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Abstract. We establish recurrence and transience criteria for critical branching
processes in random environment with immigration. These results are then applied
to discuss recurrence and transience of a recurrent random walk in a random
environment on Z that will be disturbed by cookies inducing a drift to the right
of strength 1.

1. Introduction

This article complements [4]. In [4] the author considers a random walk in random
environment on Z which is transient to the left and that will be disturbed by cookies
of strength 1 to the right. As can be seen in [4], the study of special kinds of
branching processes is essential to obtain results on recurrence and transience of
these excited random walks.

Therefore, let us first motivate the discussion of critical branching processes in ran-
dom environment with immigration (critical BPIRE for short) within the present
article by introducing the random walk we are dealing with.

1.1. Excited random walk in random environment. Our model is explained
as follows. Consider a sequence (px)x∈Z ∈ (0, 1)Z and put a random number Mx of
cookies on every integer x ∈ Z. Now a nearest neighbor random walk (Sn)n≥0 is
started at 0 with the following transition probabilities. If the random walker comes
to site x and if there is still at least one cookie on this site, he removes one cookie
and jumps to x+ 1. Otherwise he makes a step to the right with probability px and
to the left with probability 1 − px. For an illustration of this model see Figure 1,
previously been presented in [4].

The cookies in our model have maximal strength and induce a drift to the right. On
the other hand, we will assume a random environment (px)x∈Z that makes a random
walk in random environment (RWRE for short), i.e. a random walk where Mx = 0
for all x ∈ Z, be recurrent. So the question arises when the drift caused by the
cookies succeeds in forcing the random walk to +∞. In Theorem 1.1, criteria for
transience and recurrence of the process are given.
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Figure 1. Model of the random walk. (see [4])
If there are cookies at his current position x ∈ Z, the random walker removes
one and makes a step to x + 1. If there is no cookie he jumps to the right
with probability px and to the left with probability qx := 1− px.

First, let us introduce the notation for the model. Set Ω := ([0, 1]N)Z. The elements
from Ω are chosen at random according to a probability measure P on Ω with corre-
sponding expectation operator E. For fixed environment ω = ((ω(x, i))i≥1)x∈Z ∈ Ω
and z ∈ Z define a nearest-neighbor random walk (Sn)n≥0 on a suitable probability
space Ω′ with probability measure Pz,ω, which satisfies

Pz,ω[S0 = z] = 1,

Pz,ω[Sn+1 = Sn + 1|(Sm)1≤m≤n] = ω(Sn,#{m ≤ n : Sm = Sn}),
Pz,ω[Sn+1 = Sn − 1|(Sm)1≤m≤n] = 1− ω(Sn,#{m ≤ n : Sm = Sn}).

The value of ω(x, i) serves as the transition probability from x to x+1 upon the i-th
visit at site x. Furthermore, define Pz[·] := E[Pz,ω[·]] as the annealed or averaged
probability measure with corresponding expectation operator Ez. The random walk
(Sn)n≥0 is called recurrent (transient) if Sn = 0 infinitely often (limn→∞ Sn ∈ {±∞})
P0-a.s.

With the convention sup ∅ = 0, the number of cookies of strength 1 at site x ∈ Z is
defined by

Mx := sup{i ≥ 1 : ω(x, j) = 1 for all 1 ≤ j ≤ i}

In this article we postulate the following for the model.

Assumption A. There is P-a.s. (px)x∈Z ∈ (0, 1)Z such that:

A.1 It holds P-a.s. that ω(x, i) = px for all i > Mx. Furthermore, P[px = 1
2
] < 1.

A.2 (px,Mx)x∈Z is i.i.d.
A.3 E[| log ρ0|] <∞ and E[log ρ0] = 0 where ρx := (1− px)p−1

x for x ∈ Z.
A.4 P[M0 =∞] = 0 and P[M0 = 0] > 0.

If Mx = 0 P-a.s. for all x ∈ Z, assumptions A.2 and A.3 imply that the RWRE
is recurrent, i.e. −∞ = lim infn→∞ Sn < lim supn→∞ Sn = ∞ P0-a.s. For detailed
results about RWRE see e.g. [17].

Under Assumption A, (Sn)n≥0 can be seen as a recurrent random walk in random
environment disturbed by cookies of strength 1 to the right. In accordance to RWRE
and excited random walk (ERW), our model is called excited random walk in random
environment (ERWRE for short). In Section 3 we show the following recurrence and
transience criteria for the ERWRE.
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Theorem 1.1. Let Assumption A hold and assume that E[| log ρ0|δ] <∞ for every
0 < δ < 6.

(i) If E[(log+M0)
2+ε] <∞ for some ε > 0, then Sn = 0 infinitely often P0-a.s.

(ii) If lim inft→∞(tλ · P[logM0 > t]) > 0 for some 0 < λ < 2, then limn→∞ Sn =
+∞ P0-a.s.

Remark 1.2. The tail assumption lim inft→∞(tλ · P[logM0 > t]) > 0 implies that
E[(log+M0)

2−ε] =∞ for some ε > 0.

Remark 1.3. In the classical model of the ERW the underlying process is a simple
symmetric random walk. Criteria for the recurrence and transience behavior of the
classical ERW are given in Theorem 3.10 in [14]. Hence, if Assumption A holds with
P[px = 1

2
] = 1 in A.1, the process (Sn)n≥0 ist recurrent if and only if E[M0] ≤ 1.

Note that this criterion is different to the one in Theorem 1.1.

Theorem 1.1 should be compared to the following result from [4], where the under-
lying random walk in random environment is transient to the left and where the
following recurrence and transience criteria for the ERWRE were obtained.

Theorem 1.4 ([4]). Let assumptions A.1, A.2 and A.4 hold and assume that
{px,Mx, x ∈ Z} is independent under P, E[| log ρ0|] <∞, E[log ρ0] > 0 and E[p−1

0 ] <
∞.

(i) If E[log+M0] <∞, then limn→∞ Sn = −∞ P0-a.s.
(ii) If E[log+M0] = ∞ and if lim supt→∞(t · P[logM0 > t]) < E[log ρ0], then

Sn = 0 infinitely often P0-a.s.
(iii) If lim inft→∞(t · P[logM0 > t]) > E[log ρ0], then limn→∞ Sn = +∞ P0-a.s.

Excited random walks go back to Benjamini and Wilson [6] and have been further
studied and extended among others by Zerner in [20, 21], by Basdevant and Singh
in [2, 3] and by Kosygina and Zerner in [13]. A survey on ERW is given by Kosygina
and Zerner in [14]. The novelty in our model are the random transition probabilities
on sites without cookies and the unbounded number of cookies per site. However,
we consider only cookies of maximal strength.

A useful technique to obtain results for the one dimensional ERW is to employ the
well-known relationship between branching processes and random walks. See also
[2, 3, 13, 4] for this method. Since there are only cookies of strength 1, we can
concentrate on branching processes with immigration and no emigration. In order
to prove Theorem 1.1, we have to deal with a critical BPIRE. See Section 3 for the
precise connection between our model and the critical BPIRE. Roughly speaking,
an excursion to the right of the random walk can be translated into a branching
process by counting the number of up-crossing from n to n+1, n ∈ N, between down-
crossings from n to n−1. The translation from the branching process to the excursion
is given by the contour process. The cookies in the ERWRE model correspond to the
immigrants and the random environment gives the random offspring distributions for
the branching process. As we will see in Section 3, the recurrence of the branching
process implies the recurrence of the random walk and vice versa.

Thus, the discussion of BPIRE with focus on its recurrence and transience behavior
is essential.
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1.2. Branching process in random environment with immigration. The lit-
erature on branching processes is extensive, see for instance the survey article [18].
[7] contains a more recent review on branching processes in random environment.
Critical branching processes in random environment with immigration are studied
e.g. by Key in [12] and Roitershtein in [16]. Unfortunately, a proper transience and
recurrence criteria for our model could not be found or deduced.

Let us introduce the definition of the BPIRE that we study in this article. It differs
slightly from the one in [12, p. 344f], see also Remark 1.6.

Definition 1.5. Consider a sequence e = (en)n∈N = (rn,mn)n∈N of pairs of random
variables which take values in the set of probability distributions on N0. For n ∈ N,
rn and mn give the distribution for reproduction, respectively immigration, in gener-
ation n. Assume that the so-called random environment (en)n∈N is i.i.d. under some
probability measure Q and denote by Qe[·] := Q[·|e] the conditional distribution and
by Ee the expectation w.r.t. Qe.

Furthermore, let {ξ(n)
j ,Mk; j, n, k ∈ N} be a family of N0-valued random variables

on the same probability space which is Q-a.s. independent under Qe and satisfies
Q-a.s. for j, n ∈ N

Qe[Mn = ·] = mn,

Qe[ξ
(n)
j = ·] = rn.

Then, the process (Zn)n≥0 given by Z0 := 0 and

Zn := ξ
(n)
1 + . . .+ ξ

(n)
Zn−1

+Mn for n ∈ N

(or every process with the same distribution) is called branching process in random

environment with immigration (BPIRE). The random variable ξ
(n)
j can be under-

stood as the number of offspring of the j-th individual of generation n− 1 and Mn

as the number of immigrants in the n-th generation.

Another useful way to describe the BPIRE is the following. For each j ∈ N, let
(Zn(j))n∈N0 be a branching process that starts at time j with Z0(j) = Mj indi-
viduals (or immigrants) and whose reproduction distribution is given by (rn+j)n∈N
under Qe. More precisely, we consider branching processes that have the same dis-

tribution like processes realized by Zn(j) = ξ
(n+j)
j,1 + . . .+ ξ

(n+j)
j,Zn−1(j) where, under Qe,

{ξ(k)
j,i ,Mn; j, i, k, n ∈ N} is independent and ξ

(k)
j,i has distribution rk Q-a.s.

Then, the sum over the offspring at the same time plus the immigrants at that time,

Zn =
n∑
j=1

Zn−j(j) for n ∈ N,

gives a BPIRE.

The latter definition is similar to Key’s definition in [12, p. 344f], see also Remark
1.6.

If EQ[logEe[ξ
(1)
1 ]] exists, (Zn)n≥0 is called critical, subcritical or supercritical if

EQ[logEe[ξ
(1)
1 ]] = 0, < 0 or > 0 respectively in accordance with the standard classifi-

cation of branching processes in random environment. For an extended classification
see for instance also [7, p. 4].
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Throughout the article, the distribution rn will be represented by its probability
generating function (p.g.f.) denoted by ϕn. Apart from Lemma 2.1 and its applica-
tion in the proof of Theorem 1.7 it will be furthermore assumed that mn takes Q-a.s.
values in the set of dirac-measures on N0, {δn, n ∈ N0}. In this case let us write n
instead of δn as a short notation. Thus, for a sequence (Mn)n∈N of N0-valued random
variables, (ϕ,M) := (ϕn,Mn)n∈N denotes an environment where the distribution for
offspring in generation n of an individual in generation n − 1 is given by the p.g.f.
ϕn and where Mn individuals immigrate in the n-th generation Q(ϕ,M)-a.s.

Remark 1.6. In his formulation of the BPIRE-model in [12], Key does not count the
number of immigrants at time n as a part of generation n but only their offspring
as part of the next generation.

Note that (Zn)n≥0 is a time-homogeneous Markov chain under Q. In this article it is
assumed that the BPIRE is irreducible under Q with state space N or N0. Motivated
by the application to the ERWRE, we are interested in recurrence and transience
criteria for a critical BPIRE.

Theorem 1.7. Let (Zn)n≥0 be an irreducible BPIRE with p.g.f. ϕn for offspring in
generation n and Mn immigrants in generation n. Assume that

(1) (ϕn,Mn)n∈N is i.i.d. under Q.
(2) EQ[| log µ1|2] <∞, EQ[log µ1] = 0 and Q[µ1 = 1] < 1 where µn := ϕ′n(1).
(3) EQ[(log+M1)

2+ε] <∞ for some ε > 0.

Then (Zn)n≥0 is recurrent.

The next theorem gives a criterion for transience of a critical BPIRE. Let Qϕ denote
the conditional distribution Q[·|ϕ] and write Varϕ for the variance according to the
measure Qϕ.

Theorem 1.8. Consider an irreducible BPIRE (Zn)n≥0 with p.g.f. ϕn for offspring
in generation n and Mn immigrants in generation n. Assume that

(1) (ϕn,Mn)n∈N is i.i.d. under Q.
(2) EQ[| log µ1|δ] <∞ for every 0 < δ < 6 and EQ[log µ1] = 0.

(3) EQ[
(

log+(Varϕ(ξ
(1)
1 ) · µ−2

1 )
)2

] <∞ where µn := ϕ′n(1).

(4) lim inft→∞(tλ ·Q[logM1 > t]) > 0 for some 0 < λ < 2.

Then (Zn)n≥0 is transient.

The recurrence criterion for the branching process was inspired by some work on
random difference equations, e.g. [1], since there is some similarity between these
processes. In [10, p. 1196] Goldie asks about recurrence and transience of random
difference equations but characterizes only its positive recurrence.

The present paper is organized as follows. Section 2 is dedicated to the proofs of
Theorems 1.7 and 1.8 on critical BPIRE. In Section 3, the relation between the
ERWRE and the branching process is established in order to prove Theorem 1.1.
Examples are also given for the different cases of the theorem.
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2. Branching process in a random environment with immigration

First, let us deduce for our model an analogue result about positive recurrence for
an irreducible subcritical BPIRE from Theorem 3.3 in [12].

Lemma 2.1. Let (Zn)n≥0 be a BPIRE with reproduction according to the sequence of
p.g.f. (ϕn)n∈N and immigration according to probability measures (mn)n∈N. Assume
that

(1) (ϕn,mn)n∈N is i.i.d. under Q.
(2) EQ[log+E(ϕn,mn)n∈N [M1]] <∞.
(3) EQ[log+ µ1] <∞ and EQ[log µ1] < 0 where µn := ϕ′n(1).

Then (Zn)n≥0 is positive recurrent.

Proof. It is helpful to work with the alternative description of the BPIRE given in
Definition 1.5. Like in [12] we amplify this definition in the sense that we do not only
consider branching processes (Zn(t))n∈N0 starting at positive times, but allow t ∈ Z.
Therefore, the random environment is assumed to be a sequence e = (ϕx,mx)x∈Z of
i.i.d. random variables.

Recall that for n ≥ 1 the BPIRE can be defined as Zn =
∑n

j=1 Zn−j(j). Key

considers in [12] in a more general setting BPIRE of the form

Z̃(1)
n :=

n−1∑
j=1

Zn−j(j).

We shift this process and set for k ∈ N0,

Z̃
(−k)
0 :=

k∑
j=1

Zj(−j),

which is a BPIRE at time 0 that started in the past at time −k.

Since e is a sequence of i.i.d. random variables and since the branching processes
(Zn(t))n∈N0 , t ∈ Z, are independent under Qe, we get for v ∈ N0 and n ∈ N,

Q[Zn = v] = Q[Z0(n) + Z̃(1)
n = v]

=
v∑
j=0

EQ[Qe[Z0(n) = v − j, Z̃(1)
n = j]]

=
v∑
j=0

EQ[Qe[Z0(n) = v − j]Qe[Z̃
(1)
n = j]]

=
v∑
j=0

EQ[Qe[Z0(0) = v − j]Qe[Z̃
(1−n)
0 = j]].

According to Lemma 2.2 in [12], limn→∞Qe[Z̃
(1−n)
0 = j] exists Q-a.s. for each j ∈ N0.

Hence, by the dominated convergence theorem, π(v) := limn→∞Q[Zn = v] exists for
every v ∈ N0 and
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(1) π(v) =
v∑
j=0

EQ[Qe[Z0(0) = v − j] lim
n→∞

Qe[Z̃
(1−n)
0 = j]].

Let us show now that π is a probability measure on N0. By (1)∑
v∈N0

π(v) =
∑
v∈N0

v∑
j=0

EQ[Qe[Z0(0) = v − j] lim
n→∞

Qe[Z̃
(1−n)
0 = j]]

=
∑
j∈N0

∑
v≥j

EQ[Qe[Z0(0) = v − j] lim
n→∞

Qe[Z̃
(1−n)
0 = j]]

=
∑
j∈N0

EQ[ lim
n→∞

Qe[Z̃
(1−n)
0 = j]].

Note that for all j ∈ N0,

π̃(j) := EQ[ lim
n→∞

Qe[Z̃
(1−n)
0 = j]] = lim

n→∞
EQ[Qe[Z̃

(1−n)
0 = j]] = lim

n→∞
Q[Z̃(1)

n = j]

and π̃ defines a probability measure on N0 according to Theorem 3.3 in [12]. Thus,∑
v∈N0

π(v) = 1 and the subcritical BPIRE is positive recurrent, see e.g. [11, Theo-
rem 8.18] �

Now we will prove the recurrence and transience criteria for a critical BPIRE. The
recurrence criteria in Theorem 1.7 is inspired by a similar result for an autoregressive
model defined by a random difference equation in the critical case stated in [1]. Some
of the ideas in [1, p. 480f] will be employed and transferred to our BPIRE-model.

Proof of Theorem 1.7. Assume that Q[M1 = 0] < 1 since Zn = 0 Q-a.s. for all
n ∈ N0 if Q[M1 = 0] = 1.

Like in [1], let us define Y0 := 0 and

Yn := log(µ1 · . . . · µn).

Then (Yn)n≥0 is an oscillating random walk, i.e. lim supn→∞(±Yn) = ∞ Q-a.s., see
e.g. [11, Proposition 9.14]. The strict descending ladder epochs, see also [9, XII.1],
are defined by L0 := 0 and

Ln := inf{k > Ln−1 : Yk < YLn−1}.
Since (Yn)n≥0 is oscillating, Ln is Q-a.s. finite. Let L := L1 and note that EQ[YL] < 0.

Following the strategy in [1] we consider the subprocess (ZLn)n≥0 and answer the
following questions: Is this process a Markov Chain? Is it comparable to (Zn)n≥0 ,
more precisely, is it some kind and which kind of a branching process? Is it recurrent?
The third question is central for the proof of the theorem since the recurrence of the
subprocess yields the recurrence of the process itself.
Indeed, we show that (ZLn)n≥0 is a subcritical BPIRE.

A look at Figure 2 or a calculation of E(ϕ,M)[s
ZLn ], 0 ≤ s ≤ 1, n ∈ N, shows that it

is a BPIRE under Q(ϕ,M) with reproduction distribution given by the p.g.f.

λn(s) := ϕLn−1+1(ϕLn−1+2(. . . (ϕLn(s)) . . .)), 0 ≤ s ≤ 1,
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Figure 2. Process and subprocess.
In this figure it is assumed that L1 = 2, L2 = 5 and L3 = 6. The boxes with
continuous outlines mark the offspring of the previous generation, whereas
boxes with dotted outline gather the immigrants in generation 1, 2 and 3 of
the subprocess (ZLn)n≥0.

and measure mn for immigration in generation n ∈ N where mn is the distribution
of

M̃n :=
Ln∑

j=Ln−1+1

ZLn−j(j).

The sequence (λn,mn)n∈N is i.i.d. under Q since the increments of the ladder epochs
(Ln − Ln−1)n∈N are i.i.d. under Q, see [9, XII.1]. Subcriticality of (ZLn)n≥0 follows
from EQ[log λ′1(1)] = EQ[YL] < 0.

Furthermore, the following arguments give that the subprocess is still Markovian
under Q. For n ≥ 1 and i1, . . . , in+1 ∈ N0 the Markov property of (Zn)n≥0 under
Q(ϕ,M) implies

Q[ZLn+1 = in+1, ZLn = in, . . . , ZL1 = i1]

=
∑
k∈N

EQ[1Ln=k ·Q(ϕ,M)[ZLn+1 = in+1, ZLn = in, . . . , ZL1 = i1]]

=
∑
k∈N

EQ[1Ln=k ·Qθk(ϕ,M),in [ZL1 = in+1]Q(ϕ,M)[ZLn = in, . . . , ZL1 = i1]](2)

where θk denotes the shift θk(ϕj,Mj)j∈N = (ϕk+j,Mk+j)j∈N and in in Qθk(ϕ,M),in

denotes the number of ancestors. Since (ϕj,Mj)j∈N is i.i.d. it follows that (2) equals∑
k∈N

EQ[Qθk(ϕ,M),in [ZL1 = in+1]]EQ[1Ln=k ·Q(ϕ,M)[ZLn = in, . . . , ZL1 = i1]]

= Qin [ZL1 = in+1]Q[ZLn = in, . . . , ZL1 = i1].

To apply Lemma 2.1, we have to check if EQ[log+E(ϕ,M)[M̃1]] <∞ is satisfied. The

integrability of log(1 +E(ϕ,M)[M̃1]) implies integrability of log+E(ϕ,M)[M̃1] and vice
versa. We follow the strategy of the proof of Lemma 5.49 in [8]. According to [8,
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Lemma 5.23], log(1 + E(ϕ,M)[M̃1]) is integrable if and only if

(3) lim sup
n→∞

E(ϕ,M)[M̃n]1/n <∞ Q-a.s.

Since EQ[| log µ1|2] <∞, Theorem 1a in [9, XII.7, p. 414f] can be applied and yields
Q[L > n] ∼ c/

√
n for some constant c > 0. This implies EQ[Lβ] < ∞ for every

0 < β < 1/2. Let β = 1
2+ε

. E.g. by [11, Theorem 4.23], we get that Q-a.s.

(4) lim sup
n→∞

Lβn
n

= 0.

For the proof of (3) note that by the definitions of Zk(j) and since µj · . . . · µLn < 1
for each j < Ln we obtain Q-a.s.

E(ϕ,M)[M̃n] =
Ln∑

j=Ln−1+1

E(ϕ,M)[ZLn−j(j)]

=
Ln∑

j=Ln−1+1

Mjµj+1 · . . . · µLn

≤
Ln∑
j=1

Mj.(5)

Now, an analog calculation as the one in [8, p. 336] yields (3). For completeness let
us give the full argument. Inequality (5) gives

lim sup
n→∞

E(ϕ,M)[M̃n]1/n ≤ lim sup
n→∞

exp

(
1

n
log

( Ln∑
j=1

Mj

))

≤ lim sup
n→∞

exp

(
1

Lβn
log

(
1 +

Ln∑
j=1

Mj

)
· L

β
n

n

)
.(6)

Since

log

(
1 +

Ln∑
j=1

Mj

)
≤ Ln

sup
j=1

log(1 +Mj) + logLn

and logLn/L
β
n → 0 for n→∞, we get

lim sup
n→∞

1

Lβn
log

(
1 +

Ln∑
j=1

Mj

)
≤ lim sup

n→∞

1

Lβn

(
Ln

sup
j=1

(log(1 +Mj))
1
β

)β

≤ lim sup
n→∞

(∑Ln
j=1 (log(1 +Mj))

1
β

Ln

)β

.(7)

Recall that EQ[(log+M1)
1
β ] = EQ[(log+M1)

2+ε] <∞. Hence, the right-hand side of
(7) is finite Q-a.s. by the law of large numbers and (3) follows by (4), (6) and (7).



10 ELISABETH BAUERNSCHUBERT

Summing up, the subprocess (ZLn)n≥0 is a BPIRE with reproduction according
to (λn)n∈N and immigration distribution (mn)n∈N where (λn,mn)n∈N is i.i.d. and
E[logE(ϕ,M)[M̃1]] <∞. Applying Lemma 2.1 gives that (ZLn)n≥0 is positive recur-
rent, in particular recurrent. Hence, (Zn)n≥0 is recurrent. �

Before proving Theorem 1.8 let us deduce a useful result from Theorem 2 in [19].

Lemma 2.2. Let d ∈ N, c > 0 and 0 < a < 1. Assume that {V, Vi,n; i, n ∈ N0} is a
family of i.i.d., almost surely nonnegative random variables. Then, EQ[(log+ V )d] <

∞ if and only if
∑

n∈N0
an
∑bcnd−1c

i=0 Vi,n <∞ Q-a.s.

Proof. The Lemma is shown by induction over d. Lemma 4 in [19] gives that

EQ[log+ V ] < ∞ if and only if EQ[log+(
∑bcc

i=0 Vi,0)] < ∞. Furthermore, the latter

is equivalent to the almost sure convergence of
∑

n∈N0
an
∑bcc

i=0 Vi,n, see for instance
[15, Theorem 5.4.1].

Let the assertion hold for d ≥ 1. It will be useful to consider random variables
with three indices. Therefore, let {V, Vj,i,n; j, i, n ∈ N0} be i.i.d. Theorem 2 in
[19] yields that EQ[(log+ V )d+1] is finite if and only if EQ[(log+ V0)

d] is finite, where
V0 =

∑
n∈N0

anV0,0,n. By induction hypothesis, EQ[(log+ V0)
d] < ∞ is equivalent to

the almost sure convergence of

∑
j∈N0

aj
bcjd−1c∑
i=0

∑
n∈N0

anVj,i,n =
∑
j∈N0

∑
n∈N0

aj+n
bcjd−1c∑
i=0

Vj,i,n =
∑
k∈N0

ak
k∑
j=0

bcjd−1c∑
i=0

Vj,i,k−j.

The number of summands in
∑k

j=0

∑bcjd−1c
i=0 Vj,i,k−j is asymptotically equal to kdc/d

for k →∞. For d ≥ 1 note that the almost sure convergence of
∑

n∈N0
an
∑bc̃ndc

i=0 Vi,n
for some c̃ > 0 and all 0 < a < 1 implies the almost sure convergence for all c̃ > 0.
Hence, the lemma follows. �

Let us now prove the transience criterion for an irreducible critical BPIRE.

Proof of Theorem 1.8. The strategy of the proof is similar to the one of Theorem
2.2 in [4]. First we discuss an autoregressive model defined by the critical random
difference equation Xn := µnXn−1 + Mn for n ∈ N and X0 = 0. We will show that
Q-a.s.

(8) Xn > e
√
n for n large.

Thereafter, (Xn)n≥0 is coupled with the critical BPIRE (Zn)n≥0 to obtain the tran-
sience.

Like in the proof of Theorem 1.7 we define Yn = log µ1 + . . .+ log µn. Let 1
2
< κ < 1

λ
and

T (κ) := inf{k ∈ N : Yn ≥ −nκ for all n ≥ k}.
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By the law of the iterated logarithm T (κ) is finite Q-a.s. Choose 0 < δ < 6 such
that γ := δκ− 2 > 1. Then

EQ[T (κ)γ] =
∑
n∈N

nγQ[T (κ) = n]

≤ 1 +
∑
n≥2

nγQ[Yn−1 < −(n− 1)κ]

≤ 1 +
∑
n≥2

nγQ[|Yn−1| > (n− 1)κ].

This is finite due to the complete convergence theorem of Baum and Katz in [5,
Theorem 3, (a) ⇒ (b)] and the assumptions EQ[| log µ1|δ] <∞ and EQ[log µ1] = 0.
Therefore,

(9) EQ[T (κ)γ] <∞.

Consider now the autoregressive model. The recursion of Xn yields

Xn = Mn + µnMn−1 + µnµn−1Mn−2 + . . .+ µ2 . . . µnM1.

Set

Wn := M1 + µ1M2 + µ1µ2M3 + . . .+ µ1 . . . µn−1Mn

for n ∈ N. Then, exchangeability implies for all n ∈ N,

(10) Q[Xn > e
√
n] = Q[Wn > e

√
n].

Recall that 1
2
< κ < 1

λ
and γ > 1. By the assumption of the theorem there is some

constant c1 > 0 such that Q
[
M1 > e2n

κ]
> c1 · n−κλ for large n. Thus, we get for a

suitable constant c2 > 0 the following bound from above for large n ∈ N.

Q[Wn ≤ e
√
n, T (κ) < n

1
γ ] ≤ Q

[ ⋂
n

1
γ ≤i<n

{
µ1 . . . µiMi+1 ≤ e

√
n
}
, T (κ) < n

1
γ

]

= Q

[ ⋂
n

1
γ ≤i<n

{
Mi+1 ≤ e

√
n−Yi

}
, T (κ) < n

1
γ

]

≤ Q

[ ⋂
n

1
γ ≤i<n

{
Mi+1 ≤ e2n

κ}]

≤
(
1−Q

[
M1 > e2n

κ])n−n 1
γ −1

≤ e−c2n
1−κλ

.

Hence

Q[Wn ≤ e
√
n] ≤ Q[Wn ≤ e

√
n, T (κ) < n

1
γ ] +Q[T (κ) ≥ n

1
γ ]

≤ e−c2n
1−κλ

+Q[T (κ) ≥ n
1
γ ]
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for large n. By (10), (9) and since κλ < 1, we obtain∑
n≥1

Q
[
Xn ≤ e

√
n
]
<∞

and (8) follows by Borel-Cantelli.

The next step is to couple (Xn)n≥0 and (Zn)n≥0. As can be seen by the notations,
the increments of the difference equation correspond to the number of immigrants
in the BPIRE and the multiplication factor µn to the expected number of offspring
of an individual in generation n− 1.

Result (8) implies Q
[⋂

n≥1{Xn > e
√
n}
]
> 0 and hence Qϕ

[⋂
n≥1{Xn > e

√
n}
]
> 0

on some Q-non-null set D. Fix e−1 < β < 1. We will show that

(11) Qϕ

[⋂
n∈N

{Zn ≥ β
√
nXn}

∣∣∣∣∣ ⋂
k∈N

{Xk > e
√
k}

]
> 0

on D. Hence,

Q
[

lim
n→∞

Zn =∞
]
> 0

since eβ > 1, and the transience follows.

For n ∈ N0 let

Bn :=
n⋂
j=1

{Zj ≥ β
√
jXj} ∩

⋂
k≥1

{Xk > e
√
k}.

By the definition of (Zn)n≥0 in Definition 1.5 we get on D

Qϕ

[
Zn < β

√
nXn, Bn−1

]
=
∑
k∈N

Qϕ

[
Zn < β

√
nXn, Zn−1 = k,Bn−1

]
=
∑
k∈N

Qϕ

[
µnk −

k∑
i=1

ξ
(n)
i > µn(k − β

√
nXn−1) +Mn(1− β

√
n), Zn−1 = k,Bn−1

]

≤
∑

k>(eβ)
√
n−1

Qϕ

[
µnk −

k∑
i=1

ξ
(n)
i > (1− β

√
n−
√
n−1)µnk

]
·Qϕ [Zn−1 = k,Bn−1] .

Chebyshev’s inequality implies

Qϕ

[
µnk −

k∑
i=1

ξ
(n)
i > (1− β

√
n−
√
n−1)µnk

]
≤

Varϕ

(
ξ

(n)
1

)
(1− β

√
n−
√
n−1)2µ2

nk
.

Note that for large n, 1− β
√
n−
√
n−1 ≥ −1

2
(
√
n−
√
n− 1) log β. Hence,

Qϕ

[
Zn < β

√
nXn, Bn−1

]
≤

4 Varϕ

(
ξ

(n)
1

)
µ2
n(log β)2(

√
n−
√
n− 1)2(eβ)

√
n−1
·Qϕ [Bn−1]



RECURRENCE/TRANSIENCE OF CRITICAL BPIRE, APPLICATION TO ERW 13

for large n. Thus, it holds for some 0 < α < 1 that Qϕ

[
Zn < β

√
nXn|Bn−1

]
≤

α
√
n−1 Varϕ(ξ

(n)
1 )µ−2

n for large n and∑
n∈N0

α
√
n Varϕ(ξ

(n+1)
1 )µ−2

n+1 =
∑
k∈N0

(k+1)2−1∑
n=k2

α
√
n Varϕ(ξ

(n+1)
1 )µ−2

n+1

≤
∑
k∈N0

αk
(k+1)2−1∑
n=k2

Varϕ(ξ
(n+1)
1 )µ−2

n+1.

Applying assumption EQ[
(

log+(Varϕ(ξ
(1)
1 ) · µ−2

1 )
)2

] <∞, Lemma 2.2 yields on D∑
n∈N

Qϕ

[
Zn < β

√
nXn

∣∣∣Bn−1

]
<∞.(12)

Furthermore, we have on D

Qϕ

[
Zn ≥ β

√
nXn

∣∣∣Bn−1

]
≥ Qϕ

[
Zn−1∑
i=1

ξ
(n)
i ≥ µnβ

√
n−
√
n−1Zn−1

∣∣∣Bn−1

]
> 0(13)

for all n ≥ 1. The left-hand side of (11) equals
∏

n∈NQϕ

[
Zn ≥ β

√
nXn|Bn−1

]
and

thus, (11) follows from (12) and (13). �

Remark 2.3. The recurrence and transience criteria in Theorems 1.7 and 1.8 hold
in the same way for a BPIRE with one ancestor. Starting with Z0 = 0 in Definition
1.5 is only due to the proof of Lemma 2.1. To make sure that the BPIRE dies
out infinitely often Q-a.s. in Theorem 1.7, we have to assume additionally — if the
process starts with one ancestor — that Q[ϕ1(0) > 0,M1 = 0] > 0.

3. Excited random walk in random environment

The aim of this section is to transfer the recurrence and transience criteria from the
BPIRE to the ERWRE. Therefore, note the well-known connection between branch-
ing processes with migration and excited random walks. For a simple symmetric
random walk disturbed by cookies, this idea was employed for instance in [2, 3, 13].
In [4] the author explains the connection between a left-transient RWRE disturbed
by cookies of maximal strength and a subcritical BPIRE. In this section we establish
an analogous relation between a critical BPIRE and a recurrent RWRE disturbed
by cookies of maximal strength. The purpose of this connection is to prove Theorem
1.1.

Let us introduce the following notation and variables to describe the connection.
For detailed explanations we refer to [13] or [4].

Let X
(j)
i , i ∈ N, j ∈ Z, be a family of independent ±1-valued random variables on

Ω′, such that

Pz,ω[X
(j)
i = 1] = ω(j, i) and Pz,ω[X

(j)
i = −1] = 1− ω(j, i).

Then the ERWRE can be realized recursively by

Sn+1 = Sn +X
(Sn)
#{m≤n: Sm=Sn} for n ≥ 0.
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The events {X(j)
i = 1} and {X(j)

i = −1} are called success and failure respectively.
Furthermore, set

ξ
(k)
j := #{successes in

(
X

(k)
i

)
i>Mk

between the (j − 1)-st and the j-th failure} ,
V0 := 1 ,

Vk := ξ
(k)
1 + . . .+ ξ

(k)
Vk−1

+Mk .

Under Assumption A, it is obtained that (Vk)k≥0 is a BPIRE under P1, with one

ancestor, immigrants (Mk)k≥1 and progeny given by (ξ
(j)
i )i,j∈N. Remark that ξ

(j)
i

has geometric distribution with parameter (1 − pj), (geoN0(1 − pj) for short), i.e.

P1,ω[ξ
(j)
i = n] = pj(ω)n · (1− pj(ω)) for n ∈ N0 and P-a.e. ω ∈ Ω.

The time when the ERWRE first hits k ∈ Z, is denoted by

Tk := inf{n ∈ N : Sn = k}.

The recurrence from the right of the ERWRE is defined analogously to [13, p. 1962]
or [4].

Definition 3.1. The ERWRE is called recurrent from the right, if the first excursion
to the right of 0, if there is any, is P0-a.s. finite, i.e. P1[T0 <∞] = 1.

Note that, by the assumption of a recurrent RWRE and cookies inducing a drift to
the right, it follows that

(14) P0[lim sup
n→∞

Sn = +∞] = 1.

Indeed, for t > 0 and k ∈ N, monotonicity of P0,ω[Tk ≤ t] with respect to the
environment holds according to Lemma 15 in [20], which can be extended from
ω ∈ ([1/2, 1]N)Z to the current situation ω ∈ Ω = ([0, 1]N)Z.

Using (14) and P0[lim infn→∞ Sn ∈ {±∞}] = 1 instead of Lemma 3.2 in [4] we can
prove the next result about the connection between ERWRE and BPIRE analogously
to Lemma 3.5, Lemma 3.6 and Lemma 3.7 in [4].

Lemma 3.2. Let Assumption A hold. The ERWRE (Sn)n≥0 is recurrent from the
right if and only if (Vk)k≥0 is recurrent in 0, i.e. P1[∃k ∈ N : Vk = 0] = 1.
If (Sn)n≥0 is recurrent from the right, then all excursions are P0-a.s. finite.
If (Sn)n≥0 is not recurrent from the right, then P0 [limn→∞ Sn = +∞] > 0.

Remark 3.3. In the case of right-recurrence note that — due to monotonicity —
there are, in contrary to the model in [4], a.s. infinitely many finite excursions to the
right since the underlying random environment induces a recurrent random walk.
Hence, P0 [Sn = 0 infinitely often] = 1 if (Sn)n≥0 is recurrent from the right.

Proof of Theorem 1.1. The process (Vk)k≥0 as described above is a BPIRE with
immigrants (Mn)n≥1 and offspring distribution geoN0(1−pj), j ∈ N. It is irreducible
on the state space N0 since 0 < p0 < 1 P-a.s. and P[M0 = 0] > 0 by Assumption
A. Given an environment ω ∈ Ω, the expected number of offspring produced by a
single particle in the (j − 1)-st generation and its variance are

µj(ω) := E0,ω[ξ
(j)
1 ] =

pj(ω)

1− pj(ω)
= ρ−1

j (ω)
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and

Var0,ω(ξ
(j)
1 ) =

pj(ω)

(1− pj(ω))2
, respectively.

Hence, since A is assumed for Theorem 1.1, (Vk)k≥0 is a critical BPIRE according to
Definition 1.5. Furthermore, P[µ1 = 1] < 1 holds by Assumption A. Supposing that
E[| log µ1|δ] < ∞ for every 0 < δ < 6 also includes in particular that E[(log p1)

2] <
∞. To see this, note that

E
[(

log
p1

1− p1

)2
]
≥ E

[(
log

p1

1− p1

)2

1p1<κ

]
for any κ > 0. Now, for κ small enough, a constant c > 0 can be found such that(

log
p1

1− p1

)2

= (log p1 − log(1− p1))
2 ≥ c · (log p1)

2

holds on {0 < p1 < κ}.

Therefore, E[
(

log+(Var0,ω(ξ
(1)
1 ) · µ−2

1 )
)2

] = E[(log p1)
2] < ∞ is fulfilled and finally,

the assumptions of Theorems 1.7 and 1.8 are satisfied.

Thus, if E[(log+M0)
2+ε] < ∞ holds for some ε > 0, then the BPIRE (Vk)k≥0 is

recurrent by Theorem 1.7. Lemma 3.2 gives that P0 [Sn = 0 infinitely often] = 1
since the underlying RWRE is recurrent and the first statement of Theorem 1.1
follows.

Let lim inft→∞(tλ · P[logM1 > t]) > 0 for some 0 < λ < 2. Then (Vk)k≥0 is
transient by Theorem 1.8. We get thus by Lemma 3.2 that P0 [limn→∞ Sn = +∞] >
0. Now, following the same strategy as in the proof of Theorem 1.1.(iii) in [4] yields
P0[limn→∞ Sn = +∞] = 1. Hence, the proof is complete. �

Example 3.4. Suppose that the assumptions of Theorem 1.1 are fulfilled and let
λ > 0. Let M0 satisfy

P[M0 ≥ k] =
1

(1 + log k)λ
for k ≥ 2, k ∈ N,

P[M0 = 1] = 0,

P[M0 = 0] = 1− 1

(1 + log 2)λ
.

Theorem 1.1 makes no statement on the case λ = 2, but for λ 6= 2 we obtain the
following results.
If λ < 2, then limn→∞ Sn = +∞ P0-a.s. due to limt→∞ t

λP[logM0 ≥ t] = 1 > 0.
If λ > 2, then Sn = 0 infinitely often P0-a.s. since we can choose ε > 0 such that
2 + ε < λ and get E[(log+M0)

2+ε] <∞.
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