 6.2
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Appendix

A BV-functions, minimising in a nonreflexive
Banachspace

In case we have some time left at the end of the semester, we will talk about this
chapter. We will introduce so called functions of bounded variation (in short
BV-functions) and their corresponding Banachspace. In a sense the space of all
BV-functions on an open set Ω ⊆ Rn is the weak closure of W 1,1(Ω). This will
allow us to define the so called Perimeter of a set, which is a generalisation of
the area of the boundary of said set. Sets having such a perimeter are called
Caccioppoli sets.
This is a wide field and a possible gateway to so called geometric measure theory.
Good introductions are [2] and [7].
Afterwards we will give a geometric application, see [11, Thm. 1.4] (or [5, §2]).

Definition A.1. Let Ω ⊆ Rn open and u ∈ L1
loc(Ω). Then we define the total

variation of u as∫
Ω

|Du| := sup

{∫
Ω

udivϕdx, ϕ ∈ C1
0 (Ω,Rn), |ϕ| ≤ 1

}
.

We say u ∈ L1
loc(Ω) is of bounded variation, if

∫
Ω
|Du| <∞.

Remark: Be careful, unlike the W 1,1-Norm, the total variation is in general
not an integral w.r.t. Lebesgue measure. Hence there is no dx in the notation
and the Symbol

∫
Ω
|Du| has to be interpreted as one Symbol.

Remark A.2. If u ∈ L1
loc(Ω) is of bounded variation, i.e

∫
Ω
|Du| <∞, we find

a vector valued Radon measure, which can be interpreted as the distributional
derivative of u:
We define L : C1

0 (Ω,Rn)→ R as

L(ϕ) =

∫
Ω

udivϕdx.

By definition of the total variation, we get

|L(ϕ)| ≤
∫

Ω

|Du|‖ϕ‖C0(Ω).

Since C1
0 (Ω) ⊆ C0

0 (Ω) is dense w.r.t. to the supremum norm, we can extend L
continuously to C0

0 (Ω), because L is linear.
Then the Riesz representation theorem for Radon measures (see e.g. [7, Thm
4.7, Ex. 4.19]) yields a Radon measure µ on Ω and a ν ∈ L1(µ,Rn) with |ν| = 1
µ-a.e. such that for all ϕ ∈ C0

0 (Ω,Rn) we have

L(ϕ) = −
∫

Ω

〈ϕ, ν〉 dµ.

The pair (ν, µ) is called a vector valued Radon measure. All in all this yields
for ϕ ∈ C1

0 (Ω,Rn) ∫
Ω

udivϕdx = L(ϕ) = −
∫
〈ν, ϕ〉 dµ.
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Hence we interpret (ν, µ) as a measured valued derivative of u. Therefore we
define the following notation

Du := (ν, µ), |Du| := µ,
Du

|Du|
:= ν,

∫
〈ϕ,Du〉 :=

∫
〈ϕ, ν〉 dµ.

Hence we have the following kind of partial integration∫
Ω

udivϕdx = −
∫
〈ϕ,Du〉 = −

∫
Ω

〈
ϕ,

Du

|Du|

〉
d|Du|.

Definition A.3. Let Ω ⊆ Rn be open. We define the space of all functions of
bounded variation or short BV-space as

BV (Ω) :=

{
u ∈ L1(Ω)|

∫
Ω

|Du| <∞
}

and equip it with the BV-norm

‖u‖BV (Ω) := ‖u‖L1(Ω) +

∫
Ω

|Du|.

Theorem A.4. Let Ω ⊆ Rn be open. Then BV (Ω) is a Banachspace, i.e.
‖ · ‖BV (Ω) is a norm and BV (Ω) is complete.

Proof. The triangle inequality of u 7→
∫
|Du| follows by the subadditivity of the

supremum, hence BV (Ω) is a normed space.
Further it is complete: Let um ∈ BV (Ω) be a Cauchy sequence. Since ‖·‖L1(Ω) ≤
‖·‖BV (Ω) it is also a Cauchy sequence in L1(Ω). Hence there exists a u ∈ L1(Ω),
such that

um → u in L1(Ω).

Let ϕ ∈ C1
0 (Ω,Rn), ε > 0. Then we find an m0 ∈ N, such that for all `,m ≥ m0

we have
ε ≥ ‖u` − um‖BV (Ω).

Therefore

ε ≥
∫

Ω

(um − u`) div(ϕ) dx→
∫

Ω

(um − u) div(ϕ) dx for `→∞,

by Hölders inequality. Since ϕ is an arbitrary admissible function, we therefore
have ∫

Ω

|D(um − u)| ≤ ε

for m ∈ N big enough. Therefore

um → u in BV (Ω)

and u ∈ BV (Ω).

The following Example A.5 shows, that W 1,1(Ω) is a closed subspace of
BV (Ω).
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Example A.5. Let v ∈ C1(Ω) ∩W 1,1(Ω). Then∫
Ω

|∇v| dx =

∫
Ω

|Dv|. (A.1)

By the definition of
∫
|Dv| and partial integration we get∫

Ω

|Dv| = sup

{∫
Ω

v divϕdx, ϕ ∈ C1
0 (Ω,Rn), |ϕ| ≤ 1

}
= sup

{
−
∫

Ω

〈∇v, ϕ〉 dx, ϕ ∈ C1
0 (Ω,Rn), |ϕ| ≤ 1

}
≤ sup

{∫
Ω

|∇v| dx sup
Ω
|ϕ| ϕ ∈ C1

0 (Ω,Rn), |ϕ| ≤ 1

}
≤
∫

Ω

|∇v| dx.

Hence v is of bounded variation. The other estimate is as follows: Let νε ∈
C∞0 (Ω, [0, 1]) with νε ↑ 1 locally uniformely. We set

ϕε(x) := − ∇v√
ε2 + |∇v|2

νε(x).

Then ϕε ∈ C0
0 (Ω) and |ϕε| ≤ 1. By the above calculation and Remark A.2 it is

an admissible function for the total variation. Hence∫
Ω

|Dv| ≥ −
∫

Ω

∇vϕε dx =

∫
Ω

|∇v|2√
ε2 + |∇v|2

νε

→
∫

Ω

|∇v| dx for ε ↓ 0,

by Beppo-Levis monotone convergence theorem and

|∇v|2√
ε2 + |∇v|2

νε ↑ |∇v| pointwise and monoton.

Therefore ∫
Ω

|Dv| ≥
∫

Ω

|∇v| dx

and the result follows.
Now for u ∈W 1,1(Ω):
If we assume Ω ⊂⊂ Rn, we obtain by [4, Thm. 7.9] that C∞(Ω) ∩W 1,1(Ω) ⊆
W 1,1(Ω) is dense w.r.t. the W 1,1-Norm. Hence u can be approximated by
um ∈ C∞(Ω) ∩W 1,1(Ω) in the W 1,1-Norm. (A.1) yields

‖u‖BV (Ω) ← ‖um‖BV (Ω) = ‖um‖W 1,1(Ω) → ‖u‖W 1,1(Ω),

since the BV -Norm is continuous w.r.t. the W 1,1-Norm:∫
Ω

|D(u− um)| = sup

{∫
Ω

(u− um) div(ϕ) dx| ϕ ∈ C1
0 (Ω,Rn), |ϕ| ≤ 1

}
= sup

{
−
∫

Ω

∇(u− um) · ϕdx| ϕ ∈ C1
0 (Ω,Rn), |ϕ| ≤ 1

}
≤
∫

Ω

|∇(um − u)| dx→ 0.
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Hence all in all we have

‖u‖BV (Ω) = ‖u‖W 1,1(Ω). (A.2)

Next we give an example, that shows, that W 1,1(Ω) is in general not the
whole BV (Ω). The example is in essence an indicator function, i.e. a function
with a ’jump’ (cf. Example 3.3)

Example A.6. Let ∅ 6= E ⊆ Rn be bounded, open, connected (i.e. a bounded
domain) and with C2-boundary. Then

area(∂E) =

∫
Rn
|DχE |.

with

χE(x) =

{
1, x ∈ E
0, x /∈ E.

Furthermore χE /∈W 1,1(Rn).

Proof. First we show the equality for the area: Let ϕ ∈ C∞0 (Rn,Rn) with
|ϕ| ≤ 1. Let νE : ∂E → ∂B1(0) be the outer unit normal of E. Then partial
integration yields∫

Rn
χE divϕdx =

∫
E

divϕdx =

∫
∂E

〈ϕ, νE〉 darea∂E

≤
∫
∂E

|ϕ||νE | darea∂E = area(∂E).

By the definition of the supremum we therefore have∫
Rn
|DχE | ≤ area(∂E).

Let us turn our attention to the other inequality. Since the boundary of E is in
C2 and E is bounded, we find a function ψ ∈ C1

0 (Rn,Rn) with |ψ| ≤ 1 and

ψ|∂E = νE .

The idea to construct such a ψ is to work locally around ∂E and extend the
outer normal νE constantly in a small neigbourhood after straightening the
boundary. Then one multiplies it with a cut off function and uses a partition of
unity to define a global ψ. For the sake of time we will not work out the details
here.
Then ∫

Rn
χE divψ dx =

∫
∂E

〈νE , ψ〉 darea∂E =

∫
∂E

darea∂E = area(∂E).

Now we show, that χE /∈ W 1,1(Rn): We proceed by contradiction and assume
χE ∈ W 1,1(Rn). Therefore ∇χE ∈ L1(Rn) should exist weakly. Let ϕ ∈
C1

0 (Rn \ ∂E,Rn). Hence we have by Gauss’s Theorem

−
∫
∇χEϕdx =

∫
χE divϕdx =

∫
E

divϕdx =

∫
∂E

νE · ϕdarea∂E = 0.
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Therefore ∇χE = 0 almost everywhere, since Ln(∂E) = 0, because it is in C2.
If we choose ϕ ∈ C∞0 (Rn,Rn), we therefore get

0 = −
∫
Rn
∇χE · ϕdx =

∫
E

div(ϕ) dx =

∫
∂E

〈ϕ, νE〉 darea∂E .

In general the last term is not zero (see e.g. construction for ψ above), which
results in a contradication.

Remark: With a small modification of the proof, one can also show

area(∂E ∩ Ω) =

∫
Ω

|DχE |

for Ω ⊆ Rn open and bounded (Homework).
This example motivates the following definition, which generalises the notion

of area measure of a boundary:

Definition A.7. Let Ω ⊆ R be open and E ⊆ Rn measurable. We define the
(relative) Perimeter of E in Ω by

P (E,Ω) :=

∫
Ω

|DχE | ∈ [0,∞].

If Ω = Rn, we set

P (E) :=

∫
|DχE |.

If P (E) <∞, E is called a Caccioppoli set.

We will apply the direct method later. Hence we need some kind of weak
lower semicontinuity for the BV-seminorm. The following will play that role:

Theorem A.8. Let Ω ⊂ Rn be open, vk ∈ BV (Ω) with

vk → v in L1(Ω).

Then ∫
Ω

|Dv| ≤ lim inf
k→∞

∫
Ω

|Dvk|.

This also yields if vk → v in L1(Ω) and ‖vk‖BV (Ω) ≤ C, then v ∈ BV (Ω).

Proof. W.l.o.g. we assume M := lim infk→∞
∫

Ω
|Dvk| < ∞. Let ε > 0 be

arbitrary. The definition of lim inf yields a subsequence k`, such that∫
Ω

|Dvk` | ≤M + ε.

Let ϕ ∈ C1
0 (Ω,Rn) with |ϕ| ≤ 1 arbitrary. Then by Hölders inequality

M + ε ≥
∫

Ω

vk` divϕdx→
∫

Ω

v divϕdx for `→∞.

Hence ∫
Ω

|Dv| ≤M + ε = lim inf
k→∞

∫
Ω

|Dvk|+ ε.

Since ε > 0 is arbitrary, the result follows.
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Now we present a compactness result. The proof would involve a smoothing
procedure, for which we do not have time. Hence we will not do a proof here.

Theorem A.9. Let Ω ⊆ Rn be a bounded domain with C0,1-regularity, i.e. a
Lipschitz boundary. Furthermore let vk ∈ BV (Ω) and C > 0 such that

‖vk‖BV (Ω) =

∫
Ω

|Dvk|+ ‖vk‖L1(Ω) ≤ C,

i.e. a bounded sequence. Then there exists a subsequence vk` and a v ∈ BV (Ω),
such that

vk` → v in L1(Ω).

Proof. See [2, §5.2.3] for a proof.

Now we apply our theory for BV-functions to a geometric problem. This
has been taken out of [11, Chapter 1, Thm 1.4].

Theorem A.10 (Minimal bisecting hypersurfaces). Let Ω ⊆ Rn be a bounded
domain with Lipschitz boundary. We define the set of all bisecting sets of Ω

M :=

{
E ⊆ Ω measurable| Ln(E) = Ln(Ω \ E) =

1

2
Ln(Ω)

}
.

Then M 6= ∅ and there exists a G ∈ M minimising the perimeter, i.e. for all
E ∈M we have

P (G,Ω) ≤ P (E,Ω).

Proof. We start by showing M 6= ∅:
Since Ω is bounded, we find an R > 0, such that

Ω ⊆ ]−R,R[n=: Ẽ.

Then we define
Ẽt := Ẽ + te1

and
f(t) := Ln(Ẽt ∩ Ω).

f is continuous: Let tk → t. Since Ẽt ∩ Ω has a Lipschitz boundary, we have

Ln(∂(Ẽt ∩ Ω)) = 0.

If x /∈ ∂(Ẽt ∩ Ω), then there is a small open neighbourhood U of x, such that
U ∩ ∂(Ẽt ∩ Ω) = ∅. Hence there exists a k0 ∈ N, such that we either have

x ∈ Ẽtk ∩ Ω for all k ≥ k0 or x /∈ Ẽtk ∩ Ω for all k ≥ k0.

Therefore
χẼtk∩Ω → χẼt∩Ω pointwise a.e.

Since Ω is bounded, the dominated convergence theorem yields the continuity
of f .
Now for t = 0 we have f(0) = Ln(Ω) > 0. Since Ω is bounded, there is a t0 ∈ R,
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such that Ẽt0 ∩Ω = ∅. Hence f(t0) = 0. The intermediate value theorem yields
a t̃ such that

Ln(Ẽt̃ ∩ Ω) =
1

2
Ln(Ω).

The additivity of the measure now yields

Ẽt̃ ∩ Ω ∈M.

Now we turn to the minimisation of the perimeter. We follow the same spirit
of proof as in Theorem 2.17:
Let Ek ∈M be a minimising sequence, i.e.

lim
k→∞

P (Ek,Ω) = inf
E∈M

P (E,Ω).

If the infimum is ∞, Ẽt̃ ∩ Ω will be a minimiser. If it is finite, there exists a
constant C > 0, such that (for k large, i.e. choosing a subsequence)

‖χEk‖BV (Ω) = Ln(Ek) + P (Ek,Ω) ≤ C.

By Theorem A.9 we find a u ∈ BV (Ω) and a subsequence, such that after
relabeling we have

χEk → u in L1(Ω).

Then Theorem A.8 yields∫
Ω

|Du| ≤ lim inf
k→∞

∫
Ω

|DχEk | = lim inf
k→∞

P (Ek,Ω).

By the addendum to the Riesz-Fischer theorem we can extract another subse-
quence and obtain

χEk → u pointwise a.e.

Since χEk(x) ∈ {0, 1} we have a.e.

u(x) = χG(x)

for some measurable set G ⊆ Ω. The L1-convergence yields

1

2
Ln(Ω) = Ln(Ek) =

∫
Ω

χEk dx→
∫

Ω

u dx =

∫
Ω

χG dx = Ln(G).

Therefore G ∈M . Then the lower semicontinuity property yields

inf
E∈M

P (E,Ω) ≤ P (G,Ω) ≤ lim inf
k→∞

P (Ek,Ω) = inf
E∈M

P (E,Ω).

Hence G is a desired minimiser.
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