
A VIDEO COURSE ON COX RINGS

JÜRGEN HAUSEN, UNIVERSITÄT TÜBINGEN

This document provides a short introductory course to Cox rings via
video clips, short notes and exercises. The video clips can be activated
by clicking the respective starting buttons in the document. The pre-
requesites for this course are basic knowledge in algebraic geometry
and toric varieties.

The idea is to survey basic concepts, principles and facts around Cox
rings. The exercises may help to get deeper into the matter. For a
more detailed study, we refer to [1].

The present course format grew out of the need of teaching without
classroom during the Corona Time. Certainly, this course is a hand-
made product by a non-expert concerning multimedia techniques as
well as the didactic aspects of e-learning. The author will highly ap-
preciate any comments and suggestions.
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Guide to video clips, notes and exercises

Unit 1: Cox rings and characteristic spaces

Part 1-A. Weil divisors, sections, sheaves of divisorial algebras, Cox
sheaf and Cox ring in the torsion free case.

Clip 1-A Notes 1-A Exercises 1-A

Part 1-B. Cox sheaf and Cox ring in the general case, example of toric
varieties, algebraic properties of the Cox ring.

Clip 1-B Notes 1-B Exercises 1-B

Part 1-C. Characteristic space as the geometric realization of the Cox
sheaf, geometry of the characteristic space.

Clip 1-C Notes 1-C Exercises 1-C

Unit 2: Varieties with finitely generated Cox ring

Part 2-A. Total coordinate space, irrelevant ideal, geometric charac-
terization of total coordinate spaces and characteristic spaces.

Clip 2-A Notes 2-A Exercises 2-A

Part 2-B. Construction of GIT-quotients, the GIT-fan, good quotients
with a quotient space embeddable into a toric variety.

Clip 2-B Notes 2-B Exercises 2-B

Part 2-C. Linear Gale duality, bunched rings, construction of varieties
with finitely generated Cox ring.

Clip 2-C Notes 2-C Exercises 2-C

https://youtu.be/xQO-ltAO54E
https://youtu.be/_0yyK5GhO0E
https://youtu.be/0FIBEeuX9ho
https://youtu.be/AtQfmv6qjQ4
https://youtu.be/gBQdtgbC5AE
https://youtu.be/WalGFjzgf3E
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Unit 3: Geometry from defining data

Part 3-A. Minimal ambient toric variety, induced stratification, Picard
group, singularities and smooth points.

Clip 3-A Notes 3-A Exercises 3-A

Part 3-B. Base loci, cones of effective, movable, semiample and ample
divisor classes, Mori equivalence.

Clip 3-B Notes 3-B Exercises 3-B

Part 3-C. Intrinsic quadrics, systematic construction of all intrinsic
quadrics, smooth intrinsic quadrics of low Picard number.

Clip 3-C Notes 3-C Exercises 3-C

Unit 4: Rational C∗-surfaces

Part 4-A. First examples, the three types of fixed points, source and
sink, C∗-actions on toric surfaces, a non-toric example.

Clip 4-A Notes 4-A Exercises 4-A

https://youtu.be/f_AlWM_IiNg
https://youtu.be/VPytKiRqJcE
https://youtu.be/a3ToIHuCNRs
https://youtu.be/8a6yFsq_onE
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1. Cox rings and characteristic spaces

Part 1-A. We recall the basic notions around divisors, introduce and
discuss sheaves of divisorial algebras and finally define the Cox sheaf
and the Cox ring in the case of a torsion free divisor class group.

Clip 1-A Notes 1-A Exercises 1-A

Part 1-A: Short Notes

Reminder 1.1. Let X be a normal variety. The group of Weil divisors
of X is the free abelian group generated by the prime divisors,

WDiv(X) =
⊕

D prime
ZD.

where a prime divisor is an irreducible closed subvariety D ⊆ X of
codimension one. Every 0 6= f ∈ C(X)∗ defines a Weil divisor

div(f) =
∑

D prime
ordD(f) ·D,

where ordD(f) is the order of f along the prime divisor D. For any
two 0 6= f, f ′ ∈ C(X)∗, we have

div(ff ′) = div(f) + div(f ′).

Reminder 1.2. Every D ∈ WDiv(X) gives rise to a sheaf O(D) of
O-modules: for any open U ⊆ X, one sets

Γ(U,O(D)) := {0} ∪ {f ∈ C(X)∗; (div(f) +D)|U ≥ 0},
where one defines D|U := D ∩ U if D intersects U and D|U := 0
otherwise for prime divisors D. We always have

f ∈ Γ(U,O(D)), f ′ ∈ Γ(U,O(D′)) ⇒ ff ′ ∈ Γ(U,O(D +D′)).

Example 1.3. Consider the projective plane P2 and the Weil divisor
D := V (T0) on P2. We have

Γ(P2,O(D)) = C⊕ C
T1

T0
⊕ C

T2

T0
.

Moreover, denoting by C[T0, T1, T2]k the vector space of all homoge-
neous polynomials of degree k, we have an isomorphism

C[T0, T1, T2]k → Γ(P2,O(kD)), f 7→ f(T0, T1, T2)
T k0

.

Reminder 1.4. Let K be an abelian group. A K-graded C-algebra is
a C-algebra A coming with a direct sum decomposition

A =
⊕
w∈K

Aw

such that for any two w,w′ ∈ K we have AwAw′ ⊆ Aw+w′ . The vector
subspaces Aw ⊆ A are the homogeneous components of A.

https://youtu.be/xQO-ltAO54E
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Construction 1.5. Let X be a normal variety and K ⊆ WDiv(X) a
subgroup. The associated sheaf of divisorial algebras is the sheaf

S :=
⊕
D∈K
SD, SD := O(D)

of K-graded O-algebras, where the multiplication stems from that in
the field C(X) of rational functions:

Γ(U,SD)× Γ(U,SD′) → Γ(U,SD+D′), (f, f ′) 7→ ff ′.

Example 1.6. Consider again P2, the divisor D = V (z0) and the
divisorial sheaf S given by the subgroup

K := ZD ⊆ WDiv(P2).

Then K ∼= Z and we have an isomorphism C[T0, T1, T2] → Γ(P2,S) of
Z-graded algebras given component-wise by

C[T0, T1, T2]k → Γ(P2,SkD), f 7→ f(T0, T1, T2)
T k0

.

Reminder 1.7. On a normal variety X, the assignment f 7→ div(f)
yields a homomorphism C(X)∗ →WDiv(X). The image

PDiv(X) ⊆ WDiv(X)

is the subgroup of principal divisors. The divisor class group of X is
the factor group

Cl(X) := WDiv(X)/PDiv(X).

Theorem 1.8. Let X be a normal variety and K ⊆WDiv(X) a finitely
generated subgroup providing an epimorphism

K → Cl(X), D 7→ [D].

Let S be the sheaf of divisorial algebras associated with K. Then the
algebra of global sections Γ(X,S) is a unique factorization domain.

Construction 1.9. Let X be a normal variety with Cl(X) finitely
generated and torsion free. Then the canonical map

K → Cl(X), D 7→ [D]

is an isomorphsim for a suitable subgroup K ⊆ WDiv(X). We define
the Cox sheaf and the Cox ring of X as

R :=
⊕
D∈K
O(D), R(X) :=

⊕
D∈K

Γ(X,O(D)).

Remark 1.10. Construction 1.9 does not depend on the choice of
K ⊆ WDiv(X). In particular, the Cox ring R(X) is unique up to
isomorphy.
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Example 1.11. The class of D = V (T0) ⊆ P2 generates Cl(P2) and
the Cox ring of P is the polynomial ring
R(P2) =

⊕
k∈Z

Γ(P2,O(kD)) ∼=
⊕
k∈Z

C[T0, T1, T2]k = C[T0, T1, T2].

Theorem 1.12. Let X be a normal variety with finitely generated tor-
sion free divisor class group. Then the Cox ring R(X) is a unique
factorization domain.

Part 1-A: Exercises

Exercise 1.13. Let K ⊆ WDiv(X) have D1, . . . , Dl as a Z-basis and
U ⊆ X be open subset such that

Di = div(fi), i = 1, . . . , l.
Show that, with deg(Ti) = Di and f−1

i ∈ Γ(X,SDi), we have an iso-
morphism of K-graded algebras

Γ(U,O)[T±1
1 , . . . , T±1

l ]→ Γ(U,S), gT ν1
1 · · ·T

νl
l 7→ gf−ν1

1 · · · f−νll .

Exercise 1.14. Let X be a normal variety and S the sheaf of divisorial
algebras arising from a subgroup K ⊆ WDiv(X). Show that for the
set Xreg ⊆ X of smooth points, we have

Γ(Xreg,S) = Γ(X,S).

Exercise 1.15. Prove Remark 1.10. Hint: Given two subgroups K
and K ′ of WDiv(X) mapping isomorphically onto Cl(X), there are Z-
bases D1, . . . , Dl of K and D′1, . . . , D

′
l of K ′ with D′i = Di + div(fi).

Use this to relate the associated sheaves of divisorial algebras.

Part 1-B. We define Cox sheaf and Cox ring in the general case, look
at the example case of a toric variety and discuss algebraic aspects of
the Cox ring, in particular its divisibility properties.

Clip 1-B Notes 1-B Exercises 1-B

Part 1-B: Short Notes

Construction 1.16. Let X be a normal variety with Γ(X,O∗) = C∗
and Cl(X) finitely generated. Fix a subgroup K ⊆WDiv(X) such that

c : K → Cl(X), D 7→ [D]
is surjective. Set K0 = ker(c) and choose a group homomorphism
χ : K0 → C(X)∗ with

div(χ(E)) = E for all E ∈ K0.

https://youtu.be/_0yyK5GhO0E
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Let S be the associated sheaf of divisorial algebras associated with K.
Then we obtain a sheaf of ideals in of S by
I = S〈1− χ(E), E ∈ K0〉, 1 ∈ Γ(X,S0), χ(E) ∈ Γ(X,S−E).

The Cox sheaf of X is the quotient sheaf R := S/I together with the
Cl(X)-grading

R =
⊕

[D]∈Cl(X)
R[D], R[D] := π

 ⊕
D′∈c−1([D])

SD′
 .

where π : S → R denotes the projection. The Cox ring is the algebra
of global sections

R(X) :=
⊕

[D]∈Cl(X)
R[D](X), R[D](X) := Γ(X,R[D]).

Remark 1.17. The assumption Γ(X,O)∗ = C∗ in Construction 1.16
ensures that the Cox sheaf R and the Cox ring R(X) are unique up to
isomorphy.

Example 1.18. Let Z be a toric variety with acting torus T and base
point z0. With the invariant prime divisors Di ⊆ Z, we have

Z \ T · z0 = D1 ∪ . . . ∪Dr

The divisor class group Cl(Z) is generated by the classes [Di]. Assume
Γ(Z,O∗) = C∗. Then the Cox ring of Z is given by
R(Z) = C[T1, . . . , Tr], deg(Ti) = [Di] ∈ Cl(Z), i = 1, . . . , r.

More explicitly, let Z arise from a lattice fan (Σ, N) with primitive
generators v1, . . . , vr ∈ N spanning NQ. Then

P : Zr → N, ei 7→ vi

defines a linear map and the divisor class group of Z is the cokernel of
the dual map P ∗ : M → Zr:

Cl(Z) ∼= Zr/P ∗M.

Denote by Q : Zr → Zr/P ∗M the projection. Then the Cox ring of the
toric variety Z is given as

R(Z) = C[T1, . . . , Tr], deg(Ti) = Q(ei), i = 1, . . . , r.

Remark 1.19. Consider the setting of Construction 1.16. For every
divisor D ∈ K, we have an isomorphism of sheaves

π|SD : SD → R[D].

Moreover, for every open set U ⊆ X, we have a canonical isomorphism
of Cl(X)-graded algebras

Γ(U,S)/Γ(U, I) ∼= Γ(U,S/I).
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In particular, the Cox ring R(X) of X is the quotient of the algebra of
global sections of S:

R(X) ∼= Γ(X,S)/Γ(X, I).

Construction 1.20. Let X be a normal variety with Cox ring R(X).
For any homogeneous element 0 6= f ∈ R[D](X) we define the [D]-
divisor and the [D]-localization as

div[D](f) := div(f̃) +D, X[D],f := X \ supp(div(f̃) +D),
where, in the setting of Construction 1.16, we choose D ∈ K and take
f̃ ∈ Γ(X,SD) with π(f̃) = f . The [D]-divisor and the [D]-localization
of f do not depend on the choices made.

Theorem 1.21. The Cox ring R(X) is an integral normal ring. More-
over, one has the following statements on localization and units.

(i) For every non-zero homogeneous element f ∈ R[D](X), there
is a canonical isomorphism

Γ(X,R)f ∼= Γ(X[D],f ,R).
(ii) Every homogeneous unit of R(X) is constant. If Γ(X,O) = C

holds, then we have R(X)∗ = C∗.

Definition 1.22. Consider a finitely generated abelian group K and
a K-graded integral C-algebra R = ⊕KRw.

(i) A non-zero non-unit f ∈ R is K-prime if it is homogeneous
and f |gh with homogeneous g, h ∈ R implies f |g or f |h.

(ii) R is K-factorial, or factorially graded, if every homogeneous
non-zero non-unit f ∈ R is a product of K-primes.

Remark 1.23. For torsion free grading group and finitely generated
C-algebra, the concepts “factorially graded” and “factorial” coincide.
As soon as there is torsion in the grading group, they may differ.

Proposition 1.24. Let X be a normal variety with Cox ring R(X).

(i) An element 0 6= f ∈ Γ(X,R[D]) divides 0 6= g ∈ Γ(X,R[E]) if
and only if div[D](f) ≤ div[E](g) holds.

(ii) An element 0 6= f ∈ Γ(X,R[D]) is Cl(X)-prime if and only if
the divisor div[D](f) ∈WDiv(X) is prime.

Theorem 1.25. Let X be a normal variety with Cox ring R(X).

(i) R(X) is Cl(X)-factorial.
(ii) If Cl(X) is torsion free, then R(X) is a UFD.

Part 1-B: Exercises
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Exercise 1.26. Verify Example 1.18. Hint: Recall that the we have
an isomorphism of groups

Zr → WDivT(Z), a 7→ Da := a1D1 + . . .+ arDr.

Now proceed as follows. Show that for any a ∈ Zr, we have an isomor-
phism of vector spaces

ψa : Γ(Z,O(Da)) 7→ C[T1, . . . , Tr]Q(a) χu 7→ T P
∗u+a,

where as usual T µ = T µ1
1 · · ·T µrr . Show that the ψa, where a ∈ Zr fit

together to a homomorphism of C-algebras
ψ : Γ(Z,S) → C[T1, . . . , Tr]

The invariant principal divisors of Z are precisely the divisors of the
character functions χu, where u ∈M . This defines a homomorphism

χ : ker(Q) = P ∗M → C(Z)∗, P ∗u 7→ χu.

Show that ker(ψ) is generated by 1 − χu, where u ∈ M , and use Re-
mark 1.19 to conclude

R(Z) ∼= Γ(Z,S)/Γ(Z, I) ∼= C[T1, . . . , Tr].

Exercise 1.27. Verify the statements made in Remark 1.19. Show
that the Cox sheaf and the Cox ring do not depend on the choices
made in Construction 1.16.

Exercise 1.28. Show that the [D]-divisor does not depend on the
choices made in Construction 1.20.

Exercise 1.29. Let X be a variety with Cox sheaf R. Show that every
affine open set U ⊆ X is the [D]-localization of some f ∈ R[D](X).
Hint: Use the fact that in any variety, the complement of a proper
affine open subset is of pure codimension one.

Exercise 1.30. Show that the following C-algebra does not admit
unique factorization:

A := C[T1, T2, T3]/〈T 2
1 + T 2

2 + T 2
3 〉

Show that A becomes factorially K-graded with K = Z⊕Z/2Z⊕Z/2Z
by setting

deg(T1) := (1, 0̄, 0̄), deg(T2) := (1, 1̄, 0̄), deg(T3) := (1, 0̄, 1̄).

Part 1-C. We introduce the characteristic space as the geometric re-
alization of the Cox sheaf, consider the action of the characteristic
quasitorus and discuss the geometry of the characteristic space.

Clip 1-C Notes 1-C Exercises 1-C

Part 1-C: Short Notes

https://youtu.be/0FIBEeuX9ho
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Remark 1.31. Consider a variety X with Cox sheaf R. Then R is
locally of finite type if X is covered by an affine open U ⊆ X such that
the C-algebra Γ(U,R) is finitely generated.

(i) If R(X) is finitely generated, then R is locally of finite type.
(ii) If X is Q-factorial, then R is locally of finite type.

Construction 1.32. Let X be a variety with Cox sheaf R locally of
finite type. Cover X by open affine Xi ⊆ X such that Ri := Γ(Xi,R)
is finitely generated. Consider the commutative diagrams

RiOO Rij
//
OO

Rji
oo

OO
RjOO

(Ri)0 (Rij)0// (Rji)0 oo R(Xj)0

where Rij = Γ(Xij,R) with Xij := Xi ∩ Xj and the lower row lists
the respective parts of Cl(X)-degree zero. Passing to the spectra, we
obtain gluing data

X̂i

��

X̂ij
oo

��

X̂ji
//

��

X̂j

��
Xi Xij
oo Xji

// Xj

Gluing yields a normal quasiaffine variety X̂ = SpecX R, coming with
an affine morphism p : X̂ → X. We call X̂ the characteristic space
over X. Note that we have

p∗(OX̂) = R, Γ(X̂,O) = Γ(X,R).

Remark 1.33. In Construction 1.32, all the algebras are graded by
the finitely generated abelian group Cl(X) and the involved homomor-
phisms respect these gradings.

Reminder 1.34. A quasitorus is an algebraic group isomorphic to
a direct product of a torus and a finite abelian group. We have a
contravariant equvalence of categories:{

finitely generated
abelian groups

}
←→ {quasitori}

K 7→ Spec C[K],
X(H) ←[ H.

Reminder 1.35. Let a quasitorus H act on an affine variety X. We
call f ∈ Γ(X,O) homogeneous with respect to a character χ ∈ X(H) if

f(h · x) = χ(h)f(x), for all h ∈ H, x ∈ X.
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Let Γ(X,O)χ ⊆ Γ(X,O) denote the vector subspace of all χ-homo-
geneous functions. Then one has a grading

Γ(X,O) =
⊕

χ∈X(H)
Γ(X,O)χ.

Fact 1.36. The correspondence between affine algebra and affine va-
rieties specializes to a contravariant equivalence of categories

{graded affine algebras} ←→
{

affine varieties with
quasitorus action

}
A 7→ Spec A,

Γ(X,O) ←[ X.

Here we mean by a graded affine algebra an integral finitely generated
C-algebra graded by a finitely generated abelian group.
Definition 1.37. Let a quasitorus H act on a variety X. A morphism
p : X → Y is called a good quotient if

(i) p : X → Y is affine and H-invariant,
(ii) the pullback p∗ : OY → (p∗OX)H is an isomorphism.

A good quotient p : X → Y is called geometric if its fibers are precisely
the orbits of the H-action.
Proposition 1.38. Let a quasitorus H act on a variety X with good
quotient p : X → Y . Then p is surjective and for any y ∈ Y one has:

(i) There is exactly one closed H-orbit H · xy in the fiber p−1(y).
(ii) Every orbit H · x ⊆ p−1(y) has H · xy in its closure.

Remark 1.39. LetX be a variety with characteristic space p : X̂ → X.
Then the characteristic quasitorus

H = Spec C[Cl(X)]
acts on on the variety X̂ and the morphism p : X̂ → X is a good
quotient for this action.
Definition 1.40. Let X be a normal variety and let x ∈ X be any
point. Then we have the subgroup

PDiv(X, x) ⊆ WDiv(X)
of all Weil divisors being principal near x. The local class group of X
at x is the factor group

Cl(X, x) := WDiv(X)/PDiv(X, x).
Proposition 1.41. Consider the characteristic space p : X̂ → X and
the action of the characteristic quasitorus H on X̂. Given x ∈ X, fix
x̂ ∈ p−1(x) with closed H-orbit. Then

Cl(X, x) ∼= X(Hx̂).
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Corollary 1.42. Consider the characteristic space p : X̂ → X and the
action of the characteristic quasitorus H on X̂.

(i) The action of HX on X̂ is free if and only if X is locally
factorial.

(ii) The good quotient p : X̂ → X is geometric if and only if X is
Q-factorial.

Reminder 1.43. A Weil divisor on a normal variety X is Cartier if it
is locally principal. We write

CDiv(X) ⊆ WDiv(X)
for the subgroup of all Cartier divisors of X. The Picard group of X is
the factor group

Pic(X) = CDiv(X)/PDiv(X).

Corollary 1.44. Consider the characteristic space p : X̂ → X and the
action of the characteristic quasitorus H on X̂. Let Ĥ ⊆ H be the
subgroup generated by all isotropy groups Hx̂, where x̂ ∈ X̂. Then

Pic(X) ∼= X(H/Ĥ).

Part 1-C: Exercises

Exercise 1.45. Prove Remark 1.31. Hint: For the first statement, use
Theorem 1.21 (i). For the second one, use R = S/I, Exercise 1.13 and
[1, Cor. 1.1.2.6].

Exercise 1.46. Let A = ⊕KAw be a K-graded affine algebra and
suppose that we are given homogeneous generators

A = C[f1, . . . , fr], fi ∈ Awi , i = 1, . . . , r.
Consider X = Spec A with the action of H = Spec C[K]. Convince
yourself about the following. We have a closed embedding

X → Cr, x 7→ (f1(x), . . . , fr(x)).
The image X ⊆ Cr is invariant under the diagonal action of H =
Spec C[K] given by

h · z = (χw1(h)z1, . . . , χ
wr(h)zr),

where χw1 ∈ X(H) is character given by Z → K, a 7→ aw. For any
f ∈ A homogeneity is characterized by

f ∈ Aw ⇔ f(h · x) = χw(h)f(x) for all h ∈ H, x ∈ X.

Exercise 1.47. Verify all the statements made in Remark 1.39.

Exercise 1.48. Prove Corollary 1.44 by using Proposition 1.41.
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Exercise 1.49. Consider the characteristic space p : X̂ → X and the
action of the characteristic quasitorus H on X̂. Show that if there is
an H-fixed point in X̂, then the Picard group Pic(X) is trivial.
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2. Varieties with finitely generated Cox ring

Part 2-A. We introduce the total coordinate space and the irrelevant
ideal and we characterize coordinate spaces as well as characteristic
spaces via properties of the characteristic quasitorus action.

Clip 2-A Notes 2-A Exercises 2-A

Part 2-A: Short Notes

Construction 2.1. Let X be a variety with finitely generated Cox
ring R(X). The total coordinate space of X is the normal affine variety

X̄ := Spec R(X)

with the action of the characteristic quasitorus H = Spec C[Cl(X)]
given by the Cl(X)-grading of R(X). The isomorphisms

Γ(O, X̄) = R(X) = Γ(R, X) = Γ(O, X̂)

of graded algebras yield an H-equivariant open embedding X̂ ⊆ X̄
with complement X̄ \ X̂ of codimension at least two in X̄. Altogether:

SpecX R X̂

p //H

��

⊆ X̄ Spec R(X)

X

Definition 2.2. In the setting of Construction 2.1, the irrelevant ideal
of X is the vanishing ideal of the complement X̄ \ X̂ in the Cox ring:

Jirr(X) := {f ∈ R(X); f |X̄\X̂ = 0} ⊆ O(X̄) = R(X).

Proposition 2.3. Situation as in Construction 2.1. The irrelevant
ideal Jirr(X) ⊆ R(X) is homogeneous and we have the following.

(i) For any homogeneous element f ∈ R(X), the membership in
the irrelevant ideal is characterized by

f ∈ Jirr(X) ⇐⇒ X̄f = X̂f ⇐⇒ X̂f is affine.

(ii) Let 0 6= f ∈ R[D](X). If the [D]-localization X[D],f is affine,
then we have f ∈ Jirr(X).

(iii) Let 0 6= fi ∈ R[Di](X), where 1 ≤ i ≤ r, be such that the sets
X[Di],fi are affine and cover X. Then we have

Jirr(X) =
√
〈f1, . . . , fr〉.

https://youtu.be/AtQfmv6qjQ4
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Example 2.4. Consider the toric variety Z arising from a non-
degenerate lattice fan (Σ, N) and the linear map

P : Zr → N, ei 7→ vi,

defined by the primitive v1, . . . , vr of Σ. The divisor class group of Z
and the characteristic quasitorus are given by

Cl(Z) = Zr/P ∗M, H = SpecC[Zr/P ∗M ],
where P ∗ : M → Zr denotes the dual map of P . With the projection
Q : Zr → Zr/P ∗M , the Cox ring of Z is

R(Z) = C[T1, . . . , Tr], deg(Ti) = Q(ei).

Now, write δr := Qr
≥0 for the positive orthant and define a subfan Σ̂ of

the fan Σ̄ of faces of δr by

Σ̂ := {δ 4 δr; P (δ) ⊆ σ for some σ ∈ Σ}.

Then P : Zr → N is a map of fans from Σ̂ to Σ. The associated toric
morphisms give us the picture from Construction 2.1:

SpecZ R Ẑ

p //H

��

⊆ Z̄ Spec R(Z) Cr

Z

Observe that H = ker(p) acts on Z̄ as a subgroup of Tr. For the
irrelevant ideal of Z, we obtain
Jirr(X) = 〈T σ; σ ∈ Σ〉 ⊆ C[T1, . . . , Tr], T σ =

∏
vi 6∈σ

Ti.

Definition 2.5. Let a quasitorus H act on a variety W .

(i) f ∈ C(W ) is homogeneous w.r.t. to χ ∈ X(H) if f is defined
and χ-homogeneous on a non-empty invariant open set.

(ii) W is H-factorial if it is normal and any H-invariant Weil di-
visor of W is the divisor of a homogeneous rational function.

Remark 2.6. Let W be a normal quasiaffine variety with an action of
a quasitorus H. Then we have the grading

Γ(W,O) =
⊕
X(H)

Γ(W,O)χ.

The variety W is H-factorial if and only if the algebra Γ(W,O) is
X(H)-factorial.

Remark 2.7. Let X be a variety with finitely generated Cox
ring R(X). Since R(X) is Cl(X)-factorial, the total coordinate space
X̄ is H-factorial.
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Definition 2.8. The action of a quasitorusH on a varietyW is strongly
stable if there is an open invariant subset W ′ ⊆ W such that

(i) W \W ′ is of codimension at least two in W ,
(ii) the group H acts freely on W ′,

(iii) for every x ∈ W ′ the orbit H · x is closed in W .

Remark 2.9. Let X be a variety with finitely generated Cox
ring R(X). Then the action of the characteristic quasitorus H on
the total coordinate space X̄ is strongly stable.

Theorem 2.10. Let a quasitorus H act on a quasiaffine variety W
with a good quotient p : W → X. Assume that

(i) W has only constant invertible homogeneous global functions,
(ii) W is H-factorial,
(iii) the H-action is strongly stable.

Then X is a normal variety with Γ(X,O∗) = C∗. Moreover, divisor
class group, Cox sheaf, characteristic space of X are given by

Cl(X) ∼= X(H), R ∼= p∗OW , p : W → X.

Corollary 2.11. Let H be a quasitorus, W̄ an H-factorial affine va-
riety with only constant invertible homogeneous global functions and
W ⊆ W̄ an open, H-invariant subset such that

(i) W̄ \W is of codimension at least two in W̄ ,
(ii) the H-action on W is strongly stable,
(iii) the H-action on W has a good quotient p : W → X.

Then p : W → X is a characteristic space over X and W̄ is a total
coordinate space for X.

Remark 2.12. Building on Corollary 2.11, it will be our task for the
remaining unit to provide systematic constructions of varieties with
finitely generated Cox ring.

Part 2-A: Exercises

Exercise 2.13. Verify the details of the toric case as discussed in
Example 2.4.

Exercise 2.14. Verify the statements of Remark 2.9. Hint: Use Propo-
sition 1.41.

Exercise 2.15. Consider the quadric X = V (T 2
0 + . . .+T 2

n) in Pn. Use
Corollary 2.11 to concude Cl(X) = Z and
R(X) = C[T0, . . . , Tn]/〈T 2

0 + . . .+ T 2
n〉, deg(Ti) = 1, i = 0, . . . , n.
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Part 2-B. Construction of GIT-quotients, the GIT-fan, good quotients
with a quotient space embeddable into a toric variety.

Clip 2-B Notes 2-B Exercises 2-B

Part 2-B: Short Notes

Reminder 2.16. Consider the action of a quasitorus H on a variety X.

(i) If X is affine, thus X = Spec A with a K-graded algebra A,
then one has the algebraic quotient

π : X → Y = Spec Γ(X,O)H = Spec A0.

(ii) A good quotient is an affine, H-invariant morphism π : X → Y
such that π∗ : OY → π∗(OX)H is an isomorphism.

Example 2.17. For any a, b ∈ Z, we have the diagonal action of C∗
on the affine plane C2 given by

t · z = (taz1, t
bz2).

In the elliptic case, the origin is an attractive fixed point. For instance,
for a = b = 1, we have two good quotients:

C2 → {pt}, C2 \ {0} → P1, z 7→ [z].

The first one is the algebraic quotient, the second one is a geometric
quotient, meaning that the fibers are the orbits.

In the parabolic case, we have curve consisting of fixed points. For
instance, for a = 0 and b = 1, we have two algebraic quotients:

C2 → C, z 7→ z1, C2 \ V (T2) → C, z 7→ z1.

In the hyperbolic case, the general orbit is closed. We have three good
quotients, the latter two of them geometric:

C2 → C, z 7→ z1z2,
C2 \ V (T1) → C, z 7→ z1z2,

C2 \ V (T1) → C, z 7→ z1z2.

Construction 2.18. Let the quasitorus H act on the affine variety X.
The set of semistable points associated with χ ∈ X(H) is

Xss(χ) := {x ∈ X; f(x) 6= 0 for f ∈ Γ(X,O)nχ, n > 0}

The subset Xss(χ) ⊆ X is open and H-invariant. Given n > 0 and
f ∈ Γ(X,O)nχ, we have the algebraic quotient

πf : Xf → Uf , Uf = Spec Γ(Xf ,O)H .

https://youtu.be/gBQdtgbC5AE
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By definition, these sets Xf cover Xss(χ). Provided Xss(χ) 6= ∅, the
above algebraic quotients yield gluing data

Xf

πf

��

Xfg

��

⊇ ⊆ Xg

πg

��
Uf Ufgoo // Ug

The result of the gluing process is a good quotient π : Xss(χ)→ Y (χ)
for the H-action on Xss(χ), the GIT-quotient associated with χ.

Remark 2.19. The quotient space Y (χ) equals the homogeneous spec-
trum Proj(A(χ)) of the finitely generated Z≥0-graded C-algebra

A(χ) :=
⊕
n∈Z≥0

Γ(X,O)nχ ⊆ Γ(X,O).

Thus, the quotient Xss(χ) → Y (χ) is projective in the sense that the
morphism Y (χ)→ Y (0) is projective, where Y (0) = Spec Γ(X,O)H .

Construction 2.20. Let the quasitorus H act on the affine variety X.
We have the following cones in the rational vector space XQ(H):

ωX := cone(χ ∈ X(G); Γ(X,O)χ 6= {0}),
ωx := cone(χ ∈ X(G); f(x) 6= 0 for a f ∈ Γ(X,O)χ),
λχ :=

⋂
x∈X,
χ∈ωx

ωx,

the weight cone ωX of X, the orbit cone ωx of a point x ∈ X and the
GIT-cone λχ of a character χ ∈ ωX .

Remark 2.21. The weight cone, the orbit cones and the GIT-cones
are all convex and polyhedral. Moreover, the following sets are finite

Ωx := {ωx; x ∈ X}, Λ(X) := {λχ; χ ∈ ωX}.

Theorem 2.22. Let the quasitorus H act on an affine variety X.
Then Λ(X) is a quasifan with support ωX ⊆ XQ(H). Moreover,

λχ1 4 λχ2 ⇐⇒ Xss(χ1) ⊇ Xss(χ2)
holds for any two characters χ1, χ2 ∈ ωX . If X is H-factorial, then we
have a bijection

Λ(X) −→
{
H-invariant open X ′ ⊆ X with
projective good quotient X ′ → Y ′

}

λ 7→ Xss(χ), where χ ∈ λ◦.

Remark 2.23. A variety has the A2-property if any two of its points
admit a common affine neighborhood. A normal variety has the A2-
property if and only if it admits a closed embedding into a normal toric
variety.
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Definition 2.24. Let the quasitorus H act on an affine variety X. A
bunch of orbit cones is a set ∅ 6= Φ ⊆ ΩX of orbit cones such that

(i) given ω1, ω2 ∈ Φ, one has ω◦1 ∩ ω◦2 6= ∅,
(ii) given ω ∈ Φ and ω0 ∈ ΩX with ω◦ ⊆ ω◦0, one has ω0 ∈ Φ.

A maximal bunch of orbit cones is a bunch of orbit cones which cannot
be enlarged by adding further orbit cones.

Construction 2.25. Let the quasitorus H act on an affine variety X.
For any bunch of orbit cones Φ ⊆ ΩX , we set

X(Φ) := {x ∈ X; ω 4 ωx for some ω ∈ Φ}.
Then X(Φ) ⊆ X is an (H, 2)-set in the sense that it is open, H-
invariant and there is a good quotient

X(Φ) → Y (Φ)
for the action of H on X(Φ) and the quotient variety X(Φ) has the
A2-property.

Definition 2.26. Let the quasitorus H act on an affine variety X. An
(H, 2)-maximal set is an (H, 2)-set U ⊆ X such that given any (H, 2)-
set U1 ⊆ X with good quotient π1 : U1 → Y1 and an open V ⊆ Y1 with
U = π−1

1 (V ), we have U = U1.

Theorem 2.27. Let the quasitorus H act on an affine variety X and
assume that X is H-factorial. Then we have a bijection{

maximal bunches of
orbit cones in ΩX

}
−→

{
(H,2)-maximal
subsets of X

}
Φ 7→ X(Φ).

Part 2-B: Exercises

Exercise 2.28. Verify all the statements made in Example 2.17. Com-
pute the GIT-fan Λ(C2) for each of the discussed cases and retrieve the
quotients presented there as GIT-quotients.

Exercise 2.29. Let the quasitorus H act on an affine variety X. Con-
vince yourself about the following.

(i) The algebra Γ(X,O) is generated by finitely many χi-
homogeneous functions fi, say i = 1, . . . , r.

(ii) Every orbit cone ωx, where x ∈ X is generated by some of the
characters χ1, . . . , χr.

(iii) The weight cone ωX is generated by χ1, . . . , χr and there is a
non-empty open u ⊆ X with ωX = ωx for all x ∈ U .

Use these observations to prove all the statements made in Re-
mark 2.21.
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Exercise 2.30. Let the quasitorus H act on an affine variety X. Given
GIT-cones λχ1 4 λχ2 , show that we have a commutative diagram

Xss(χ2) ⊆

��

Xss(χ1)

��
Y (χ2) // Y (χ1)

where the induced morphism Y (χ2)→ Y (χ2) is projective. Hint: Use
that Y (χi)→ Y (0) is projective.

Part 2-C. We discuss linear Gale duality, introduce concept of a
bunched ring, perform the construction of the associated variety and
figure out the bunched rings producing projective varieties.

Clip 2-C Notes 2-C Exercises 2-C

Part 2-C: Short Notes

Remark 2.31. Consider a non-degenerate lattice fan (Σ, N) with
primitive generators v1, . . . , vr. Then we have exact sequences

0 // L // Zr P : ei→vi // N

δ < σ̂

��

σoo

Q(σ̂∗) σ̂∗ 4 γoo

0 Koo Zr
Q

oo M
P ∗

oo 0oo

and a process, also called linear Gale duality, associating with any cone
σ ∈ Σ the cone Q(σ̂∗) ⊆ KQ via

cone(ei; vi ∈ σ) = σ̂ 7→ σ̂∗ = cone(ej; vj 6∈ σ).
Here, δ = Qr

≥0 and γ = Qr
≥0 are regarded as dual to each other and the

displayed assignment is the face correspondence.

Remark 2.32. Let the toric variety Z arise from a non-degenerate
lattice fan (Σ, N). Divisor class group and Cox ring of Z are given by

Cl(Z) = K, R(Z) = C[T1, . . . , Tr], deg(Ti) = Q(ei).
The characteristic quasitorus H = Spec C[K] acts via the grading on
the total coordinate space Z̄ = Cr. We observe:

(i) the algebra R(Z) is K-factorial and T1, . . . , Tr form a system
of pairwise non-associated K-prime generators,

(ii) the K-grading of R(Z) is almost free, that means that any
r − 1 of deg(T1), . . . , deg(Tr) generate K as a group,

https://youtu.be/WalGFjzgf3E
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(iii) the collection Φ = {Q(σ̂∗); σ ∈ Σ} is a bunch of orbit cones of
the H-action on Z̄, containing all Q(%∗i ), where i = 1, . . . , r.

The toric variety Z is an open subset of Z(Φ) = Z̄(Φ)//H. If Z is
suitably maximal, for instance affine or complete, then Z = Z(Φ) holds.

Definition 2.33. Let R be a normal, K-factorial C-algebra with a
system F = (f1, . . . , fr) of pairwise non-associated K-prime generators.

(i) Set wi := deg(fi) ∈ K. The K-grading of R is almost free, if
any r − 1 of w1, . . . , wr generate the group K.

(ii) The projected cone assigned to F is (Zr Q−→ K, γ), where the
homomorphism Q and the cone γ are

Q : Zr → K, ei → deg(fi), γ = cone(e1, . . . , er) ⊆ EQ.

(iii) An F-face is a face γ0 4 γ admitting a point x̄ ∈ X̄ := SpecR
such that for every i = 1, . . . , r we have

fi(x̄) 6= 0 ⇔ ei ∈ γ0.

(iv) Set ΩF = {Q(γ0); γ0 4 γ F-face}. By an F-bunch we mean a
nonempty subset Φ ⊆ ΩF such that
(a) given ω1, ω2 ∈ Φ, one has ω◦1 ∩ ω◦2 6= ∅,
(b) given ω ∈ Φ and ω0 ∈ ΩF with ω◦ ⊆ ω◦0, one has ω0 ∈ Φ.

(v) We say that an F-bunch Φ is true if for every facet γ0 ≺ γ the
image Q(γ0) belongs to Φ.

Definition 2.34. A bunched ring (R,F,Φ) consists of a normal, al-
most free K-factorial affine C-algebra R with R∗× = C∗, a system F of
pairwise non-associated K-prime generators and a true F-bunch Φ.

Construction 2.35. Let (R,F,Φ) be a bunched ring. Then the qua-
sitorus H = Spec C[K] acts on X̄ = Spec R and we obtain

X̄(Φ) = X̂ ⊆

p //H

��

X̄ = Spec R

X(R,F,Φ) = X

where the open set X̂ ⊆ X̄ and the good quotient p : X̂ → X arise
from Φ, regarded as a bunch of orbit cones of the H-action.

Remark 2.36. For a bunched polynomial ring, Construction 2.35 de-
livers a toric variety; the defining fan is given by linear Gale duality as

Σ = {P (δ0); δ0 4 δ, Q(δ∗0) ∈ Φ}.
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Theorem 2.37. Let X arise from a bunched ring (R,F,Φ). Then X
is a normal A2-variety with

dim(X) = dim(R)− dim(KQ), Γ(X,O∗) = C∗,

Moreover, the divisor class group, the Cox ring and the characteristic
space of X are given by

Cl(X) = K, R(X) = R, p : X̂ → X.

Remark 2.38. An A2-maximal variety is an A2-variety X such that
for any open embedding X ⊆ X ′ into an A2-variety X ′ one has X = X ′

or X ′ \X is of codimension one in X ′. Note that

(i) every affine variety is A2-maximal,
(ii) every projective variety is A2-maximal,

(iii) every complete A2-variety is A2-maximal.

Theorem 2.39. Every A2-maximal variety with finitely generated Cox
ring arises from a bunched ring.

Remark 2.40. Let R be a K-factorial C-algebra and F = (f1, . . . , fr)
a system of pairwise non-associated K-prime generators. Let

w ∈ Q(γ1)◦ ∩ . . . ∩Q(γr)◦ ⊆ KQ,

for w ∈ K, where γ1, . . . , γr ≺ γ denote the facets of the orthant
γ = Qr

≥0. Then we obtain a true F-bunch
Φ(w) := {ω ∈ ΩF; w ∈ ω◦},

which is as well a bunch of orbit cones for the action of H = Spec C[K]
on X̄ = Spec R. The associated open set of is a set of semistable points:

X̂ := X̄(Φ(w)) = X̄ss(w) ⊆ X̄.

In particular, X = X̂//H is projective over Spec R0. In case of a
bunched ring (R,F,Φ(w)), we adopt the short notation

(R,F, w) := (R,F,Φ(w)).
The bunched rings (R,F, w) deliver precisely the varieties with finitely
generated Cox ring for which

X → Spec Γ(X,O(X))
is a projective morphism; varieties with the latter property are also
called semiprojective.

Part 2-C: Exercises

Exercise 2.41. Verify the observations made in Remark 2.32 (i), (ii)
and (iii). Hint: Look at [1, Lemmas 2.1.4.1 and 2.2.3.2].
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Exercise 2.42. Elaborate the details of Remark 2.36, where for a
bunched polynomial ring R = C[T1, . . . , Tr] we tacitly assume F to be
(T1, . . . , Tr). Hint: Look at [1, Lemmas 2.1.4.1 and 2.2.3.2].

Exercise 2.43. Verify the statements (i), (ii) and (iii) made in Re-
mark 2.38.

Exercise 2.44. Verify Remark 2.40 in the case that R is a polynomial
ring and the variables Ti are K-homogeneous. Moreover, show that
w ∈ K is the class of an ample divisor on the toric variety X(R,F, w).

Exercise 2.45. Elaborate the following. We obtain an almost free
K-factorial algebra R by setting

R := C[T1, . . . , T5]/〈T1T2 + T 2
3 + T4T5〉, K := Z2

and defining deg(Ti) to be the i-th column of the matrix

Q :=
[

1 −1 0 −1 1
1 1 1 0 2

]
.

Moreover, T1, . . . , T5 induce a system F = (f1, . . . , f5) of pairwise non-
associated K-prime generators. The F-faces are

{0}, γ1, γ2, γ4, γ5, γ1,4, γ1,5, γ2,4, γ2,5, γ1,2,3, γ3,4,5,

γ1,2,3,4, γ1,2,3,5, γ1,2,4,5, γ1,3,4,5, γ2,3,4,5, γ1,2,3,4,5,

where we set γi1,...,ik := cone(ei1 , . . . , eik). We obtain a bunched ring
(R,F, w3) with w3 = deg(T3). In

X̄ = V (T1T2 + T 2
3 + T4T5) ⊆ C5,

the open set X̂ = X̄(Φ(w3)) equals X̄ss(w3) and X̂ is the union of the
four affine open subsets:

X̂ = X̄f1f4 ∪ X̄f2f5 ∪ X̄f1f2f3 ∪ X̄f3f4f5 .

The resulting variety X = X(R,F, w3) is a projective surface with
divisor class group and Cox ring given as

Cl(X) = K, R(X) = R.

In fact, the methods presented later yield that X is a Q-factorial Goren-
stein del Pezzo C∗-surface with one singularity, of type A2.
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3. Geometry via defining data

Part 3-A. We construct the minimal ambient toric variety of the va-
riety arising from a bunched ring, look at the induced stratification,
describe the Picard group and discuss singularities and smooth points.

Clip 3-A Notes 3-A Exercises 3-A

Part 3-A: Short Notes

Remark 3.1. For any bunched ring (R,F,Φ), the associated projected
cone (Zr Q−→ K, γ) gives rise to a linear Gale duality scheme:

0 // L // Zr P // N

faces(δ) ⊇ Φ̂∗
OO

Φ∗//

Φ Φ̂ ⊆ faces(γ)//

0 Koo Zr
Q

oo M
P ∗

oo 0oo

where P ∗ : M → Zr denotes the inclusion of ker(Q) into Zr and
P : Zr → N the dual map. Moreover,

Φ∗ = {P (γ∗0); γ0 4 γ, Q(γ0) ∈ Φ}.

Any σ ∈ Φ∗ is a cone in NQ generated by some vi := P (ei). Any two
cones σ, σ′ ∈ Φ∗ intersect in a common face. Set

Σ := Σ(Φ) :=
⋃
σ∈Φ∗

faces(σ).

Then Σ is a non-degenerate fan in the lattice N and v1, . . . , vr are the
primitive generators of Σ.

Remark 3.2. Let (R,F,Φ) be a bunched ring. Then F = (f1, . . . , fr)
provides us with the H-equivariant closed emdedding

X̄ → Cr, x̄ 7→ (f1(x̄), . . . , fr(x̄))

where X̄ is the total coordinate space of X = X(R,F,Φ) and the
characteristic quasitorus H acts on Cr via

h · z = (χw1(h)z1, . . . , χ
wr(h)zr), wi = deg(fi).

Consider the map P : Zr → N dual to the inclusion of the kernel of Q.
Then we have fans in N and Zr:

Σ = Σ(Φ), Σ̂ = {δ0 4 δ; P (δ0) ∈ σ for some σ ∈ Σ}.

https://youtu.be/f_AlWM_IiNg


22 JÜRGEN HAUSEN

The morphism Ẑ → Z of the associated toric varieties defined by P is
the characteristic space; it fits into the commutative diagram

X̄ // Z̄ = Cr

X̄(Φ) =

��

X̂ //

OO

��

Ẑ

OO

��
X(R,F,Φ) = X // Z

All horizontal arrows are closed embeddings, we call Z the minimal
ambient toric variety of X and X → Z the minimal toric embedding.

Remark 3.3. Consider the variety X arising from a bunched ring
(R,F,Φ) and the minimal ambient toric variety Z. Then we have

Cl(X) = K = Cl(Z), R(X) = R(Z)/I(X̄).

Remark 3.4. Consider the variety X arising from a bunched ring
(R,F,Φ) and the minimal ambient toric variety Z. For σ ∈ Σ, set

X(σ) := X ∩ TN · zσ ⊆ X.

Each X(σ) ⊆ X is locally closed. With the face σ̂ = cone(ei; vi ∈ σ)
of the orthant δ = Qr

≥0, we have
X(σ) 6= ∅ ⇔ σ̂∗ 4 γ is an F-face.

If one of these conditions is satisfied, we call σ an X-cone. Denoting
by ΣX ⊆ Σ the set of all X-cones, we have

X =
⊔

σ∈ΣX
X(σ).

Proposition 3.5. Consider X = X(R,F,Φ) and its minimal ambient
toric variety Z. Given σ ∈ Σ and x ∈ X(σ), we have

Cl(X, x) = K/Q(lin(σ̂∗) ∩ Zr) = Cl(Z, x).

Proposition 3.6. Consider X = X(R,F,Φ) and its minimal ambient
toric variety Z. Then, in Cl(X) = K = Cl(Z), we have

Pic(X) =
⋂
σ∈Σ

Q(lin(σ̂∗) ∩ Zr) = Pic(Z).

Proposition 3.7. Let X arise from a bunched ring (R,F,Φ). For
every X-cone σ ∈ Σ, the following statements are equivalent:

(i) X(σ) contains a factorial point of X,
(ii) every x ∈ X(σ) is a factorial point of X,
(iii) we have Q(lin(σ̂∗) ∩ Zr) = K,
(iv) σ is a regular cone in N .
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In particular, the variety X is locally factorial if and only if its minimal
ambient toric variety Z is smooth.

Proposition 3.8. Let X arise from a bunched ring (R,F,Φ). For
every X-cone σ ∈ Σ, the following statements are equivalent:

(i) X(σ) contains a Q-factorial point of X,
(ii) every x ∈ X(σ) is a Q-factorial point of X,
(iii) the cone Q(σ̂∗) is of full dimension in KQ,
(iv) the cone σ ⊆ NQ is simplicial.

In particular, the variety X is Q-factorial if and only if its minimal
ambient toric variety Z is Q-factorial.

Remark 3.9. Consider X = X(R,F,Φ), its minimal ambient toric
variety Z and x ∈ X. We have the commutative diagam

p−1(x) ⊆

��

X̂ //

��

Ẑ

��

⊆ Cr

x ∈ X // Z

Moreover, x ∈ X(σ) holds for some σ ∈ Σ. For σ̂ = cone(ei; vi ∈ σ),
the corresponding toric orbit in Cr is

Tr · zσ̂ = {z ∈ Cr; zi = 0⇔ vi ∈ σ} ⊆ Cr.

This leads to an explicit characterization: for any point x̂ ∈ p−1(x),
the following statements are equivalent:

(i) the orbit H · x̂ is closed in X̂,
(ii) we have x̂ ∈ Tr · zσ̂.

Proposition 3.10. Let X arise from a bunched ring (R,F,Φ). Given
σ ∈ Σ and x ∈ X(σ), the following statements are equivalent:

(i) the point x ∈ X is smooth,
(ii) we have Q(lin(σ̂∗) ∩ Zr) = K and some x̂ ∈ p−1(x) ∩ Tr · zσ̂ is

smooth in X̄,
(iii) the cone σ in N is regular and some x̂ ∈ p−1(x) ∩ Tr · zσ̂ is

smooth in X̄.

In particular, the variety X is smooth if and only if X̂ and the minimal
ambient toric variety Z are smooth.

Part 3-A: Exercises

Exercise 3.11. Elaborate the details of Remark 3.1 Hint: Look at [1,
Lemmas 2.1.4.1 and 2.2.3.2].
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Exercise 3.12. Consider the setting of Remark 3.9. Show that the
intersection p−1(x)∩Tr · zσ̂ equals the unique closed H-orbit of p−1(x).
For any x̂ = (z1, . . . , zr) from p−1(x)∩Tr · zσ̂, we call x = [z1, . . . , zr] a
presentation of x ∈ X in Cox coordinates.

Exercise 3.13. Consider the surface X defined by the bunched ring
(R,F,Φ) from Exercise 2.45. We have r = 5 and N = Z2 and the linear
map Z5 → Z2 dual to ker(Q) ⊆ Z5 is given by the matrix

P =

 −1 −1 2 0 0
−1 −1 0 1 1
−1 0 1 −1 0


Determine the fan Σ of the minimal ambient toric variety Z of X. Show
thatX is Q-factorial. Determine all local class groups, the Picard group
and the singularities of X .

Part 3-B. For the variety arising of a bunched ring, we determine
base loci of divisors and the cones of effective, movable, semiample and
ample divisor classes. Moreover, we discuss the Mori equivalence.

Clip 3-B Notes 3-B Exercises 3-B

Part 3-B: Short Notes

Reminder 3.14. The base locus and the stable base locus of a Weil
divisor D on a normal variety X are:

Bs(D) :=
⋂

f∈SD
supp(div(f) +D), B(D) :=

⋂
k∈Z≥1

Bs(kD),

where we denote by SD the set of all functions f ∈ C(X)∗ such that
div(f) +D > 0 holds.

Proposition 3.15. Consider a variety X = (R,F,Φ) and its minimal
ambient toric variety Z. Given any D ∈WDiv(X), set

w := [D] ∈ Cl(X) = K.

Moreover, let ΣX ⊆ Σ be the set of X-cones. Then the base locus and
the stable base locus of D are

Bs(D) :=
⋃

σ∈ΣX
w 6∈Q(σ̂∗∩Zr)

X(σ), B(D) :=
⋃

σ∈ΣX
w 6∈Q(σ̂∗)

X(σ).

Reminder 3.16. Let X be any normal variety. Then a Weil divisor D
on X is called

(i) effective if D admits non-zero sections,
(ii) movable if Bs(D) ⊆ X is of codimension at least two.

(iii) semiample if D has empty stable base locus,

https://youtu.be/VPytKiRqJcE
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(iv) ample if X is covered by affine open sets of the form

Xf = X \ supp(div(f) + kD)

with k ∈ Z≥1 and a non-zero section f ∈ Γ(X,O(kD)).

Proposition 3.17. Consider a variety X = (R,F,Φ) and its minimal
ambient toric variety Z. The cones generated by the effective, movable,
semiample and ample divisor classes of X in KQ = ClQ(X) are

Eff(X) = Q(γ), Mov(X) =
r⋂
i=1

cone(Q(ej); j 6= i),

SAmple(X) =
⋂

σ∈ΣX
Q(σ̂∗), Ample(X) =

⋂
σ∈ΣX

Q(σ̂∗)◦.

Remark 3.18. Let R be a K-factorial C-algebra and F = (f1, . . . , fr)
a system of pairwise non-associated K-prime generators. Then

Φ(w) = {ω ∈ ΩF; w ∈ ω◦}, w ∈ K, w ∈
r⋂
i=1

cone(Q(ej); j 6= i)◦

provides us with true F-bunches. For the action of H = SpecC[K] on
X̄ = SpecR, we have

X̂ := X̄(Φ(w)) = X̄ss(w).

Now assume R∗× = C∗ and that the K-grading is almost free. Then
(R,F , w) = (R,F ,Φ(w)) is a bunched ring and

X := X(R,F , w) = X̄ss(w)//H, SAmple(X) = λ(w) ∈ Λ(X̄).

That means in particular that the GIT-fan Λ(X̄) stores the semiample
cones of all semiprojective varieties with Cox ring R.

Remark 3.19. Let X = (R,F,Φ) be complete. Every Weil divisor D
on X defines a positively graded sheaf

S+(D) :=
⊕
n∈Z≥0

S+
n (D), S+

n (D) := OX(nD).

As R = R(X) is finitely generated, also Γ(X,S+(D)) is so. Thus, we
obtain a rational map

ϕ(D) : X 99K X(D), X(D) := Proj(Γ(X,S+(D))).

For suitable n and a vector space basis f0, . . . , fm of Γ(X,O(nD)) we
obtain X(D) as the closure of the image of the rational map

X 99K Pm, x 7→ [f0(x), . . . , fm(x)].
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Remark 3.20. Let X = X(R,F,Φ) be complete and D ∈ WDiv(X).
Set w := [D] and U := X̄ \ V (f1 · · · fr). Then we have a commutative
diagram

X̂ ⊇

//H p

��

U ⊆

��

X̄ss(w)

//H
��

X ⊇

ϕ(D) ..

U/H // X̄ss(w)//H

X(D)
The area of definition of ϕ(D) : X 99K X(D) equals X \B(D). More-
over, B(D) equals the p(X̂ \ X̄ss(w)).

Definition 3.21. A birational map X 99K X ′ of varieties is a small
quasimodification if it defines an isomorphism V → V ′ of open sets
V ⊆ X and V ′ ⊆ X ′ with complements of codimension at least two.

Remark 3.22. Let X = X(R,F,Φ) be complete and D ∈ WDiv(X).
The rational map ϕ(D) : X → X(D) is

(i) birational if and only if [D] ∈ Eff(X)◦ holds.
(ii) a small quasimodification if and only if [D] ∈ Mov(X)◦ holds.

(iii) a morphism if and only if [D] ∈ SAmple(X) holds.
(iv) an isomorphism if and only if [D] ∈ Ample(X) holds.

Definition 3.23. Two Weil divisors D,D′ on X = X(R,F,Φ)a normal
are called Mori equivalent, if B(D) = B(D′) and there is a commutative
diagram

X
ϕ(D)

||

ϕ(D′)

##
X(D) oo ∼=

// X(D′)

Proposition 3.24. Let X = X(R,F,Φ) be complete and consider the
GIT-fan Λ(X̄) of the action of H = Spec C[K] on X̄ = Spec R. For
any two D,D′ ∈WDiv(X), the following statements are equivalent.

(i) The divisors D and D′ are Mori equivalent.
(ii) One has [D], [D′] ∈ λ◦ for some GIT-cone λ ∈ Λ(X̄).

Part 3-B: Exercises

Exercise 3.25. Let X be a variety with finitely generated Cox
ring R(X) and D ∈WDiv(X). Show the following:

Bs(D) :=
⋂

06=f∈R[D](X)
supp(div[D](f)).
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Exercise 3.26. Let X = X(R,F,Φ) with minimal ambient toric va-
riety Z. Let D ∈ WDiv(X) and E ∈ WDiv(Z) with [D] = [E] in
Cl(X) = Cl(Z). Show that Bs(D) equals Bs(E) ∩X.

Exercise 3.27. Show that a variety X = X(R,F, w) is projective if
and only if the cone Eff(X) is pointed.

Exercise 3.28. Make the definition of ϕ(D) of Remark 3.19 explicit:
Take an open U ⊆ X such that D is principal on U and look at the
Z≥0-graded inclusion of Γ(X,S+(D)) in Γ(U,S+(D)).

Exercise 3.29 (Further Reading). The decomposition of Mov(X) into
finitely many polyhedral cones SAmple(X ′) as seen in Remark 3.18
characterizes finite generation of the Cox ring of a complete variety.
This was originally proven in [4]; see also [1, Thm. 4.3.3.1]. The pro-
jective varieties with finitely generated Cox ring are also called Mori
dream spaces.

Exercise 3.30 (Further Reading). Let X be a normal complete sur-
face with finitely generated divisor class group. Then X has finitely
generated Cox ring if and only if Mov(X) is polyhedral and coincides
with SAmple(X). Moreover, if one of the statements holds, then X is
Q-factorial and projective. See [1, Thm. 4.3.3.5].

Part 3-C. We introduce intrinsic quadrics, provide a systematic con-
struction of all intrinsic quadrics and survey results on smooth intrinsic
quadrics of low Picard number.

Clip 3-C Notes 3-C Exercises 3-C

Part 3-C: Short Notes

Definition 3.31. An intrinsic quadric is a normal projective variety X
with Cox ring defined by a single purely quadratic relation,

R(X) ∼= C[T1, . . . , Ts]/〈g〉, g =
∑

1≤i≤j≤s
aijTiTj,

where g 6= 0 and the variables T1, . . . , Ts define Cl(X)-homogeneous
elements in the Cox ring R(X).

Remark 3.32. A normal projective variety with finitely generated
divisor class group is toric if and only if its Cox ring is a polynomial ring.
Thus, among all Mori dream spaces, the intrinsic quadrics cautiously
extend the class of toric varieties.

https://youtu.be/a3ToIHuCNRs
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Example 3.33. Consider the quadratic polynomial g = T1T2 +T 2
3 +T 2

4
and the factor algebra

R = C[T1, . . . , T4]/〈g〉
Let K = Z⊕ Z/4Z. Define a K-grading on C[T1, . . . , T4] by taking as
deg(Ti) the i-th column of the degree matrix

Q =
[

1 1 1 1
1̄ 3̄ 2̄ 0̄

]
.

As g is K-homogeneous, we have an induced K-grading on R, which
turns out to be factorial. We even obtain a bunched ring (R,F, w) with

F = (T1, . . . , T4), w = (1, 0̄) ∈ K.

The associated X = X(R,F, w) is an intrinsic quadric. The generator
matrix of the fan Σ of the minimal ambient toric variety Z is

P =

 −1 −1 2 0
−1 −1 0 2

0 −2 1 1


Observe that the upper two rows of P store the exponents of g and
that we have deg(T3) 6= deg(T4).

Construction 3.34. Let q, t, n,m ∈ Z≥0 with q even, 3 ≤ q/2 + t and
q + t = n, write C[T, S] = C[T1, . . . , Tn, S1, . . . , Tm] and consider

gq,t := T1T2 + . . .+ Tq−1Tq + T 2
q+1 + . . .+ T 2

q+t ∈ C[T, S].
We install a grading on the factor algebra C[T, S]/〈gq,t〉. First we store
the exponents of gq,t into a r × n matrix P0, where r = q/2 + t− 1:

P0 :=


−l1 l2 0

... . . .
−l1 0 lr

 , li =

(1, 1), i ≤ q
2 ,

(2), i > q
2 .

Next we build an (r+s)×(n+m) integral block matrix P with primitive
pairwise distinct columns that generate Qr+s as a cone:

P :=
[
P0 0
d d′

]
where the s× n block d and the s×m block d′ can be choosen subject
to the above conditions. With K := Zn+m/P ∗Zr+s and

deg(Ti) := Q(ei), deg(Sj) := Q(en+j)
we define a K-grading on C[T, S], where Q : Zn+m → K is the projec-
tion. As gq,t is K-homogeneous, we have an induced K-grading on

R(P ) := C[T, S]/〈gq,t〉.
We speak of R(P ) as a standard K-graded quadratic algebra if deg(Ti)
are pairwise distinct for i = q + 1, . . . , q + t.
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Remark 3.35. For any standard K-graded quadratic algebra R(P ),
the grading is almost free and factorial. Moreover, R(P ) is a unique
factorization domain if and only if n ≥ 5. For n = 3, 4, we obtain K-
factorial R(P ) that don’t admit unique factorization; see Example 3.33.

Construction 3.36. Consider a standard K-graded quadratic algebra
R = R(P ). As a system of K-prime generators for R fix

F = (T1, . . . , Tn, S1, . . . , Sm).

Then we obtain a bunched ring (R,F, w) by choosing any w ∈ K from
the relative interior of the moving cone:

w ∈ Mov(R)◦ =
⋂
γ0≺γ
facet

Q(γ0)◦, γ = Qn+m
≥0 .

The variety X = X(P,w) associated with the bunched ring (R,F, w)
is a standard intrinsic quadric. We have the commutative diagram

V (gq,t) =

⊆

X̄ ⊆

⊆

Z̄ =

⊆

Cn+m

X̄ss(w) =

//H

��

X̂ //

//H

��

Ẑ

//H

��
X(P,w) = X // Z

where H = Spec C[K] is the characteristic quasitorus and X → Z the
minimal toric embedding. Moreover, we have

dim(X) + 1 = dim(Z) = n+m− dim(KQ), Cl(X) = K = Cl(Z),

the maps X̂ → X and Ẑ → Z are characteristic spaces and the Cox
ring of X is the standard K-graded quadratic algebra

R(X) = R(P ) = C[T1, . . . , Tn, S1, . . . , Sm]/〈gq,t〉.

The primitive generators of the fan Σ of the minimal ambient toric
variety Z of X are precisely the columns of P .

Proposition 3.37. Every intrinsic quadric is isomorphic to a standard
intrinsic quadric.

Proposition 3.38. Let X be a smooth intrinsic quadric of Picard num-
ber one. Then X is isomorphic to the quadric V (T 2

0 + . . .+ T 2
n) ⊆ Pn.

Example 3.39. For n ≥ 6, consider the unique factororization domain
R := C[T1, . . . , Tn]/〈g〉, where

g = T1T2 + . . .+ Tn−1Tn.
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Set K = Z2. Then R we obtain an almost free K-grading on R by
defining the degree of Ti to be the i-th column of

Q =
[

1 0 · · · 1 0
0 1 · · · 0 1

]

Setting F = (T1, . . . , Tn) and w = (1, 1), gives a bunched ring (R,F, w).
For the associated variety X and its minimal toric embedding, we have

X(1, n/2− 2, 1) = X → Z ⊆ Pn
2−1 × Pn

2−1.

where X(1, n/2− 2, 1) is the flag variety of type (1, n/2− 2, 1) and Z
is an open toric subvariety of Pn/2−1 × Pn/2−1.

Remark 3.40. An intrinsic quadric X is called full if X ∼= X(P,w)
with t = 0.

(i) Every smooth full intrinsic quadric X of Picard number
ρ(X) = 2 is isomorphic to a flag variety X(1, k, 1).

(ii) The smooth full intrinsic quadrics X of Picard number ρ(X) =
3 are explicitly described in [2, Thm. 1.3].

(iii) Any full Fano intrinsic quadric X satsfies ρ(X) ≤ 3. If ρ(X) =
3, then X is Q-fatorial but not smooth.

Remark 3.41. The smooth intrinsic quadrics of Picard number
ρ(X) = 2 are described in [2, Thm 1.1].

Part 3-C: Exercises

Exercise 3.42. Show that an intrinsic quadric is full if and only if its
total coordinate space has precisely one singular point.

Exercise 3.43. Give an example of a bunched ring that defines a
singular variety having smooth mininmal ambient toric variety. Hint:
Look at V (T0T1 + T2T3 + T 2

4 ) ⊆ P5.

Exercise 3.44. Consider the setting of Construction 3.34. Prove the
following statements:

(i) For all q + 1 ≤ i < j ≤ q + t, the vector 2ei − 2ej lies in the
Z-linear row space of the matrix P .

(ii) R(P ) is a standard K-graded quadratic algebra if and only if
the Z-linear row space of P contains none of the ei− ej, where
q + 1 ≤ i < j ≤ q + t.

Exercise 3.45. Show that the K-grading of any standard R(P ) arising
from Construction 3.34 is almost free and factorial. Hint: Consult [3,
Constructions 6.3 and 6.13].
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Exercise 3.46. Convince yourself about the following. An intrinsic
quadric has a non-UFD as Cox ring if and only if it is isomorphic to
standard intrinsic quadric with (q, t) being one of (0, 4), (2, 2), (0, 3).
Give concrete examples for each of the cases.

Exercise 3.47. Prove Proposition 3.37. Hint: Use [2, Proposition 2.1].
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4. Rational C∗-surfaces

Part 4-A. We give first examples of C∗-surfaces, discuss the three
types of fixed points as well as source and sink, look at C∗-actions on
toric surfaces and at a non-toric example.

Clip 4-A Notes 4-A Exercises 4-A

Part 4-A: Short Notes

Example 4.1. Consider the following C∗-actions (ee) and (pe) on the
projective plane P2 and (pp) on P1 × P1:

[1, 0, 0]

[0, 1, 0]

[0, 0, 1]

t · [z] = [z0, tz1, t2z2]

(ee)
[1, 0, 0]

[0, 1, 0]

[0, 0, 1]

t · [z] = [z0, z1, tz2]

(pe)
[1, 0; 1, 0] [0, 1; 1, 0]

[1, 0; 0, 1] [0, 1; 0, 1]

t · [z; w] = [z0, z1; w0, tw1]

(pp)

The closure of any orbit C∗ · x is obtained by adding limt→0 t · x and
limt→∞ t · x. The arrows indicate where t · x tends to for t→∞.

Remark 4.2. Let X be a normal surface with a non-trivial C∗-action.
There are only three possible types of fixed points:

(i) an elliptic fixed point lies in the closure of infinitely many non-
trivial C∗-orbits,

(ii) a parabolic fixed point lies in the closure of precisely one non-
trivial C∗-orbit,

(iii) a hyperbolic fixed point lies in the closure of precisely two non-
trivial C∗-orbits.

If X is projective, then there are irreducible components F+ and F−

of the fixed point set admitting open neighborhoods U+ and U− with

lim
t→0

t · x ∈ F+ for all x ∈ U+, lim
t→∞

t · x ∈ F− for all x ∈ U−.

One calls F+ the source and F− the sink. Each of them consists either
of an elliptic fixed point or it is a smooth curve of parabolic fixed points.
Apart from F+ and F−, we find at most hyperbolic fixed points.

Remark 4.3. Consider a toric surface Z arsising from a fan Σ in Z2.
Every v ∈ Z2 defines a one-parameter subgroup

λv : C∗ → T2, t 7→ (tv1 , tv2)

https://youtu.be/8a6yFsq_onE
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and thus a C∗-action on Z via t ∗ z := λv(t) · z. For v 6= 0, a point zσ
is a C∗-fixed point if and only if v ∈ lin(σ). More specifically,

zσ is elliptic ⇔ dim(σ) = 2, Qv ∩ σ◦ 6= ∅,
zσ is parabolic ⇔ {0} 6= Qv ∩ σ 4 σ,

zσ is hyperbolic ⇔ dim(σ) = 2, Qv ∩ σ = {0}.
Moreover, if zσ is elliptic or parabolic, then it belongs to the source (to
the sink) if and only if v ∈ σ holds (−v ∈ σ holds).

Example 4.4. The first Hirzebruch surface is the toric surface Z given
by the complete fan Σ in Z2 with the primitive generators

(1, 0), (0, 1), (−1,−1), (0,−1).
Choosing the vector v ∈ Z2 as below we obtain a C∗-action on Z of
source/sink type (ee), (ep) and (pp):

v = (1, 2) v = (1, 1) v = (0, 1)

Example 4.5. Consider the diagonal action of H := C∗ on C4 and the
H-invariant hypersurface X̄ ⊆ C4 given by

t · z = (tz1, t
3z2, t

2z3, t
3z4), X̄ = V (T 3

1 T2 + T 3
3 + T 2

4 ).

Then with W4 = C4 \ {0} and X̂ = X̄ \ {0}, we have a commutative
diagram where the horizontal arrows are closed embeddings:

X̄ ⊆

⊆

C4

⊆

X̂ //

/H p

��

W4

/Hp

��
X // P1,3,2,3

In particular, X = X̂/H is a surface in the weighted projective space
P1,3,2,3. Observe that on X we have the prime divisors

Di = V (Ti) ∩X, i = 1, . . . , 4.
We install a C∗-action on X. First note that we obtain a well defined
C∗-action on P1,3,2,3 by

s ? z = [sz1, s
−3z2, z3, z4].
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By construction, X is invariant and thus comes with the induced C∗-
action. The fixed points are

x+ = [0, 1, 0, 0], x− = [1, 0, 0, 0], x12 = [0, 0,−1, 1],
where x+ and x− are elliptic and x12 is hyperbolic. Moreover, we have
the following picture

F + = {x+}

x12

F− = {x−}

D1

D2

D3 D4

Each of the prime divisors Di ⊆ X is the closure of a non-trivial orbit
C∗ · xi. For the orders of the corresponding isotropy groups, we have

|C∗x1 | = 3, |C∗x2| = 1, |C∗x3| = 3, |C∗x4| = 2.

Example 4.6 (continued). The surface X constructed in Example 4.5
arises from the bunched ring (R,F, w), where R is the Z-graded algebra
given in terms of generators and relations and degree matrix by
R = C[T1, . . . , T4]/〈T 3

1 T2 + T 3
3 + T 2

4 〉, Q =
[

1 3 2 3
]
,

we take the canonical generator system F = (T1, . . . , T4) and w = 1 in
K = Z. The ambient weighted projective space P1,3,2,3 of X arises as a
toric variety from the fan Σ in Z3 with generator matrix

P = [v1, v2, v3, v4] =

 −3 −1 3 0
−3 −1 0 2
−2 −1 1 1


and the maximal cones σi = cone(vj; j 6= i). The minimal ambient
toric variety of X is the open toric subvariety Z of P1,3,2,3 given by the
subfan of Σ with the maximal cones
σ+ = cone(v1, v3, v4), σ− = cone(v2, v3, v4), τ12 = cone(v1, v2).

The corresponding toric orbits of Z host the C∗-fixed points of X. Note
that the orders of the isotropy groups of D1, . . . , D4 are reflected in the
exponents of the defining relation and in the upper two rows of P .

Part 4-A: Exercises

Exercise 4.7. Consider a variety X with a C∗-action and let x ∈ X.
Give a precise definition of (existence of) the limits

x0 := lim
t→0

t · x ∈ X, x∞ := lim
t→∞

t · x ∈ X.
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Hint: Limits exist if and only if the orbit map t 7→ t · x extends to a
morphism C→ X or P1 → X.
Exercise 4.8. Let X be a normal affine surface with a non-trivial
C∗-action and consider the good quotient

p : X → Y := Spec Γ(X,O)C∗ .
Show that p maps the fixed point set isomorphically onto a closed
subvariety of Y . Moreover show that we are in exactly one of the
following three situations:

(i) Y is a point. Then we have XC∗ = {x} with an elliptic fixed
point x ∈ X and precisely one of the following holds:

lim
t→0

t · x′ = x for all x′ ∈ X, lim
t→∞

t · x′ = x for all x′ ∈ X.

(ii) Y is a smooth curve and X has infinitely many fixed points.
Then XC∗ = F with a curve F ⊆ X of parabolic fixed points
and precisely one of the following holds:

lim
t→0

t · x′ ∈ F for all x′ ∈ X, lim
t→∞

t · x′ ∈ F for all x′ ∈ X.

(iii) Y is a smooth curve and X has at most finitely many fixed
points. Then every fixed point of X is hyperbolic.

Exercise 4.9. Let X be a normal projective C∗-surface. Then [5]
guarantees that X is covered by C∗-invariant open affine subsets. Show
that for any x ∈ X with non-trivial C∗-orbit, the limits x0 and x∞ differ
from each other. Moreover, use Exercise 4.8 to prove Remark 4.2.
Exercise 4.10. Verify all the statements made in Example 4.1. More-
over, prove the following.

(i) In the case (ee), we have three fixed points: the two elliptic
ones [1, 0, 0] and [0, 0, 1] and the hyperbolic [0, 1, 0]. Moreover,

F+ = {[1, 0, 0]}, F− = {[0, 0, 1]}.
(ii) In the case (pe), the curve V (z2) consists of parabolic fixed

points and there is the elliptic fixed point [0, 0, 1]. Moreover,
F+ = V (z2), F− = {[0, 0, 1]}.

(iii) In the case (pp), the curves V (w0) and V (w1) consist of para-
bolic fixed points. Moreover,

F+ = V (w1), F− = V (w0).
Exercise 4.11. Prove all the statements made in Remark 4.3.
Exercise 4.12. Work out the details of Examples 4.5 and 4.5. Show
that the constellation of fixed points and isotropy group orders cannot
be realized by a one-parameter subgroup action on a toric surface.
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