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Abstract. We consider a random walk in an i.i.d. random environment on Z that is
perturbed by cookies of strength 1. The number of cookies per site is assumed to be
i.i.d. Results on the speed of the random walk are obtained.
Our main tool is the correspondence in certain cases between the random walk and a
branching process in a random environment with migration.

1. Introduction

In [5] and [6] the author studied a left-transient (respectively recurrent) one-dimensional
random walk in a random environment that is perturbed by cookies of maximal strength
and established criteria for transience and recurrence. In the current article, we study the
speed of this random walk.

We recall the model from [5, 6] and explain it in a few words. Choose a sequence (px)x∈Z,
with px ∈ (0, 1) for all x ∈ Z, at random and put on every integer x ∈ Z a random number
Mx of cookies (Mx ∈ N0). Now, start a nearest-neighbor random walk at 0: If the walker
encounters a cookie on his current position x, he consumes it and is excited to jump to
x + 1 a.s. If there is no cookie, he goes to x + 1 with probability px and to x − 1 with
probability 1− px. For illustrations of the model see [5, Fig. 1] or [6, Figure 1].

For a precise definition, denote by Ω := ([0, 1]N)Z the space of so-called environments. Let
(Ω′,F ′) be a suitable measurable space with probability measures Px,ω for ω ∈ Ω and
x ∈ Z and (Sn)n≥0 a process on Ω′, such that for all ω = ((ω(x, i))i≥1)x∈Z and all z ∈ Z

Pz,ω[S0 = z] = 1,

Pz,ω[Sn+1 = Sn + 1|(Sm)1≤m≤n] = ω(Sn,#{m ≤ n : Sm = Sn}),
Pz,ω[Sn+1 = Sn − 1|(Sm)1≤m≤n] = 1− ω(Sn,#{m ≤ n : Sm = Sn})

is satisfied. The so-called excited random walk (ERW for short) (Sn)n≥0 is a nearest-
neighbor random walk under Pz,ω that starts in z and whose transition probability upon
the ith visit to site y ∈ Z is given by ω(y, i). In the usual notion, ω(y, i) is also said to be
the strength of the ith cookie on site y.

The elements ω ∈ Ω itself are chosen at random according to some probability measure P
on Ω. Averaging the so-called quenched measure Px,ω over the environments ω yields the
annealed or averaged measure Px[·] := E[Px,ω[·]] on the product space Ω×Ω′. By E, Ex,ω
and Ex, we denote the expectation operators respectively.

The discussion of excited random walks started with [7] where a simple symmetric random
walk (in Zd, d ≥ 1) is disturbed by one cookie at each site. The model, which is also known
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as cookie random walk, has been generalized in various ways, e.g. in the one-dimensional
case among others by Zerner [22], Basdevant and Singh [4] and Kosygina and Zerner [16].
For a recent survey on ERWs see [17].

In our setting, we consider cookies of strength 1. For each x ∈ Z, the number of cookies
of maximal strength at site x is defined by

Mx := sup{i ≥ 1 : ω(x, j) = 1 ∀1 ≤ j ≤ i}
with the convention sup ∅ = 0.

Throughout the paper, all or parts of the following assumptions on P will be needed,
compare also to [5, 6]:

Assumptions A. There is P-a.s. a sequence (px)x∈Z ∈ (0, 1)Z such that the following
holds.

A.1 ω(x, i) = px for all x ∈ Z and for all i > Mx.
A.2 (px,Mx)x∈Z is i.i.d. and {px,Mx;x ∈ Z} is independent under P.
A.3 E[| log ρ0|2] <∞ and E[ρ20] <∞ where ρx := (1− px)p−1x for x ∈ Z.
A.4 P[ρ0 = 1] < 1.
A.5 P[M0 = 0] > 0.

If Assumption A holds with P[Mx = 0] = 1, the process belongs to the class of random
walks in random environments (RWRE for short). For an overview and results on RWREs
we refer the reader to [21] and references therein. In the most studied ERW model, a simple
symmetric random walk is perturbed by cookies; commonly, the number of cookies per
site is bounded, but the cookies may have strength between 0 and 1, see e.g. [4, 16, 17].
In order to emphasize that the underlying process in our model is an RWRE, we call our
model described above excited random walk in a random environment (ERWRE for short).
This model has already been introduced by the author in [5, 6]. Assumption A.4 excludes
the simple symmetric random walk as underlying dynamic. By Assumption A.5 we avoid
the trivial case where the random walker encounters at least one cookie on every integer
P-a.s.

Under Assumption A.1, ω is given P-a.s. by a sequence (p,M) := (px,Mx)x∈Z. For clarity
and convenience let us therefore write Px,(p,M) for the quenched measure instead of Px,ω
and just P(p,M) if x = 0.

For a random walk in an i.i.d. random environment, Solomon proved in [19, Theorem (1.7)]
the following recurrence and transience criteria. Suppose that Assumptions A.1 and A.2
hold with P[Mx = 0] = 1 and that E[log ρ0] is well defined. Then, P0-a.s., limn→∞ Sn =
+∞ if E[log ρ0] < 0, limn→∞ Sn = −∞ if E[log ρ0] > 0 and (Sn)n≥0 is recurrent if
E[log ρ0] = 0.

Theorem 1.1 in [5] and Theorem 1 in [6] provide transience and recurrence criteria for
an ERWRE with underlying left-transient or recurrent RWRE. In the present version we
dropped the restriction P[Mx = ∞] = 0 by allowing P[Mx = ∞] ∈ [0, 1). The notation
(·)+ abbreviates max(0, ·).

Theorem 1.1 ([5]). Let Assumption A hold and assume that E[log ρ0] > 0.

(i) If E[(logM0)+] <∞, then limn→∞ Sn = −∞ P0-a.s.
(ii) If E[(logM0)+] =∞ and if lim supt→∞(t · P[logM0 > t]) < E[log ρ0], then Sn = 0

infinitely often P0-a.s.
(iii) If lim inft→∞(t · P[logM0 > t]) > E[log ρ0], then limn→∞ Sn = +∞ P0-a.s.
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Similar criteria in the case where the RWRE is recurrent are provided in [6].

In the current work we study how “fast“ the random walks in Theorem 1.1 and in [6] go
to infinity when they are transient (to the left or to the right). Therefore note that by
[17, Theorem 4.1] (Sn)n≥0 satisfies in the setting of Theorem 1.1 a strong law of large
numbers, i.e. there exists a non-random ν ∈ [−1, 1] such that

lim
n→∞

Sn
n

= ν P0-a.s.

This limit ν is called speed or velocity of the random walk, see also [17, Sections 4 and 5].
If the underlying dynamic in the ERW model is the simple symmetric random walk and
if the number of cookies (here with strength strictly in between 0 and 1) is bounded —
i.e. there is a deterministic K ∈ N such that ω(x, i) = 1

2 for all i > K and x ∈ Z a.s. —,
then results on the speed can be found in [4, Theorem 1.1] and [16, Theorem 2]. The key
parameter in this case turned out to be the average total drift per site

δ̄ := E

[∑
i≥1

(2ω(0, i)− 1)

]
.

Under some weak ellipticity assumptions, it has been obtained that ν = 0 if δ̄ ∈ [−2, 2],
ν < 0 if δ̄ < −2 and ν > 0 if δ̄ > 2, [4, 16].

The speed for an RWRE is given in [19, Theorem (1.16)], see also [21, Theorem 2.1.9 +
Remark]. Let us briefly recall Solomon’s result.

Theorem 1.2 ([19]). Let Assumptions A.1 and A.2 hold with P[Mx = 0] = 1 (RWRE)
and let E[log ρ0] be well defined. Then, P0-a.s.,

(i) ν = 1−E[ρ0]
1+E[ρ0] > 0 if E[ρ0] < 1,

(ii) ν = −1−E[ρ−1
0 ]

1+E[ρ−1
0 ]

< 0 if E[ρ−10 ] < 1 and

(iii) ν = 0 if E[ρ0]
−1 ≤ 1 ≤ E[ρ−10 ].

For the ERWRE model studied in [5, 6] we will show the following results on the speed in
the present paper.

Theorem 1.3. Let Assumption A hold and suppose the underlying RWRE is left-transient
or recurrent, i.e. E[log ρ0] ≥ 0.

(i) If E[M0] < ∞ and E[ρ−10 ] < 1 then the ERWRE goes to −∞ with negative speed:

ν = limn→∞
Sn
n < 0 P0-a.s.

(ii) If E[M0] =∞ or E[ρ−10 ] ≥ 1, and if additionally E[ρ0] > P[M0 <∞]−1 then ν = 0.
(iii) If E[ρ0] < P[M0 <∞]−1 then ν > 0.

Note that (i)-(iii) in Theorem 1.3 cover all cases except for E[ρ0] = P[M0 <∞]−1.

Remark 1.4. By Jensen’s inequality and Assumption A.4, E[log ρ0] ≥ 0 implies that
E[ρ0] > 1. Hence, if M0 is finite P-a.s. and if the underlying RWRE is left-transient
or recurrent there is no chance for the random walker to go to infinity with positive
speed in the setting of Theorem 1.3. This is only possible if there are “enough” infi-
nite cookie stacks. On the other hand, if the RWRE tends to −∞ with negative speed
(i.e. E[ρ−10 ] < 1), the cookies may slow it down without changing its transience behavior.
According to Theorems 1.1 and 1.3 this occurs if E[M0] =∞, but E[(logM0)+] <∞.



4 ELISABETH BAUERNSCHUBERT

Further questions concern an ERWRE where the underlying dynamic is transient to the
right with zero speed. Can cookies accelerate this RWRE? How many cookies of maximal
strength can be placed without increasing the speed and what is the influence of the
distribution of ρ0? Answers — but not yet in a complete version — are given in the next
theorem.

Theorem 1.5. Let Assumption A hold and suppose that the underlying RWRE is right-
transient with zero speed, i.e. E[log ρ0] < 0 and E[ρ0] ≥ 1.

(i) Assume that γ E[ρ0]P[M0 < ∞] > 1, where γ = E[ρβ0 ] with β such that

E[ρβ0 log ρ0] = 0. Then ν = limn→∞
Sn
n = 0, P0-a.s.

(ii) If E[ρ0] ≥ P[M0 = 0]−1 then ν = 0.
(iii) If E[ρ0] < P[M0 <∞]−1 then ν > 0.

Remark 1.6. Let us remark that β in Theorem 1.5(i) exists, is unique and 0 < β < 1.
Moreover γ < 1. To see this use the moment generating function g(t) := E[ρt0], t ∈ R, and
recall its properties e.g. from [8]. By Assumption A.3, g(t) is finite on [0, 2]. Furthermore
note that the derivative is g′(t) = E[ρt0 log ρ0] and under the assumptions of Theorem 1.5,
g(0) = 1, 1 ≤ g(1) <∞ and −∞ < g′(0) < 0.

Note that it is still open if it is possible to obtain positive speed if the underlying RWRE
is transient to the right with zero speed and M0 is finite P-a.s.

To prove Theorems 1.3 and 1.5 we use three tools. In the situation when the ERWRE goes
to −∞ it is not hard to prove non-zero or zero speed. Basically one uses the formulation
of the speed known from e.g. [22, Theorem 13] or [16, Section 7]. One method to study the
speed when the ERWRE goes to infinity, is based on a well-known regeneration or renewal
structure of these random walks and a relation to certain branching processes, see e.g. [14]
in the case of RWREs and [16, Section 6], [17, Sections 4 and 5] and references therein
in the case of ERWs. The right-transient ERWRE will be related to a specific branching
process in a random environment with migration (BPMRE for short). Its velocity is then
positive or non-positive according to whether the expected total size of the BPMRE until
its first time of extinction is finite or infinite. Therefore, this work also contains a result on
BPMRE. As a third tool — especially used when we deal with infinite cookie stacks and
in order to obtain positive speed — we simply apply results about RWREs and exploit
the monotonicity of ν with respect to the cookie environment, see [17, Proposition 4.2].

The article is organized as follows. The next section is devoted to the study of a specific
branching process in a random environment with emigration. It is slightly different to the
BPMRE that corresponds to the ERWRE in the case of transience to the right, but is
later used to prove that the expected total size of the latter branching process up to its
first time of dying out is infinite. In Section 3 the correspondence between (Sn)n≥0 and a
BPMRE is given. Section 4 finally contains the proofs of Theorems 1.3 and 1.5.

2. Branching process in a random environment with migration

In this section we introduce a branching process in a random environment with emigration.
It will be similar to the BPMRE that is related to the ERWRE in Section 3. The first
process has the advantage of being easier to handle. For convenience and in view of its
application to (Sn)n≥0, let us define the branching process on Ω′. Therefore, we assume

without loss of generality that there is a family {ξ(n)i ; i, n ∈ N} of independent random
variables on Ω′ such that, for P-a.e. (p,M),

P(p,M)[ξ
(n)
i = k] = (1− pn)k · pn for k ∈ N0,
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i.e. for all i ∈ N, ξ
(n)
i is geometrically distributed with parameter pn. Let us define now

Z0 := 1 and for n ≥ 1 recursively

Zn :=

Zn−1∑
i=1

ξ
(n)
i −Mn


+

.

This process belongs to the class of branching processes in an i.i.d. random environment
with migration. In our setting there is no immigration and the number of emigrants is
unbounded. Furthermore, in the above definition, the number of emigrants is immediately
subtracted from the population size. Note that 0 is an absorbing state for (Zn)n≥0.

Given an environment (p,M), the expected number of offspring in generation n per indi-
vidual is

E(p,M)[ξ
(n)
1 ] =

1− pn
pn

= ρn

and its variance is

Var(p,M)[ξ
(n)
1 ] =

1− pn
p2n

.

The literature on branching processes in general is extensive, see for instance [3, 13, 20].
If there is no migration in any generation, i.e. Mn = 0 for all n ∈ N, then (Zn)n≥0
belongs to the class of branching processes in random environments (BPRE for short),
see for instance [18, 3] or [9] and references therein. The branching process combining
the concept of reproduction according to a random environment with the phenomenon of
migration — and here especially unbounded emigration — does not seem to be broadly
discussed. To the best of our knowledge, the results given in Proposition 2.1 are not yet
covered by the literature. Therefore, we will prove Proposition 2.1, that is required for
our study of ERWREs, directly in this section.

We use the usual classification of BPREs, see e.g. [3] or [9], and call (Zn)n≥0 subcritical,
critical or supercritical according to whether E[log ρ1] < 0,= 0 or > 0. The BPRE dies
out a.s. in the subcritical and critical regime, whereas — under a certain integrability
condition — the supercritical BPRE may explode, see [18, 3]. Note that the process
(Zn)n≥0 is heuristically similar to some random difference equation: Zn should be more
or less (ρn · Zn−1 −Mn)+. This similarity helps to study the BPRE with emigration in
the proof of the following proposition. For some heuristic to Proposition 2.1 we refer the
reader to the Remarks 2.2 and 2.3 below.

Proposition 2.1. Let Assumption A hold and assume E[ρ1] > P[M1 < ∞]−1. The total
population size of (Zn)n≥0 has infinite mean, i.e. E0[

∑
j≥0 Zj ] =∞, if one of the following

conditions holds.

(i) (Zn)n≥0 is supercritical or critical (E[log ρ1] ≥ 0).

(ii) (Zn)n≥0 is subcritical (E[log ρ1] < 0) and γE[ρ1]P[M1 < ∞] > 1, where γ = E[ρβ1 ]

with β such that E[ρβ1 log ρ1] = 0.

Remark 2.2. Let us give a short heuristic for Proposition 2.1 in the supercritical setting.
Consider a sequence that grows exponentially until some “catastrophe” happens that
causes extinction. Precisely, for some a > 1 let X̃0 := 1 and recursively X̃n := aX̃n−1 if
Mn < aX̃n−1 and X̃n := 0 otherwise, for n ∈ N. Now, calculations show that for every
m ∈ N

E

[∑
j≥0

X̃j

]
≥ E[X̃m|T X̃0 > m] · P[T X̃0 > m] = am ·

m∏
k=1

P[M1 < ak]
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where T X̃0 := inf{n ≥ 1 : X̃n = 0}. Thus, the expected sum of X̃j is infinite if a · P[M1 <
∞] > 1.

Remark 2.3. Note that Proposition 2.1 covers supercritical, critical and some subcritical
BPREs with emigration. The heuristics to the proposition for supercritical BPREs with
emigration were given in Remark 2.2. That the result should also hold for critical BPREs
with emigration and specific subcritical BPREs with emigration, is motivated by recent
work on BPREs, see e.g. [9, 2, 1] and references therein. There, it was shown that critical
and so-called weakly subcritical BPREs behave in a supercritical manner when conditioned
on survival. Thus, one can hope that the prize to pay for survival is negligible compared
to the growth of an supercritical BPRE with emigration.

Proof of Proposition 2.1. The key idea of the proof is to couple (Zn)n≥0 and a process
(Xn)n≥0 that is similar to a random difference equation. More precisely, let X0 := 1 and
recursively

Xn := (ρnXn−1 −Mn)+

for n ∈ N. Note the analogy to the idea in the proofs of Theorem 2.2 in [5] and Theorem
4 in [6]. If the sequence (Mn)n≥1 is neglected, the growth of (Xn)n≥0 is determined by
its “associated random walk”. The same random walk basically describes the behavior of
the BPRE without migration, see for instance [9]. Therefore, let us define Ui := log ρi for
i ∈ N and Yi := U1 + . . . + Ui for i ∈ N. Since E[ρ1] = E[expU1] > 1 by assumption, we
can find for every 0 < δ < 1 some κ > 0 and 0 < κ̃ ≤ 1 such that

(1) P[U1 > κ]κ̃ > 1− δ.

Set ε := κ · κ̃ and for m ∈ N
(2) A(m) := {for all 1 ≤ j ≤ m : Yj ≥ ε · j}.

We control the probability of A(m) from below by

P[A(m)] ≥ P[∀1 ≤ i ≤ dκ̃me : Ui ≥ κ, ∀dκ̃me < j ≤ m : Yj − Ydκ̃me ≥ 0]

≥ P[U1 > κ]κ̃m+1 · P[∀1 ≤ j ≤ (1− κ̃)m : Yj ≥ 0]

≥ P[U1 > κ]κ̃m+1 · P[∀1 ≤ j ≤ m : Yj ≥ 0].(3)

In order to control the emigration define for m and k ∈ N, with m ≥ k
B(m, k) := {M1 = . . . = Mk = 0,∀k < n ≤ m : Mn < n}.

The events A(m) and B(m, k) are independent under P and

P[B(m, k)] = P[M1 = 0]k ·
m∏

j=k+1

P[M1 < j].(4)

On A(m) ∩B(m, k) with m ≥ k, it is obtained that for all 1 ≤ j ≤ k
Xj = exp(Yj) ≥ exp(εj)

and by induction for all k < j ≤ m

Xj ≥ exp(Yj)

(
1−

j∑
n=k+1

n exp(−Yn)

)
≥ exp(Yj)

(
1−

∞∑
n=k+1

n exp(−εn)

)
.

Thus, there exists 0 < c1 < 1 such that for sufficiently large k and all m ≥ k, on
A(m) ∩B(m, k),

(5) Xj ≥ c1 exp(Yj) ≥ c1 exp(εj) > 0 for all 1 ≤ j ≤ m.
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Fix k ∈ N such that (5) holds. For every m ≥ k

E0

[∑
j≥0

Zj

]
≥ E0

[∑
j≥0

Zj , A(m), B(m, k), ∀j ≤ m : Zj ≥
Xj

j

]

≥ E0

[
1

m
Xm, A(m), B(m, k), ∀j ≤ m : Zj ≥

Xj

j

]
≥ c1
m
E0

[
exp(Ym), A(m), B(m, k), ∀j ≤ m : Zj ≥

Xj

j

]
.(6)

For the moment let us have a closer look at P(p,M)[∀j ≤ m : Zj ≥ Xj
j ] on A(m)∩B(m, k).

We can write

P(p,M)

[
∀j ≤ m : Zj ≥

Xj

j

]
= P(p,M)[Z1 ≥ X1]

m∏
j=2

P(p,M)

[
Zj ≥

Xj

j

∣∣∣Zj−1 ≥ Xj−1
j − 1

, . . . , Z1 ≥ X1

]
(7)

and obtain, with (5), on A(m) ∩B(m, k) for 2 ≤ j ≤ m

P (p,M)

[
Zj ≥

Xj

j

∣∣∣Zj−1 ≥ Xj−1
j − 1

, . . . , Z1 ≥ X1

]
=

∑
n≥

c1 exp(Yj−1)

j−1

P(p,M)

[
n∑
i=1

ξ
(j)
i −Mj ≥

ρjXj−1 −Mj

j

∣∣∣Zj−1 = n ≥ Xj−1
j − 1

, . . . , Z1 ≥ X1

]

· P(p,M)

[
Zj−1 = n

∣∣∣Zj−1 ≥ Xj−1
j − 1

, . . . , Z1 ≥ X1

]
≥

∑
n≥

c1 exp(Yj−1)

j−1

P(p,M)

[
n∑
i=1

ξ
(j)
i ≥

ρj(j − 1)n

j
+ (1− 1

j
)Mj

]

· P(p,M)

[
Zj−1 = n

∣∣∣Zj−1 ≥ Xj−1
j − 1

, . . . , Z1 ≥ X1

]
.

(8)

Further calculations yield for (p,M) satisfying A(m) ∩ B(m, k), for n ≥ c1 exp(Yj−1)
j−1 and

2 ≤ j ≤ m

P(p,M)

[
n∑
i=1

ξ
(j)
i ≥

ρj(j − 1)n

j
+ (1− 1

j
)Mj

]
≥ P(p,M)

[
n∑
i=1

ξ
(j)
i ≥

ρj(j − 1)n

j
+ j

]

= P(p,M)

[
nρj −

n∑
i=1

ξ
(j)
i ≤

nρj
j
− j

]
.(9)

Note that here nρj ≥ c1 exp(Yj)
j−1 ≥ c1 exp(εj)

j−1 by (5). Choose j0 ∈ N such that c1 exp(εj)j−3 ≥
2 for all j ≥ j0. As in [5, p. 643] we apply now Chebyshevs inequality. For sufficiently
large m, we get for all j0 < j ≤ m

P(p,M)

[
nρj −

n∑
i=1

ξ
(j)
i ≤

nρj
j
− j

]
≥ P(p,M)

[∣∣∣nρj − n∑
i=1

ξ
(j)
i

∣∣∣ ≤ nρj
j
− j

]

≥ 1−
nVar(p,M)(ξ

(j)
1 )

(
nρj
j − j)2

= 1−
nVar(p,M)(ξ

(j)
1 )j2

(1− j2

nρj
)2(nρj)2

≥ 1− 4
j2

nρjpj
.(10)
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On A(m) we have for all n ≥ c1
j−1 exp(Yj−1) on the one hand nρjpj ≥ c1

j−1 exp(εj)pj
and on the other hand nρjpj = n(1 − pj) ≥ c1

j−1 exp(ε(j − 1))(1 − pj). Thus, nρjpj ≥
1
2 ·

c1
j−1 exp(ε(j − 1)).

This gives together with (8), (9) and (10) for all j0 ≤ j ≤ m

P(p,M)

[
Zj ≥

Xj

j

∣∣∣Zj−1 ≥ Xj−1
j − 1

, . . . , Z1 ≥ X1

]
≥ 1− c2j3e−εj(11)

for some c2 > 0. Hence, there is some j1 ≥ j0 and some constant c3 > 0 such that a
similar calculation as in (7) yields together with (11) for all large m

P(p,M)

[
∀j ≤ m : Zj ≥

Xj

j

]
≥ P(p,M)

[
∀j ≤ j1 : Zj ≥

Xj

j

] ∏
i≥j1

(
1− c2i3e−εi

)
≥ c3P(p,M)

[
∀j ≤ j1 : Zj ≥

exp(Yj)

j

]
.

The last inequality holds since Xi ≤ exp(Yi) for all i ∈ N by definition. Recall (6), (2), (3)
and the independence of (p,M). We obtain for sufficiently large m (such that dκ̃me ≥ j1)
and some constant c4 > 0 that

E0

[∑
j≥0

Zj

]
≥ c4
m
E
[
exp(Ym)P(p,M)

[
∀j ≤ j1 : Zj ≥

exp(Yj)

j

]
, A(m), B(m, k)

]

≥ c4
m
E
[
exp(Yj1)P(p,M)

[
∀j ≤ j1 : Zj ≥

exp(Yj)

j

]
,∀i ≤ j1 : Ui ≥ κ,B(m, k)

]
· E

[
m∏

i=j1+1

ρi, ∀j1 < i ≤ dκ̃me : Ui ≥ κ,∀dκ̃me < j ≤ m : Yj − Ydκ̃me ≥ 0

]
.(12)

Since exp(Yj1)P(p,M)

[
∀j ≤ j1 : Zj ≥ exp(Yj)j

−1] and {∀i ≤ j1 : Ui ≥ κ} only depend on
(pi,Mi)1≤i≤j1 we obtain, by independence of (p,M), for some constant c5 > 0

E
[
exp(Yj1)P(p,M)

[
∀j ≤ j1 : Zj ≥

exp(Yj)

j

]
,∀i ≤ j1 : Ui ≥ κ,B(m, k)

]
= c5P[B(m, k)]

for all large m. The FKG inequality, see for instance [12, Theorem (2.4), p. 34], gives

E

[
m∏

i=j1+1

ρi,∀j1 < i ≤ dκ̃me : Ui ≥ κ,∀dκ̃me < j ≤ m : Yj − Ydκ̃me ≥ 0

]

≥ E

[
m∏

i=j1+1

ρi

]
P
[
∀j1 < i ≤ dκ̃me : Ui ≥ κ,∀dκ̃me < j ≤ m : Yj − Ydκ̃me ≥ 0

]
This inequality can be applied here, since (pj)j∈N is a sequence of [0, 1]-valued i.i.d. random
variables, E[ρ21] < ∞, and

∏m
i=j1+1 ρi and 1{∀i≤dκ̃me:Ui≥κ,∀dκ̃me<j≤m:Yj−Ydκ̃me≥0} are both

monotonically decreasing functions in (pj)j∈N with respect to the usual partial order on

[0, 1]N.

Hence, together with (12), we have for some constant c6 > 0 that

E0

[∑
j≥0

Zj

]
≥ c6
m
P[B(m, k)]E[ρ1]

m(P[U1 > κ]κ̃)mP[∀1 ≤ j ≤ m : Yj ≥ 0].(13)

Thus, E0[
∑

j≥0 Zj ] is infinite if the right hand side of (13) goes to infinity for m → ∞.

Recall from (4) that P[B(m, k)] = P[M1 = 0]k
∏m
j=k+1 P[M1 < j] and remark that P[M1 <
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j] → P[M1 < ∞] as j → ∞. Furthermore it is known in the case E[log ρ1] ≥ 0 that
P[∀1 ≤ j ≤ m : Yj ≥ 0] eventually exceeds 1√

m
up to some multiplicative constant, see for

instance [11, XII.7]. Thus the proposition follows immediately for supercritical or critical
BPREs with emigration when we choose δ in (1) so small that (1−δ)P[M1 <∞]E[ρ1] > 1.

Let (Zn)n≥0 be a subcritical BPRE with emigration and E[ρ1] > 1. Due to (13) the behav-
ior of P[∀1 ≤ j ≤ m : Yj ≥ 0], as m goes to infinity, is of interest. If the distribution of U1 is

non-lattice P[∀1 ≤ j ≤ m : Yj ≥ 0] is of order m−
3
2γm. (Recall that γ = E[exp(βU1)] < 1

with β such that E[U1 exp(βU1)] = 0.) For references see for instance [10, Theorem II]
or [1, Theorem 1.1 and Corollary 1.2]. Thus, E0[

∑
j≥0 Zj ] = ∞ if γE[ρ1]P[M1 < ∞] > 1

and the proposition is proven. For the lattice case, some monotonicity argument can be
used. �

3. Connection between random walks and branching processes

We turn now to the correspondence between ERWREs and certain BPMREs. Recall from
the introduction that an RWRE is perturbed by cookies of maximal strength and that
our aim is to study the speed of this ERWRE. In the current section we suppose that,
additionally to Assumption A, the drift induced by the cookies wins, i.e. that

(14) P0

[
lim
n→∞

Sn = +∞
]

= 1.

Criteria for transience to the right are given in Theorem 1.1 and in Theorem 1 of [6] in
the case of a left-transient or recurrent underlying RWRE. If the RWRE is right-transient
then monotonicity with respect to the environment implies (14), see [22, Lemma 15] (the
condition ω(x, i) ≥ 1

2 for all x ∈ Z and i ∈ N in [22] is not necessary for the proof of
Lemma 15). Due to Theorem 4.1 in [17] the speed of the ERWRE exists on {Sn → ∞}.
The question is if there is a phase transition between zero and positive speed.

A well-known tool to study the speed of an one-dimensional ERW is the so-called regen-
eration or renewal structure, see [16, Section 6] or [17, Section 4] and references therein.
According to Lemma 4.5 in [17] there are P0-a.s. infinitely many random times j on the
event {Sn → ∞} with Sm < Sj for all m < j and Sk ≥ Sj for all k ≥ j. The increas-
ing enumeration of these renewal times is denoted by (τk)k∈N. By [17, Lemma 4.5] and
(14), we have that (Sn)0≤n≤τ1 , (Sn − Sτk)τk≤n≤τk+1

, k ≥ 1, are independent under P0,
(Sn − Sτk)τk≤n≤τk+1

, k ≥ 1, have the same distribution under P0 and E0[Sτ2 − Sτ1 ] <∞.
Theorem 4.6 in [17] gives, P0-a.s.,

ν = lim
n→∞

Sn
n

=
E0[Sτ2 − Sτ1 ]

E0[τ2 − τ1]
.

Thus,

(15) ν = 0 iff E0[τ2 − τ1] =∞.

The key to study the distribution of τ2− τ1 relies on the discussion of a branching process
with migration in random environment that corresponds to the ERWRE. Compare this
method to the one used for RWRE in [14] and for ERW in [4, Section 2], [16, Section 6]
and [15, Section 2], see also [17, Section 5] and references therein. For details concerning
the connection we refer the reader to the specific sections in [16, 15, 17].

Let us consider the so-called backward branching process of the ERWRE. Therefore, recall
that (Sn)n≥0 is transient to the right by (14) and thus τ1 < τ2 < ∞ P0-a.s. As in [16,
Section 6], denote by

Dk := #{n ∈ N : τ1 < n < τ2, Sn = Sτ2 − k and Sn+1 = Sτ2 − k − 1}, k ∈ N0,
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the number of downcrossings from Sτ2 − k to Sτ2 − k − 1 between times τ1 and τ2. The
number of upcrossings in this time interval is Sτ2 − Sτ1 +

∑
k≥0Dk. Hence

τ2 − τ1 = Sτ2 − Sτ1 + 2
∑
k≥0

Dk,(16)

and thus E0[τ2 − τ1] =∞ if and only if E0[
∑

k≥0Dk] =∞.

It can be shown like in the proof of [16, Lemma 12] that (Dk)k≥0 is distributed, under P0,
like a BPMRE (Wk)k≥0 defined by W0 = 0 and

Wk = 1{k≤TW0 }

Wk−1+1−Mk∑
i=1

ξ
(k)
i ,

where ξ
(j)
i , i, j ∈ N0, are random variables on Ω′ that are independent under P(p,M), and

P(p,M)[ξ
(j)
i = n] = (1−pj)npj for n ∈ N0. The random variable TW0 := inf{k ≥ 1 : Wk = 0}

denotes the first time of extinction of (Wk)k≥0.

The correspondence now yields by (16)

E0[τ2 − τ1] =∞ iff E0

[∑
k≥0

Wk

]
= E0

[ TW0 −1∑
k=1

Wk

]
=∞

and therefore by (15)

(17) ν = 0 iff E0

[ TW0 −1∑
k=1

Wk

]
=∞.

4. On the speed of the random walk, proofs

At first we show that (Sn)n≥0 satisfies a strong law of large numbers.

Theorem 4.1. Let Assumption A hold. Then there exists a non-random ν ∈ [−1, 1] such
that limn→∞ Sn/n = ν P0-a.s.

Proof. If E[(logM0)+] <∞ and E[log ρ0] > 0, the ERWRE goes to−∞ P0-a.s. by Theorem
1.1(i). Then, (Sn)n≥0 satisfies a strong law of large numbers according to [17, Theorem
4.1].

If E[(logM0)+] =∞ and E[log ρ0] > 0, [5, Proposition 4.1] and monotonicity with respect
to the environment — see [22, Lemma 15] which also holds for Ω = ([0, 1]N)Z — imply

P0

[
sup
n≥0

Sn =∞
]

= 1.

The same holds if the underlying RWRE is recurrent or right-transient, i.e. E[log ρ0] ≤ 0.
Since P[M0 = 0] > 0 a weak ellipticity condition as described in [17, p. 108] holds for the
environment ω. Theorem 3.2 in [17] — weak ellipticity is sufficient for case (d) in the proof
— yields P0[|Sn| → ∞] ∈ {0, 1}. Since P0[lim infn→∞ Sn ∈ {±∞}] = 1 by [17, Lemma
2.2] we get

P0

[
inf
n≥0

Sn = −∞
]
∈ {0, 1}.

Thus, (Sn)n≥0 satisfies a strong law of large numbers according to [17, Theorem 4.1]. �



ON THE SPEED OF ERWRE 11

We now show Theorems 1.3 and 1.5. Since their proofs are overlapping concerning the
applied tools, we will merge them and structure it along the different methods.

Let us first introduce some more notation. Recall the notation P0, E0, P(p,M) and
E(p,M) as defined in the introduction. The quenched measure in an environment with-
out cookies will be denoted by Pp := P(px,0)x∈Z and the corresponding annealed measure
by PRE [·] := E[Pp[·]]. Note that under this measure (Sn)n≥0 is known as RWRE with
start in 0. Furthermore, situations will be considered, where there are only cookies on
sites less or equal to zero. For this setting we write Pp,≤0 := P(px,Mx)x∈−N0 ,(px,0)x∈N

and

PRE,≤0[·] := E[Pp,≤0[·]]. The corresponding expectations are Ep, ERE , Ep,≤0 and ERE,≤0
respectively. The speed or limit in the law of large numbers under PRE , if it exists, is
denoted by νRE . For k ∈ Z let Tk := inf{n ≥ 0 : Sn = k} be the first hitting time of k.

Proof of Theorems 1.3 and 1.5.

First part: We shall prove Theorems 1.3(iii) and 1.5(ii)-(iii) by using the results on RWRE
(Theorem 1.2) and monotonicity of the speed with respect to the environment, [17, Propo-
sition 4.2].

First, let M0 be {0,∞}-valued, P-a.s. Thus, we consider a.s. environments where the
random walker encounters infinite cookie stacks and between those stacks an environment
known from RWRE. The cookie piles can be regarded as “one-way doors”: the random
walker goes through from the left to the right but has no chance to get back. Note that
in this setting the model can be interpreted in terms of an RWRE in the following way.
Define p̃x := 1 if Mx =∞ and p̃x := px otherwise for x ∈ Z. Then for P-a.e. environment
(p,M), (Sn)n≥0 has the same distribution under P(p,M) and Pp̃ where p̃ := (p̃x)x∈Z. Note
that, under Assumption A, (p̃x)x∈Z is i.i.d. under P, p̃x ∈ (0, 1], P[p̃0 = 1] = P[M0 = ∞]

and E[log ρ̃0] is well defined (with possible value −∞) where ρ̃x := 1−p̃x
p̃x

.

According to Theorem 1.2, we obtain for the speed ν > 0 if E[ρ̃0] < 1 and ν = 0 if
E[ρ̃0] ≥ 1. Now, the statements in Theorems 1.3(iii), 1.5(iii) and 1.5(ii) follow for the case
where M0 is {0,∞}-valued, since

E[ρ̃0] = E
[

1− p̃0
p̃0

, p̃0 < 1

]
= E[ρ0]P[M0 <∞].

Consider the general case where M0 is N0 ∪ {∞}-valued. If E[ρ0]P[M0 = 0] ≥ 1 then we
replace finite (but not empty) cookie piles by infinite ones. Applying the monotonicity of
the speed yields ν = 0 and thus Theorem 1.5(ii) follows. If E[ρ0]P[M0 <∞] < 1 we do the
reverse: Let all finite cookie stacks vanish and obtain thus an environment with infinitely
many cookies or none per integer. Exploiting again monotonicity gives ν > 0 and hence
statement (iii) in Theorems 1.3 and 1.5.

Second part: We shall prove Theorem 1.3(i)-(ii) under the additional assumptions E[log ρ0] >
0 and E[(logM0)+] <∞, i.e. the underlying RWRE goes to −∞ P0-a.s. by Theorem 1.1(i).
For this setting we use the formula for the speed of an ERW in [16, Proposition 13], see
also [22, Theorem 13].

Let E[log ρ0] > 0, E[(logM0)+] <∞ and E[M0] =∞. According to [17, Theorem 4.1] and
[16, Proposition 13] and their proofs, (Sn)n≥0 satisfies a law of large numbers with

1

ν
= −

∑
j≥1

P0[T−j−1 − T−j ≥ j] ≤ −
∑
j≥1

P0[M−j ≥ j] = −E[M0] = −∞.

Hence the speed ν is zero.
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Let E[M0] <∞ and E[log ρ0] > 0. If E[ρ−10 ] ≥ 1 then νRE = 0 by Theorem 1.2. Using the
monotonicity of ν with respect to the environment, see [17, Proposition 4.2], and the fact
that Sn → −∞ P0-a.s. we obtain

0 = νRE ≤ ν ≤ 0.

If E[ρ−10 ] < 1 then ERE [T−1] < ∞, compare to [19, Theorem (1.15)] or see [21, Lemma
2.1.12, Theorem 2.1.9 + Remark]. Furthermore∑

j≥1
P0[T−j−1 − T−j ≥ j] =

∑
j≥1

PRE,≤0[T−j−1 − T−j ≥ j]

=
∑
j≥1

PRE,≤0[T−1 ≥ j] = ERE,≤0[T−1].

For the first equality note that P(p,M)[T−j−1 − T−j ≥ j] is a function of (px)−j≤x≤0 and
M−j since (Sn)n≥0 is a nearest neighbor random walk and by time T−j — which is finite
P0-a.s. — all cookies on integers −j + 1 ≤ x ≤ 0 are eaten by the walker. The second
equality holds by the strong Markov property and shift-invariance under P. Now, it is
obtained by independence of M0 and p that

ERE,≤0[T−1] = E[M0(1 + E1,p[T0]) + Ep[T−1]]

= E[M0](1 + ERE [T−1]) + ERE [T−1] <∞,

where E1,p[T0] is the expected time of a random walker in environment p and start in
1 to reach 0. Thus Theorem 1.3(i) is proven completely and Theorem 1.3(ii) under the
additional assumption E[log ρ0] > 0.

Third part: Finally we prove Theorem 1.3(ii) under the additional assumption that E[(logM0)+] =
∞ if E[log ρ0] > 0, and Theorem 1.5(i). As can be seen from the proof of Theorem 4.1,
(Sn)n≥0 is either P0-a.s. recurrent — and then Theorem 4.1 yields ν = 0 — or P0-a.s.
transient to the right. It remains to consider the latter case for which we will use the link
between ERWREs and BPMREs from Section 3.

Let Sn → +∞ P0-a.s. and recall the notation from Section 3. We will show that

(18) E0

[ TW0 −1∑
k=1

Wk

]
=∞.

In order to obtain this result, (Wn)n≥0 is compared to the slightly different BPRE with
emigration, that was introduced in Section 2, where no immigration occurs and the number
of emigrants is immediately subtracted from the population size. The single immigrant
that appeared in the link between the ERWRE and the BPMRE in Section 3 is neglected.
For comparing the two BPMRE models, the sequence (Mk)k∈N in the process in Section 2
has to be shifted. So let here Z0 := 1 and

Zk :=

Zk−1∑
i=1

ξ
(k)
i −Mk+1


+

, k ≥ 1.

Assume that M1 = 0. Then, induction shows that

(Wk −Mk+1 + 1)+ ≥ Zk for all 0 ≤ k ≤ TW0 ,

and hence for 1 ≤ k ≤ TW0

Zk =

Zk−1∑
i=1

ξ
(k)
i −Mk+1


+

≤
Zk−1∑
i=1

ξ
(k)
i ≤

(Wk−1−Mk+1)+∑
i=1

ξ
(k)
i = Wk.
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In particular TZ0 := inf{n ≥ 1 : Zn = 0} ≤ TW0 . Thus,

TW0 −1∑
k=1

Wk ≥ 1{M1=0}

TZ0 −1∑
k=1

Zk = 1{M1=0}
∑
k≥1

Zk.

Note that M1 and (Zk)k≥0 are independent and P[M1 = 0] > 0. Since it is assumed
in Theorem 1.3(ii) that E[ρ1] > P[M1 < ∞]−1, and respectively in Theorem 1.5(i) that
E[ρ1]γ > P[M1 <∞]−1, Proposition 2.1 yields (18). So, the speed of the ERWRE is zero
by (17). �

Remark 4.2. Under Assumption A, the speed of the ERWRE is zero by Theorem 1.5(ii)
if M0 ∈ {0,∞} P-a.s. and E[ρ0] ≥ P[M0 < ∞]−1. The same result can be obtained if
M0 ∈ {0, 1,∞} P-a.s. instead of M0 ∈ {0,∞}. Let us give shortly the main ideas for a
proof in this specific case. A regeneration structure similar to the one in Section 3 can
be established where the renewals are the first hitting times of the infinite cookie stacks.
In order to obtain that the expected sojourn time of the random walker between two
infinite cookie piles is infinite, decomposition techniques and calculations similar to those
for RWREs in [21, proof of Lemma 2.1.12] can be used.
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Ann. Inst. Henri Poincaré Probab. Stat. 47 (2011), no. 2, 575–600. MR 2814424 (2012e:60261)

16. Elena Kosygina and Martin P. W. Zerner, Positively and negatively excited random walks on in-
tegers, with branching processes, Electron. J. Probab. 13 (2008), no. 64, 1952–1979. MR 2453552
(2009m:60231)

17. , Excited random walks: results, methods, open problems, Bull. Inst. Math. Acad. Sin. (N.S.)
(in a special issue in honor of S.R.S. Varadhan’s 70th birthday) 8 (2013), no. 1, 105–157.

18. Walter L. Smith and William E. Wilkinson, On branching processes in random environments, Ann.
Math. Statist. 40 (1969), 814–827. MR 0246380 (39 #7684)

19. Fred Solomon, Random walks in a random environment, Ann. Probability 3 (1975), 1–31. MR 0362503
(50 #14943)
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