
TorDiv — A Maple Package

on

Toric Geometry

and

Geometric Invariant Theory

Florian Berchtold

Jürgen Hausen

Robert Vollmert

Marcel Widmann

Contents

Chapter 1. About TorDiv 7
1. General information 7
1.1. Aims of the project 7
1.2. System and software requirements 7
2. Getting started 7
2.1. How to get TorDiv? 7
2.2. Installing and starting 7

Chapter 2. Mathematical background 9
1. Lattices 9
1.1. Basic notions 9
1.2. Hermite and Smith normal forms 9
1.3. Lattice reduction 10
2. Convex polyhedra 10
2.1. Cones and fans 10
2.2. Bunches of cones 11
2.3. Secondary fans 12
3. Toric Geometry 13
3.1. Toric varieties and fans 13
3.2. Toric varieties and bunches 13
3.3. Toric geometry in terms of bunches 14
4. Geometric Invariant Theory 15
4.1. Good quotients 15
4.2. Subtorus actions 16
4.3. Mumford quotients of Kn 17

Chapter 3. The TorDiv functions 19
1. Functions on lattices 19
1.1. Introductory remarks 19
1.2. cols2matrix 19

1.3. completeseq 19

1.4. dualseq 20

1.5. ihermitecolops 20

1.6. ihermiterowops 21

1.7. intcontains 21

1.8. intersectlattices 22

1.9. intimage 22

1.10. intiscontained 23

1.11. intkernel 23

1.12. intpreimage 23

3

4 CONTENTS

1.13. intprojection 24

1.14. intsection 25

1.15. isprimitive 25

1.16. issurjective 25

1.17. latticebasis 26

1.18. matrix2cols 26

1.19. primitivespan 26

2. Functions on convex polyhedra 28
2.1. Introductory remarks 28
2.2. bunch 28

2.3. bunchcones 28

2.4. bunchprojection 29

2.5. bunch2fan 29

2.6. cocoref 29

2.7. covcoll 30

2.8. dualface 30

2.9. fan2bunch 31

2.10. intersectrelint 31

2.11. isremovableray 31

2.12. isstandard 32

2.13. relintcontains 32

2.14. relintiscontained 32

2.15. removeray 33

3. Functions on Toric Geometry 33
3.1. Introductory remarks 33
3.2. amplecone 33

3.3. canonclass 34

3.4. cartierdiv 34

3.5. coxconstr 34

3.6. effectivecone 35

3.7. freecovering 35

3.8. isdivisorial 35

3.9. isfano 36

3.10. isgorenstein 36

3.11. isquasiprojective 36

3.12. isprojective 37

3.13. istwocomplete 37

3.14. kajiwaraconstr 38

3.15. movingcone 38

3.16. picardgroup 38

3.17. samplecone 39

3.18. twocompletion 39

4. Functions on Geometric Invariant Theory 39
4.1. Introductory remarks 39
4.2. admitsgoodquot 40

4.3. chamber 40
4.4. gitfan 40

4.5. gitlimit 41

CONTENTS 5

4.6. quotientfan 41

4.7. semistablepoints 42

4.8. weight2bunch 42

5. Functions on Polyhedral Divisors 42
5.1. Introductory remarks 42
5.2. base 42

5.3. basedim 43

5.4. coefficients 43

5.5. imagefan 43

5.6. ppdivisor 43

5.7. ppfan 44

5.8. slice 44

5.9. tailcone 44

5.10. torusdim 45

6. Examples 45
6.1. Introductory remarks 45
6.2. cutpyramid 45

6.3. freebentcube 45

6.4. hirzebruch 45

Bibliography 47

CHAPTER 1

About TorDiv

1. General information

1.1. Aims of the project. The TorDiv package is an open software project,
where open means open to contributions from further authors. The present aim is
to provide an easy-to-use working environment for mathematicians active in Toric
Geometry. A further intention is to offer a platform for the exchange and the
discussion of advanced examples.

The TorDiv package provides, besides basic functions on lattices and convex
polyhedra, several functions on Toric Geometry and, as there is a strong relation,
on Geometric Invariant Theory of torus actions. At present, the TorDiv package
mainly focusses on questions around divisors on toric varieties. For example, many
results of [3] are implemented.

1.2. System and software requirements. As a Maple package, TorDiv can
be run on any platform supporting Maple, version 8 or higher. The TorDiv package
requires, however, the convex package by M. Franz [8]. The files of this package
as well as the necessesary information for the installation are freely available on
Franz’s personal web page.

2. Getting started

2.1. How to get TorDiv? The TorDiv package is free software, distributed
under the GNU General Public License. The files can be downloaded via the links
available on the personal web pages of the authors (use for example Google to obtain
the actual URL’s).

2.2. Installing and starting. There are basically two ways to install the
TorDiv package on your computer:

• Put the files TorDiv.ind and TorDiv.lib into the library directory (lib)
of your Maple system.

• Create an extra directory for the files TorDiv.ind and TorDiv.lib and
put them in.

For using the TorDiv package in a Maple session, proceed as follows. If you
chose the second way of installation, say with an installation directory of full path
name PATH, first tell Maple about this directory:

> libname := libname, "PATH":

Then, in both cases, the TorDiv package then is loaded, as any other Maple
package, by means of the with command (first the convex package has to be load):

7

8 1. ABOUT TORDIV

> with(TorDiv);

TorDiv, Version 1.3, (C) 2007 by F. Berchtold, J. Hausen, R. Vollmert, M.
Widmann. This package is distributed under the GNU General Public License. It
requires the convex package by M. Franz.

[admitsgoodquot , amplecone , base, basedim , bunch, bunch2fan , bunchcones ,
bunchprojection , canonclass , cartierdiv , chamber , cocoref , coefficients , cols2matrix ,
completeseq , covcoll , coxconstr , cutpyramid , dualface , dualseq , effectivecone,
fan2bunch , freebentcube, freecovering , gitfan , gitlimit , hirzebruch , ihermitecolops ,
ihermiterowops , imagefan , intcontains, intersectlattices , intersectrelint , intimage ,
intiscontained , intkernel , intpreimage , intprojection , intsection , isdivisorial , isfano ,
isgorenstein, isprimitive , isprojectedface , isprojective , isquasiprojective ,
isremovableray , isstandard , issurjective , istwocomplete , kajiwaraconstr , latticebasis ,
matrix2cols ,movingcone , pairwiseintersectrelint , picardgroup , poldiv , ppdivisor ,
primitivespan , quotientfan, relintcontains , relintiscontained , removeray , ppfan ,
samplecone , semistablepoints , slice , tailcone , torusdim , twocompletion ,weight2bunch]

CHAPTER 2

Mathematical background

1. Lattices

1.1. Basic notions. By a lattice we mean a free finitely generated Z-module.
A sublattice N ′ of a lattice N is called primitive if there is a direct sum decom-
position N = N ′ ⊕ N ′′. A vector v ∈ N is primitive if and only if the sublattice
Zv ⊂ N is primitive.

1.2. Hermite and Smith normal forms. The Hermite and the Smith nor-
mal form of an integral matrix are standard instruments for many computational
purposes, see for example [6, Section 2.4]. Recall the definitions of these normal
forms:

Definition 2.1. A matrix A = (aij) ∈ Zm×n is in Hermite normal form with
respect to row operations (HNFR), if there are indices 1 ≤ j1 < j2 < · · · < jr ≤ m
such that A fulfils the following properties for all i:

• the entries aiji
are positive, i.e. aiji

≥ 1,
• A is in row echelon form, i.e. akl = 0, if k > r or l < jk,
• the entries aiji

are the maximal elements in the respective column, i.e.
0 ≤ akji

< aiji
for k < i.

Note that the r in the above definition is just the rank of the matrix A.

Definition 2.2. A matrix A is in Hermite normal form with respect to column
operations (HNFC), if the transposed matrix A> is in Hermite normal form with
respect to row operations.

The crucial observation is that any matrix can be brought into HFNR (HNFC)
by invertible row operations (column operations):

Theorem 2.3. Let A ∈ Zm×n be given. Then there exist invertible matrices
U ∈ Zm×m and V ∈ Zn×n such that UA is in HNFR and AV is in HNFC.

By applying both row and column operations one may obtain the Smith normal
form:

Definition 2.4. A matrix A = (aij) ∈ Zm×n is in Smith normal form, if, for
r := rankA,we have a(i−1)(i−1)|aii for 2 ≤ i ≤ r and akl = 0 holds for k 6= l or
k > r.

Theorem 2.5. Let A ∈ Zm×n be given. Then there exist invertible matrices
U ∈ Zm×m and V ∈ Zn×n such that UAV is in Smith normal form.

9

10 2. MATHEMATICAL BACKGROUND

1.3. Lattice reduction. Given a sublattice of Zn, it is often desirable to
find explicitly a basis consisting of “short” vectors. There is a variety of so-called
lattice reduction algorithms tackling this problem. As we shall use it, we mention
here the LLL-algorithm due to A.K. Lenstra, H.W. Lenstra and L. Lovász, see for
example [6, Section 2.6].

2. Convex polyhedra

2.1. Cones and fans. We fix here the basic terminology and provide the
basic concepts on convex polyhedral cones and fans. For a little more background,
we refer the reader to the textbooks [9] and [13].

The rational vector space associated to a lattice N is NQ := Q ⊗Z N . If
P : F → N is a lattice homomorphism, then we denote the induced linear map
FQ → NQ of rational vector spaces again by P .

By a cone in a lattice N we always mean a polyhedral (not necessarily strictly)
convex cone in the associated rational vector space NQ. Let N be a lattice, and let
M := Hom(N, Z) denote the dual lattice of N . The orthogonal space and the dual
cone of a cone σ in N are

σ⊥ := {u ∈ MQ; u|σ = 0}, σ∨ := {u ∈ MQ; u|σ ≥ 0}.

The relative interior of a cone σ is denoted by σ◦. If σ0 is a face of σ, then
we write σ0 � σ. The dimension of a cone σ is the dimension of the linear space
lin(σ) generated by σ. The set of the k-dimensional faces of σ is denoted by σ(k),
and the one-dimensional faces of a strictly convex cone are called its rays .

The primitive generators of a strictly convex cone σ in a lattice N are the
primitive lattice vectors of its rays. A strictly convex cone in N is called simplicial
if its primitive generators are linearly independent, and it is called regular if its
primitive generators can be complemented to a lattice basis of N .

A fan in a lattice N is a finite collection ∆ of strictly convex cones in N such
that for each σ ∈ ∆ also all σ0 � σ belong to ∆ and for any two σi ∈ ∆ we
have σ1 ∩ σ2 � σi. A map of fans ∆i in lattices Ni is a lattice homomorphism
F : N1 → N2 such that for every σ1 ∈ ∆1 there is a σ2 ∈ ∆2 containing F (σ1).

Note that the compatibility condition σ1 ∩ σ2 � σi in the above definition is
equivalent to the existence of a separating linear form for the cones σ1 and σ2, i.e.,
a linear form u on N such that

u|σ1
≥ 0, u|σ2

≤ 0, u⊥ ∩ σi = σ1 ∩ σ2.

Replacing “strictly convex” with “convex” in the definition of a fan, we obtain
the more general notion of a quasifan. For a quasifan ∆ in N , we denote by |∆| its
support , that is the union of all its cones. Moreover, ∆max is the set of maximal
cones of a quasifan ∆, and ∆(k) is the set of the k-dimensional cones of ∆.

Every quasifan ∆ in a lattice N can be made in a canonical way to a fan: For
the maximal cones of ∆, there is a maximal common linear subspace V ⊂ NQ. Set
N∆ := V ∩ N and N0 := N/N∆. Then the images of the cones of ∆ under the
projection N → N0 form a fan ∆0 in N0, the quotient fan of ∆.

An important object is the normal quasifan ∆B associated to a polyhedron B ⊂
MQ: its cones correspond to the faces F � B. More explicitely, this correspondence
is given by

faces(B) → ∆B , F 7→ σF := {v ∈ NQ; v(u) ≤ v(u′) for all (u, u′) ∈ F × B}.

2. CONVEX POLYHEDRA 11

Note that ∆B is a fan if and only if B is of full dimension. Moreover, the support
of ∆B admits a nice description. Writing B = B0 + σ with a polytope B0 and a
cone σ, we have |∆B | = σ∨.

In this setting, the following notions are common: a fan is called polytopal if it
is the normal fan of a polytope, and it is called quasipolytopal if it is a subfan of
some polytopal fan.

2.2. Bunches of cones. The concept of a bunch of cones was introduced
in [3]. These bunches of cones are strongly related to fans; the connection is a cer-
tain Gale duality. We provide here the basic definitions and constructions, working
in a slightly more special setup as in [3].

Let (E
Q

−→ K, γ) be a projected cone, i.e., Q : E → K is a surjection of lattices
and γ ⊂ EQ is a regular polyhedral convex cone of full dimension. A projected face is

the image Q(γ0) of a face γ0 � γ. A bunch in (E
Q

−→ K, γ) is a nonempty collection
Θ of projected faces with the following property: a projected face σ belongs to Θ
if and only if ∅ 6= σ◦ ∩ τ◦ 6= τ◦ holds for all τ ∈ Θ with τ 6= σ.

We explain now the relation to fans. Bunches of cones correspond to what we
will call maximal projectable fans, and to each of the latter ones we may associate
a quotient fan. We briefly summarize these constructions and the basic statements.
For the details, we refer to [3].

To any projected cone (E
Q

−→ K, γ), we associate a dual projected cone as
follows. Let M denote the kernel of Q : E → K. Then we have two exact sequences
of lattice homomorphisms

0 // M // E
Q

// K // 0,

0 Noo F
P

oo Loo 0,oo

where the second sequence arises from the first one by applying Hom(?, Z). The
dual cone δ := γ∨ is again strictly convex, regular and of full dimension. The dual

projected cone of (E
Q

−→ K, γ) is (F
P

−→ N, δ).

In the sequel, fix a projected cone (E
Q

−→ K, γ), and denote the associated

dual projected cone by (F
P

−→ N, δ). Recall that there is the order reversing face
correspondence, see for example [13, Appendix A]:

faces(γ) → faces(δ), γ0 7→ γ∗
0 := γ⊥

0 ∩ δ.

The following lemma is a crucial observation on corresponding faces in projected
cones. Let L := ker(P). By an L-invariant linear form we mean here an element
u ∈ E = Hom(F, Z) with L ⊂ u⊥.

Lemma 2.6 (Invariant Separation Lemma). Let γ1, γ2 � γ, and set δi := γ∗
i .,

and let L := ker(P). Then the following statements are equivalent:

(i) There is an L-invariant separating linear form for δ1 and δ2.
(ii) For the relative interiors Q(γi)

◦ we have Q(γ1)
◦ ∩ Q(γ2)

◦ 6= ∅.

Consider any bunch Θ in (E
Q

−→ K, γ). We shall shift Θ into the dual projected
cone. Firstly, we pass to the covering collection cov(Θ) of the bunch Θ; this is the
set of all faces γ0 � γ that are minimal with respect to the property that Q(γ0)
contains a cone of Θ. Then we set

∆̂ := {δ0; δ0 � γ∗
0 for some γ0 ∈ cov(Θ)}.

12 2. MATHEMATICAL BACKGROUND

By Lemma 2.6, ∆̂ is a maximal projectable fan in (F
P

−→ N, δ), i.e., it consists of

faces of δ ⊂ FQ, any two maximal cones δ1, δ2 ∈ ∆̂ admit an L-invariant separating

linear form, and a face δ0 � δ belongs to ∆̂ provided it can be separated from all

maximal cones of ∆̂ by L-invariant linear forms.

Proposition 2.7. The map Θ 7→ ∆̂ sets up a one to one correspondence

between bunches in (E
Q

−→ K, γ) and maximal projectable fans in (F
P

−→ N, δ).

Finally, the Gale transform of the bunch Θ, is the quotient fan ∆0 of the

quasifan ∆ in N generated by the images P (δ0), where δ0 ∈ ∆̂max. In general,
different bunches may have the same Gale transform. But, as we shall see later,
this procedure becomes reversible when restricted to a suitable subclass of bunches.

2.3. Secondary fans. Consider a lattice N and vectors v1, . . . , vr ∈ N ; for
simplicity, we assume that these vectors generate N . Secondary fans provide a
solution to the following problem: What are the possible quasipolytopal fans in N
having their rays among the Q≥0vi?

We present here an approach to secondary fans that starts in the setting of

bunches of cones. Let F := Zr , and consider the projected cone (F
P

−→ N, δ),
where P maps the i-th canonical base vector of F to vi, and δ is the positive
orthant in FQ.

Let (E
Q

−→ K, γ) be the dual projected cone, and let e1, . . . er denote the
primitive generators of γ. For a collection of faces γ1, . . . , γl � γ, consider the
intersection of their images:

τ(γ1, . . . , γl) :=
l⋂

i=1

Q(γi).

We say that τ(γ1, . . . , γl) is a final cone of (E
Q

−→ K, γ) if for every face γ0 � γ we
have either τ(γ1, . . . , γl) ⊂ Q(γ0) or τ(γ1, . . . , γl) ∩ Q(γ0) is of smaller dimension
than τ(γ1, . . . , γl).

Proposition 2.8. The final cones of (E
Q

−→ K, γ) form a fan Σ in K with
|Σ| = Q(γ). The fan Σ is the coarsest common refinement of all possible triangu-
lations spanned by the vectors Q(e1), . . . , Q(er).

The fan Σ of final cones of (E
Q

−→ K, γ) is usually called the secondary fan of
the vector configuration v1, . . . , vr ∈ NQ. As mentioned at the beginning of this
section, its meaning is the following:

Proposition 2.9. There is a well defined injection from the secondary fan Σ

of the vector configuration v1, . . . , vr ∈ NQ into the set of bunches in (E
Q

−→ K, γ):

B : Σ → bunches(E
Q

−→ K, γ)

σ 7→ {Q(γ0); γ0 � γ minimal with σ◦ ⊂ Q(γ0)
◦}

The image of this map consists precisely of the bunches having a corresponding
maximal projectable fan with a quasipolytopal quotient fan.

For a bunch Θ in (E
Q

−→ K, γ), let ∆̂(Θ) be the corresponding maximal pro-

jectable fan in (F
P

−→ N, δ), and let ∆(Θ) denote the associated quotient fan.

3. TORIC GEOMETRY 13

Proposition 2.10. For σ ∈ Σ choose a point w ∈ σ◦ and a point u ∈ Q−1(w).
Then ∆(B(σ)) is the quotient fan of the normal quasifan of the fibre polyhedron
(Q−1(w) − u) ∩ MQ.

3. Toric Geometry

3.1. Toric varieties and fans. We provide the basic definitions and con-
structions of the theory of toric varieties. We work over an algebraically closed
field K of characteristic zero, i.e., by a variety we mean a reduced integral scheme
over K, and, similarly, morphisms are supposed to be defined over K.

A toric variety is a normal algebraic variety X containing an algebraic torus
TX as an open subset such that the group structure of TX extends to a regular
action on X . A toric morphism is a regular map X → Y of toric varieties that
restricts to a group homomorphism TX → TY .

The most important feature of the category of toric varieties is that it admits
a complete description in terms of fans. We briefly indicate how this works. Let
∆ be a fan in a lattice N , and let M := Hom(N, Z) be the dual lattice of N . For
every cone σ ∈ ∆ one defines an affine toric variety:

Xσ := Spec(K[σ∨ ∩ M]).

For any two such Xσi
, one has canonical open embeddings of Xσ1∩σ2

into Xσi
.

Patching together all Xσ along these open embeddings gives a toric variety X∆. The
assignment ∆ 7→ X∆ is functorial, and it turns out to be a (covariant) equivalence
of categories.

This equivalence of categories provides a very concrete combinatorial language
for the geometry of toric varieties. For example, a toric variety X∆ is

• smooth if and only if all cones of ∆ are regular,
• Q-factorial if and only if all cones of ∆ are simplicial,
• complete if and only if ∆ is so, i.e., |∆| is the whole space,
• projective if and only if ∆ is the normal fan of a polytope.

For the proofs of these basic observations and many further results, we refer the
reader to the standard textbooks [9] and [13].

3.2. Toric varieties and bunches. As an alternative to the language of
fans, one may use bunches of cones to describe toric varieties. This is based on
the correspondence presented in Section 2.2, and it works particularly nice in the
following situation: let ∆ be a fan in a lattice N , set R := ∆(1), and assume that

• the primitive vectors v%, % ∈ R, generate N as a lattice,
• the fan ∆ cannot be enlarged without adding new rays.

Geometrically, the first property means that the toric variety X associated to
∆ is nondegenerate, i.e., it admits no splitting X ∼= X ′ × K∗, and that the divisor
class group Cl(X) is free. Note that any toric variety is a finite quotient of one
with a free divisor class group.

The second property means that X is 2-complete, i.e., it does not occur as a
proper invariant open subset of a toric variety X ′ such that X ′ \ X is of codimen-
sion at least two. For example, every complete and every affine toric variety is
2-complete.

Let us indicate how to describe X by means of a bunch of cones Θ. The key is
Cox’s Construction [7]: set F := ZR, and consider the map linear map P : F → N

14 2. MATHEMATICAL BACKGROUND

sending the canonical base vector e% to v%. For σ ∈ ∆max, set

σ̂ := cone(e%; % ∈ σ(1)).

Then we obtain a projected cone (F
P

−→ N, δ), where δ := cone(e%; % ∈ R),

and a fan ∆̂ having the σ̂, where σ ∈ ∆max, as its maximal cones. Here are the
characteristic properties:

(i) ∆̂ is a maximal projectable fan in (F
P

−→ N, δ) containing all rays of δ,

(ii) the map P : F → N induces bijections ∆̂max → ∆max and ∆̂(1) → ∆(1),
(iii) the images P (e%) of the generators of δ are primitive vectors in N .

Let Θ be the bunch of cones in the dual projected cone (E
Q

−→ K, γ) corre-

sponding to ∆̂. The above properties (i) to (iii) translate into the defining properties
of a standard bunch for Θ: for every facet γ0 � γ, we have Q(γ0 ∩ E) = K and
Q(γ0)

◦ ⊃ τ◦ for some τ ∈ Θ.
The assignment ∆ 7→ Θ turns out to be inverse to the Gale transformation

restricted to standard bunches. Thus, we obtained an equivalence of categories
between standard bunches and nondegenerate 2-complete toric varieties with a free
divisor class group:

Given a standard bunch Θ, consider the corresponding maximal projectable

fan ∆̂(Θ) according to Proposition 2.7, and then define XΘ to be the toric variety

of the quotient fan ∆(Θ), which is associated to ∆̂(Θ).

3.3. Toric geometry in terms of bunches. Let Θ be a standard bunch in

a projected cone (E
Q

−→ K, γ). We present some results of [3] that allow to read
off geometric properties of the associated toric variety X := XΘ directly from Θ.
First observations concern the singularities:

• The variety X is Q-factorial if and only if every cone τ ∈ Θ is of full
dimension.

• The variety X is smooth if and only if K = Q(lin(γ0) ∩ E) holds for all
γ0 in cov(Θ).

The power of the language of bunches lies in the description of geometric phe-
nomena around divisors. The reason for this is the following (well known) observa-
tion:

Proposition 2.11. The divisor class group of X satisfies Cl(X) ∼= K.

This is due to the fact that E is the group of invariant Weil divisors of XΘ and
M := ker(Q) is the group of invariant principal divisors. The Picard group of X
can be expressed in terms of the covering collection:

Theorem 2.12. In the divisor class group Cl(X) ∼= K, the Picard group of X
is given by

Pic(X) =
⋂

γ0∈cov(Θ)

Q(lin(γ0) ∩ E).

Moreover, one has natural descriptions of important cones of divisors: the
effective cone, the moving cone, the semiample cone and the ample cone:

4. GEOMETRIC INVARIANT THEORY 15

Theorem 2.13. In the divisor class group Cl(X) ∼= K, we have the following
descriptions:

Eff(X) = Q(γ), Mov(X) =
⋂

γ0 facet of γ

Q(γ0),

Sample(X) =
⋂

τ∈Θ

τ, Ample(X) =
⋂

τ∈Θ

τ◦.

The canonical divisor class of a toric variety is minus the sum of the classes of
the invariant prime divisors. Thus, as a consequence of the above results, we can
decide if X is Gorenstein or Fano:

Theorem 2.14. Let e1, . . . , er be the primitive generators of γ. The toric va-
riety X associated to Θ is

(i) Gorenstein if and only if we have
∑

Q(ei) ∈
⋂

γ0∈cov(Θ)

Q(lin(γ0) ∩ E).

(ii) Fano if and only if we have
∑

Q(ei) ∈
⋂

γ0∈cov(Θ)

Q(lin(γ0) ∩ E) ∩
⋂

τ∈Θ

τ◦.

4. Geometric Invariant Theory

4.1. Good quotients. Let the reductive group G act on a variety X by means
of a morphism G × X → X . A good quotient for this action is a G-invariant
affine morphism p : X → Y such that the canonical map OY → p∗(OX)G is an
isomorphism. If it exists, then the good quotient space is usually denoted by X//G.

In general, a G-variety X need not admit a good quotient X → X//G, but
there frequently exist many invariant open subsets U ⊂ X with good quotient
U → U//G. We will call these sets for short the good G-sets. It is one of the central
tasks of Geometric Invariant Theory (GIT) to describe all the good G-sets, see [4,
Section 7.2].

We briefly present D. Mumfords construction [12] of good G-sets with quasipro-
jective quotient spaces. Let L be a line bundle over X . A G-linearization of L is a
G-action on the total space such that the projection L → X is equivariant and the
induced maps Lx → Lg·x of the fibres are linear. Note that for any two G-linearized
line bundles, their tensor product comes with a natural G-linearization.

To any G-linearized line bundle L over X , one associates a set of semistable
points Xss(L). Consider the representation of G on the space Γ(X, L) of global
sections given by

(g ·f)(x) := g ·(f(g−1 ·x)).

Then one can talk about the invariant sections Γ(X, L)G, and one defines the set
of semistable points associated to L to be

Xss(L) := {x ∈ X ; f(x) 6= 0 for some f ∈ Γ(X, L⊗n)G, where n > 0}.

This set Xss(L) of semistable points turns out to be a good G-set and the
quotient space Xss(L)//G is a quasiprojective variety. Moreover, if X is smooth,

16 2. MATHEMATICAL BACKGROUND

then every good G-set with a quasiprojective quotient space is saturated (w.r. to
the quotient map) in the set of semistable points of a G-linearized line bundle.

Note that Mumford’s construction is by far not the whole story: there exist
many examples of good G-sets with a non quasiprojective quotient space, even if
one starts with a quasiprojective or an affine variety X . Examples in the setting of
torus actions are the Cox Constructions of non quasiprojective toric varieties.

4.2. Subtorus actions. Let a torus T act on a variety X . Following [4,
Section 7.2] and [5], we say that a good T -set U ⊂ X is maximal, if there is no
good T -set U ′ ⊂ X such that U is a proper subset of U ′ and U is saturated w.r. to
the quotient map U ′ → U ′//G.

Now assume that X is a toric variety, and that T is a subtorus of the big torus
TX . In the setting, the maximal good T -sets can be characterized in terms of fans.
This relies on the following observation due to Świȩcicka, see [15, Proposition 2.5]:
If U ⊂ X is a T -maximal subset, then U is invariant under TX .

Now, let X be the toric variety arising from a fan ∆ in a lattice N , let T ⊂ TX be
the subtorus corresponding to a primitive sublattice L ⊂ N . Then the T -maximal
subsets U ⊂ X correspond to certain subfans of ∆. The characterization of these
fans is standard, see e.g. [10, Proposition 1.3]:

Proposition 2.15. Let U ⊂ X be the open TX -invariant subset defined by
a subfan Σ of ∆. Then U is a maximal good T -set if and only if it satisfies the
following two properties:

(i) any two maximal cones of Σ can be separated by an L-invariant linear
form,

(ii) every σ ∈ ∆ that can be separated by L-invariant linear forms from the
maximal cones of Σ belongs to Σ.

Note that these two properties occur as well in the definition of a maximal
projectable fan in a projected cone. In the setting of Proposition 2.15, they ensure
that the images of the maximal cones of Σ in N/L generate a quasifan. The
associated quotient fan eventually describes the (again toric) quotient variety U//T .

Finally, we consider the special case X = Kn, that means that X is the affine
toric variety arising from the positive orthant δ in F := Zn. We shall describe the
maximal good T -sets in terms of bunches of cones. For this, let L ⊂ F be the
sublattice corresponding to T ⊂ TX .

Setting N := F/L, we obtain a projected cone (F
P

−→ N, δ). Moreover, we have

the dual projected cone (E
Q

−→ K, γ). Recall that to any bunch Θ in (E
Q

−→ K, γ),

we associated a maximal projectable fan ∆̂(Θ) in (F
P

−→ N, δ).

Theorem 2.16. The assignment Θ 7→ Xb∆(Θ) defines a one-to-one correspon-

dence between the bunches in (E
Q

−→ K, γ) and the maximal good T -sets in X.

A geometric quotient for an action of a reductive group G on a variety X is
a good quotient that separates orbits. Geometric quotients are denoted by X →
X/G. In the setting of Theorem 2.16, the geometric quotients are described by the
following:

Proposition 2.17. Let Θ be a bunch in (E
Q

−→ K, γ). The open toric sub-
variety Xb∆(Θ) ⊂ X admits a geometric quotient by the action of T if and only if

dim(τ) = dim(K) holds for every τ ∈ Θ.

4. GEOMETRIC INVARIANT THEORY 17

4.3. Mumford quotients of Kn. Consider the affine toric variety X = Kn,
and the action of subtorus T ⊂ TX on X . We discuss Mumford’s construction
in this setting. Note that X is factorial, and hence all line bundles on X are
trivial. The possible T -linearizations of the trivial bundle are given by characters
χw : T → K∗ and are of the form

t·(x, z) = (t·x, χw(t)z).

We describe now the associated set of semistable points in terms of fans. The
affine toric variety X arises from the positive orthant δ in F := Zn. The subtorus
T ⊂ TX corresponds to a sublattice L ⊂ F , and K := Hom(L, Z) is isomorphic to
the character space of T via w 7→ χw.

Now, given w ∈ K, we denote by X(w) ⊂ X the set of semistable points
associated to the above linearization of the trivial bundle. As usual, we denote
by Q : E → K the dual map of the inclusion L → F . Then X(w) is nonempty if
and only if w ∈ Q(γ), and in the latter case, it is the open toric subvariety of X
corresponding to the fan

Σ(w) = {σ ≤ δ; w ∈ Q(σ∗)}.

The map w 7→ X(w) on Q(γ) is described in terms of the secondary fan ∆
subdividing the cone Q(γ): we have X(w) ⊂ X(w′) if and only if w ∈ τ and w′ ∈ τ ′

with τ ′ � τ . In particular, w 7→ X(w) is constant on the relative interiors of the
cones of the secondary fan. For that reason, the secondary fan is as well called the
GIT-fan.

The various quotients X(w)//T form a directed system: Whenever we have
X(w) ⊂ X(w′), there is a (unique) induced map X(w)//T → X(w′)//T , and these
maps are compatible with respect to composition. In the direct limit of this system
there is a unique irreducible component Y0 rationally dominanting all the quotients
X(w)//T .

The normalization of Y0 is a toric variety. Its fan ∆0 is obtained as follows:
Consider the projection P : F → N with N := F/L. Then ∆0 is the coarsest
common refinement of all the cones P (δ0), where δ0 � δ.

CHAPTER 3

The TorDiv functions

1. Functions on lattices

1.1. Introductory remarks. The package TorDiv provides several functions
performing standard computations in lattices, such as determinig the kernel of a
linear map, intersecting sublattices etc.. Most of these functions are standard appli-
cations of the Hermite and Smith normal forms of integral matrices; for computing,
we use implementations ihermite and ismith of Maple.

We deal with the lattices Zm. An element v ∈ Zm always is represented by its
coordinates with respect to the canonical basis; thus v is represented by a list of
integers. Similarly, a linear map p : Zm → Zn is always represented by its matrix
with respect to the canonical basis. A matrix can be entered as a listlist of integers
representing the column vectors, or via the matrix command of Maple.

1.2. cols2matrix. Given a set of integral m-vectors, this function provides a
matrix having the given vectors as columns.

1.2.1. Usage.

Input: A listlist of integers representing a set of vectors in Zm

Output: an integral (m × l)-matrix.

1.2.2. Example.

> L := [[1,2,3],[4,5,6]]:

> cols2matrix(L);



1 4
2 5
3 6




1.3. completeseq. Given a linear injection ı : Zl → Zm with a primitive image
[a linear surjection p : Zm → Zn], the function provides a completed exact sequence
of integral linear maps

0 // Zl
ı

// Zm
p

// Zn // 0.

All occuring linear maps are represented by matrices with respect to canonical
bases. It is specified via an additional argument inj or surj wether the input map
should be the injection ı or the surjection p of the resulting sequence.

1.3.1. Usage.

Input: An integral (l × m)-matrix and a specification inj

[an integral (m × n)-matrix and a specification surj].

Output: A pair of integral matrices.

19

20 3. THE TORDIV FUNCTIONS

1.3.2. Example.

> A := linalg[matrix]([[1,-1],[1,0],[1,1],[1,2]]);

A :=




1 −1
1 0
1 1
1 2




> completeseq(A,inj);






1 −1
1 0
1 1
1 2


 ,

[
1 −2 1 0
1 −1 −1 1

]



> B := linalg[transpose](A);

B :=

[
1 1 1 1

−1 0 1 2

]

> completeseq(B,surj);






1 1
−2 −1

1 −1
0 1


 ,

[
1 1 1 1

−1 0 1 2

]



1.4. dualseq. Given a sequence of integral linear maps, this function com-
putes the dualized sequence. Sequences are represented by pairs [A, B] of integral
matrices such that BA can be formed.

1.4.1. Usage.

Input: A pair of integral matrices.

Output: A pair of integral matrices.

1.4.2. Example.

> A := linalg[matrix]([[1,-1],[1,0],[1,1],[1,2]]);

A :=




1 −1
1 0
1 1
1 2




> B := linalg[matrix]([[1,-2,1,0],[1,-1,-1,1]]);

B :=

[
1 −2 1 0
1 −1 −1 1

]

> dualseq([A,B]);






1 1
−2 −1

1 −1
0 1


 ,

[
1 1 1 1

−1 0 1 2

]



1.5. ihermitecolops. Given an integral matrix A, this function computes a
pair [H, U], where H is in Hermite normal form with respect to invertible integer
column operations, and U is a unimodular matrix satisfying H = AU .

1. FUNCTIONS ON LATTICES 21

1.5.1. Usage.

Input: An integral matrix.

Output: A pair of integral matrices.

1.5.2. Example.

> A := linalg[matrix]([[1,2,3,4],[5,6,7,8]]);

A :=

[
1 2 3 4
5 6 7 8

]

> ihermitecolops(A);


[

1 0 0 0
1 4 0 0

]
,




−1 2 1 2
1 −1 −2 −3
0 0 1 0
0 0 0 1







1.6. ihermiterowops. Given an integral matrix A, this function computes a
pair [H, U], where H is in Hermite normal form with respect to invertible integer
row operations, and U is a unimodular matrix satisfying H = UA.

1.6.1. Usage.

Input: An integral matrix.

Output: A pair of integral matrices.

1.6.2. Example.

> A := linalg[matrix]([[1,2],[3,4],[5,6],[7,8]]);

A :=




1 2
3 4
5 6
7 8




> ihermiterowops(A);






1 0
0 2
0 0
0 0


 ,




−2 1 0 0
3 −1 0 0
1 −2 1 0
2 −3 0 1







1.7. intcontains. This function checks whether or not a given sublattice
L ⊂ Zm contains a given vector v ∈ Zm.

1.7.1. Usage.

Input: a listlist of integers [a matrix], and a list of integers.

Output: a boolean.

1.7.2. Example.

> A := [[2,0,0],[0,2,0]]:

> v := [1,1,0]:

> intcontains(A,v);

false

22 3. THE TORDIV FUNCTIONS

1.8. intersectlattices. Given two sublattices of Zm, this function deter-
mines a basis for the intersection of these sublattices. Depending on which of the
possible options list, matrix is chosen, the output is a listlist of integers a matrix
(the default is a listlist). If the possible option red is chosen, then the output forms
a LLL-reduced system.

1.8.1. Usage.

Input: Two listlists of integers, representing systems of generators of sub-
lattices of Zm

[two integral (m × li)-matrices].

Option(s): list, matrix, red.

Output: A listlist of integers representing the vectors of a basis of the inter-
section sublattice
[an integral (n × m)-matrix the columns of which form a basis of
the intersection sublattice].

1.8.2. Example.

> A := [[1,2,3],[4,5,6]]:

> B := [[6,7,8],[9,10,11]]:

> intersectlattices(A,B);

[[3, 0, −3], [0, 3, 6]]

1.9. intimage. Given a linear map p : Zm → Zn, and vectors v1, . . . , vr ∈ Zm,
this function computes an integer basis for the image of the sublattice generated by
the vi under the map p. Depending on which of the possible options list, matrix
is chosen, the output is a listlist of integers or a matrix (the default is a listlist). If
the possible option red is chosen, then the basis for the kernel will be LLL-reduced.

1.9.1. Usage.

Input: A listlist of integers, representing the images p(ei) ∈ Zn of the
canonical base vectors ei ∈ Zn

[an integral (n×m)-matrix, representing p : Zm → Zn with respect
to the canonical bases],
a listlist of integers, representing the vectors generating the sub-
lattice

Option(s): list, matrix, red.

Output: A listlist of integers, representing the vectors of the image
[an integral (m × l)-matrix, the columns of which form a basis of
the image].

1.9.2. Example.

> Q := matrix([[1,2,3],[3,2,1]]);

Q :=

[
1 2 3
3 2 1

]

> L := [[1,2,3],[4,5,6]]:

> intimage(Q,L);

[[2, 22], [0, 36]]

1. FUNCTIONS ON LATTICES 23

1.10. intiscontained. This function checks whether or not a given vector
v ∈ Zm is contained in a given sublattice L ⊂ Zm.

1.10.1. Usage.

Input: a list of integers, and a listlist of integers [a matrix].

Output: a boolean.

1.10.2. Example.

> A := [[2,0,0],[0,2,0]]:

> v := [1,1,0]:

> intiscontained(v,A);

false

1.11. intkernel. Given a linear map p : Zm → Zn, this function computes an
integer basis for the kernel of p (consisting of the zero vector in case of an injection).
Depending on which of the possible options list, matrix is chosen, the output is
a listlist of integers or a matrix (the default is a listlist). If the possible option red

is chosen, then the basis for the kernel will be LLL-reduced.

1.11.1. Usage.

Input: A listlist of integers, representing the images p(ei) ∈ Zn of the
canonical base vectors ei ∈ Zn

[an integral (n×m)-matrix, representing p : Zm → Zn with respect
to the canonical bases].

Option(s): list, matrix, red.

Output: A listlist of integers, representing the vectors of a basis for the
kernel of p
[an integral (m × l)-matrix, the columns of which form a basis of
the kernel of p].

1.11.2. Example.

> LL := [[1,2,3],[4,5,6],[7,8,9],[10,11,12]]:

> intkernel(LL);

[[1, −2, 1, 0], [2, −3, 0, 1]]

> intkernel(LL,matrix,red);



1 1
−2 −1

1 −1
0 1




1.12. intpreimage. Given a linear map p : Zm → Zn and a sublattice L ⊂ Zn,
this function determines a basis for the preimage p−1(L). Depending on which of
the possible options list, matrix is chosen, the output is a listlist of integers a
matrix (the default is a listlist). If the possible option red is chosen, then the
output forms a LLL-reduced system.

24 3. THE TORDIV FUNCTIONS

1.12.1. Usage.

Input: A pair (P, B), where P is a listlist of integers [a matrix] representing
the linear map p : Zm → Zn and B is a listlists of integers [a matrix]
representing a system of generators for the sublattice L ⊂ Zn.

Option(s): list, matrix, red.

Output: A listlist of integers representing the vectors of a basis of the preim-
age p−1(L) ⊂ Zm.
[an integral (m × l)-matrix the columns of which form a basis of
the preimage p−1(L) ⊂ Zm].

1.12.2. Example.

> A := linalg[matrix]([[2,6,10],[4,8,12]]);

A :=

[
2 6 10
4 8 12

]

> B := linalg[matrix]([[1],[0]]);

B :=

[
1
0

]

> P := intpreimage(A,B,matrix,red);

P :=




1 −2
1 1

−1 0




1.13. intprojection. Given a set of vectors in Zm, this function provides
a linear map p : Zm → Zn having the primitive span of these vectors its kernel.
Depending on which of the possible options list, matrix is chosen, the output is
a listlist of integers or a matrix (the default is a listlist). If the possible option red

is chosen, then the rows of the matrix of p with respect to the canonical bases form
an LLL-reduced system.

1.13.1. Usage.

Input: A listlist of integers representing vectors in Zm

[an integral (m × l)-matrix].

Option(s): list, matrix, red.

Output: A listlist of integers representing the images p(ei) ∈ Zn of the
canonical base vectors ei ∈ Zm

[an integral (n×m)-matrix representing the map p : Zm → Zn with
respect to the canonical bases].

1.13.2. Example.

> LL := [[1,2,3,4],[5,6,7,8]]:

> intprojection(LL);

[[1, 2], [−2, −3], [1, 0], [0, 1]]

> intprojection(LL,matrix,red);
[

1 −2 1 0
1 −1 −1 1

]

1. FUNCTIONS ON LATTICES 25

1.14. intsection. Given a linear surjection p : Zm → Zn, this function com-
putes an integer section s : Zn → Zm of p. Depending on which of the possible
options list, matrix is chosen, the output is a listlist of integers or a matrix (the
default is a listlist).

1.14.1. Usage.

Input: A listlist of integers, representing the images p(ei) ∈ Zn of the
canonical base vectors ei ∈ Zn

[an integral (m×n)-matrix, representing p : Zm → Zn with respect
to the canonical bases].

Option(s): list, matrix.

Output: A listlist of integers, representing the images s(ei) of the canonical
base vectors Zn

[an integral (n × m)-matrix, representing s : Zn → Zm].

1.14.2. Example.

> LL := [[1,2],[3,4],[4,5],[6,7]]:

> intsection(LL);

[[−2, 1, 0, 0], [3, −3, 0, 1]]

1.15. isprimitive. Given a set of integral m-vectors, this function tests if
these vectors generate a primitive sublattice in Zm, i.e., a direct summand of Zm.

1.15.1. Usage.

Input: A listlist of integers representing a set of vectors of Zm

[an integral (m × l)-matrix].

Output: A boolean.

1.15.2. Example.

> A := [[1,2,3],[4,5,6]]:

> isprimitive(A);

false

1.16. issurjective. This function test, if a given a linear map p : Zm → Zn

is surjective.

1.16.1. Usage.

Input: A listlist of integers the images p(ei) ∈ Zn of the canonical base
vectors ei ∈ Zm

[an integral (n × m)-matrix representing p with respect to the
canonical bases].

Output: A boolean.

1.16.2. Example.

> LL := [[1,2],[3,4],[5,6]]:

> issurjective(LL);

false

26 3. THE TORDIV FUNCTIONS

1.17. latticebasis. Given a set of integral m-vectors, this function provides
a basis for the sublattice generated by these vectors. Depending on which of the
possible options list, matrix is chosen, the output is a listlist of integers or a
matrix (the default is a matrix). If the possible option red is chosen, then the
output forms a LLL-reduced system.

1.17.1. Usage.

Input: A listlist of integers representing a set of vectors in Zm

[an integral (m × l)-matrix].

Option(s): list, matrix, red.

Output: A listlist of integers
[an integral (m × l′)-matrix].

1.17.2. Examples.

> LL := [[1,2,3],[4,5,6]]:

> latticebasis(LL);

[[1, 2, 3], [0, 3, 6]]

1.18. matrix2cols. Given a matrix, this function provides a list of the columns
of the given matrix. Note that using the built-in maple procedure convert provides
the rows of the respective matrix.

1.18.1. Usage.

Input: An integral (m × l)-matrix

Output: A listlist of integers.

1.18.2. Example.

> A := matrix([[1,2,3],[4,5,6]]);

A :=

[
1 2 3
4 5 6

]

> matrix2cols(A);

[[1, 4], [2, 5], [3, 6]]

1.19. primitivespan. Given a set of integral m-vectors, this function pro-
vides a basis for the minimal primitive sublattice containing these vectors. De-
pending on which of the possible options list, matrix is chosen, the output is a
listlist of integers or a matrix (the default is a matrix). If the possible option red

is chosen, then the output forms a LLL-reduced system.

1.19.1. Usage.

Input: A listlist of integers representing a set of vectors in Zm

[an integral (m × l)-matrix].

Option(s): list, matrix, red.

Output: A listlist of integers
[an integral (m × l′)-matrix].

1. FUNCTIONS ON LATTICES 27

1.19.2. Example.

> LL := [[1,2,3],[4,5,6]]:

> primitivespan(LL);

[[1, 2, 3], [1, 1, 1]]

28 3. THE TORDIV FUNCTIONS

2. Functions on convex polyhedra

2.1. Introductory remarks. The TorDiv package provides functions for cal-
culations with bunches of cones and also some general functions on conves polyhedra
complementing the convex package. A bunch of cones is defined via an integral
liner map Zm → Zk and a list of cones in Zk. For the ambient projected cone

(E
Q

−→ K, γ), we always take E = Zm and γ = cone(e1, . . . , em).

2.2. bunch. Given a linear map of lattices and a list of cones in the image
lattice, this function checks if these data form a bunch in a projected cone and then
declares a bunch of cones. To avoid the check, one may use the option nocheck.
In order to retrieve explicitly the projection and the list of cone, use the functions
bunchprojection and bunchcones.

2.2.1. Usage.

Input: A matrix and a list of cones.

Option(s): nocheck.

Output: A bunch of cones: BUNCH(m,k,l), where m is the dimension of the
space projected from, k is the dimension of the weight space and l

is the number of cones in the bunch.

2.2.2. Example.

> Q := linalg[matrix]([[1,3,5,7,0],[2,4,6,8,1]]);

Q :=

[
1 3 5 7 0
2 4 6 8 1

]

> C := poshull([3,4],[5,6]):

> CL := [C]:

> B := bunch(Q,CL);

B := BUNCH(5, 2, 1)

2.3. bunchcones. Given a bunch of cones, this function provides the associ-
ated list of cones.

2.3.1. Usage.

Input: A bunch of cones.

Output: A list of cones.

2.3.2. Example.

> Q := linalg[matrix]([[1,3,5,7,0],[2,4,6,8,1]]);

Q :=

[
1 3 5 7 0
2 4 6 8 1

]

> C := poshull([3,4],[5,6]):

> CL := [C]:

> B := bunch(Q,CL):

> bunchcones(B);

[CONE(2, 2, 0, 2, 2)]

2. FUNCTIONS ON CONVEX POLYHEDRA 29

2.4. bunchprojection. Given a bunch of cones, this function provides the
projection matrix associated to the bunch.

2.4.1. Usage.

Input: A bunch of cones.

Output: A list of cones.

2.4.2. Example.

> Q := linalg[matrix]([[1,3,5,7,0],[2,4,6,8,1]]);

Q :=

[
1 3 5 7 0
2 4 6 8 1

]

> C := poshull([3,4],[5,6]):

> CL := [C]:

> B := bunch(Q,CL):

> bunchprojection(B);
[

1 3 5 7 0
2 4 6 8 1

]

2.5. bunch2fan. Given a standard bunch of cones, this function computes the
corresponding fan.

As an optional second argument, one can fix an associated pair for the compu-
tation; this is a pair [P, Q] of integral matrices describing the usual exact sequences,
mutually dual to each other:

0 // Zl // Zm P
// Zn // 0,

0 Zloo Zm
Q

oo Znoo 0,oo

where Q : Zm → Zl is the bunch projection. Similarly, if an unassigned variable
is entered as second argument, then the procedure assigns to this variable the
associated pair used in the computation.

2.5.1. Usage.

Input: a standard bunch; optionally: an associated pair [an unassigned
variable].

Output: a fan. [if the second argument is an unassigned variable, it is set
to an associated pair]

2.5.2. Example.
> Q := linalg[matrix]([[1,1,1]]):
> C := poshull([1]):
> B := bunch(Q,[C]);

B := BUNCH(3, 1, 1)

> bunch2fan(B);

FAN(2, 2, 0, 3, [0, 3])

2.6. cocoref. Given a set L of vectors in Zm, this function computes a fan:
the coarsest common refinement of all possible triangulations of the set L.

30 3. THE TORDIV FUNCTIONS

2.6.1. Usage.

Input: a listlist of integers [a matrix].

Output: a fan.

2.6.2. Example.

> L := [[1,0,0],[0,1,0],[1,0,1],[0,1,1]]:

> F :=cocoref(L);

F := FAN(3, 3, 0, 5, [0, 0, 4])

> rays(F);

{[1, 1, 1], [1, 0, 0], [0, 1, 0], [1, 0, 1], [0, 1, 1]}

2.7. covcoll. Given a bunch of cones, this function determines the corre-
sponding covering collection.

2.7.1. Usage.

Input: A bunch

Output: A list of cones.

2.7.2. Example.

> Q := linalg[matrix]([[1,1,1]]);

Q :=
[

1 1 1
]

> C := poshull([1]):

> B := bunch(Q,[C]):

> covcoll(B);

[CONE(3, 1, 0, 1, 1), CONE(3, 1, 0, 1, 1), CONE(3, 1, 0, 1, 1)]

2.8. dualface. Given a cone σ and a face τ � σ [a list τ1, . . . , τr of faces
τi � σ], this function returns a pair a pair [σ∨, τ∗], where σ∨ is the dual cone and
τ∗ � σ∨ is the face corresponding to τ � σ [a pair [σ∨, [τ∗

1 , . . . , τ∗
r]], where σ∨ is

the dual cone and τ∗
i � σ∨ are the faces corresponding to τi � σ].

2.8.1. Usage.

Input: a pair of cones [a cone and a list of cones].

Output: a pair of cones [a cone and a list of cones].

2.8.2. Example.

> C := posorthant(3):

> F1 := poshull([1,0,0]):

> dualface(C,F1);

[CONE(3, 3, 0, 3, 3), CONE(3, 2, 0, 2, 2)]

> F2 := poshull([0,1,0],[0,0,1]):

> dualface(C,[F1,F2]);

[CONE(3, 3, 0, 3, 3), [CONE(3, 2, 0, 2, 2), CONE(3, 1, 0, 1, 1)]]

2. FUNCTIONS ON CONVEX POLYHEDRA 31

2.9. fan2bunch. Given a standard fan ∆ in Zn, i.e., the primitive vectors of
the rays of ∆ generate Zn and ∆ cannot be enlarged without adding new rays,
this function computes the correponding bunch of cones. Some checks for bunch
properties are performed by default; they can be surpressed by the option nocheck.

As an optional second argument, one can fix an associated pair for the compu-
tation; this is a pair [P, Q] of integral matrices describing the usual exact sequences,
mutually dual to each other:

0 // Zl // Zm P
// Zn // 0,

0 Zloo Zm
Q

oo Znoo 0,oo

where P sets up a one-to-one correspondence between the canonical basis vectors
of Zm and the primitive generators of the rays of ∆. Similarly, if an unassigned
variable is entered as second argument, then the procedure assigns to this variable
the associated pair used in the computation.

2.9.1. Usage.

Input: a fan; optionally: an associated pair [an unassigned variable].

Option(s): nocheck.

Output: a bunch [if the additional argument is an unassigned variable it is
set to an associated pair].

2.9.2. Example.

> F := projspace(2);

F := FAN(2, 2, 0, 3, [0, 3])

> B := fan2bunch(F);

B := BUNCH(3, 1, 1)

2.10. intersectrelint. Given two cones, this functions checks whether their
relative interiors have a nonempty intersection.

2.10.1. Usage.

Input: A pair of cones.

Output: A boolean.

2.10.2. Example.

> C1 := poshull([1,0],[0,1]):

> C2 := poshull([1,1],[0,-1]):

> intersectrelint(C1,C2);

true

2.11. isremovableray. Given a fan and a vector generating a ray of this fan,
the function checks if replacing the star of this ray with the convex cone generated
by its support gives again a fan.

2.11.1. Usage.

Input: a pair [fan, vector].

Output: A boolean.

32 3. THE TORDIV FUNCTIONS

2.11.2. Example.

> F := fan(poshull([1, 0], [1, 1]), poshull([1, 1], [0, 1]));

F := FAN (2, 0, [0, 2])

> isremovableray(F, [1, 1]);

true

2.12. isstandard. Given a bunch of cones, this function checks whether or
not it is a standard bunch in the associated projected cone.

2.12.1. Usage.

Input: a bunch.

Output: a boolean.

2.12.2. Example.

> Q := cols2matrix([[1,0],[1,0],[0,1]]);

Q :=

[
1 1 0
0 0 1

]

> C := poshull([1,0],[0,1]):

> CL := [C]:

> B := bunch(Q,CL):

> isstandard(B);

false

2.13. relintcontains. Given two cones, this function checks whether or not
the relative interior of the first one contains the relative interior of the second one.

2.13.1. Usage.

Input: a pair of cones.

Output: a boolean.

2.13.2. Example.
> C1 := poshull([1,0],[0,1]):
> C2 := poshull([1,0]):

> relintcontains(C1,C2);

false

2.14. relintiscontained. Given two cones, this function checks whether or
not the relative interior of the first one is contained in the relative interior of the
second one.

2.14.1. Usage.

Input: a pair of cones.

Output: a boolean.

2.14.2. Example.
> C1 := poshull([1,0]):
> C2 := poshull([1,0],[0,1]):

> relintiscontained(C1,C2);

false

3. FUNCTIONS ON TORIC GEOMETRY 33

2.15. removeray. Given a fan and a vector generating a ray of this fan, the
function computes the fan obtained by replacing the star of this ray with the convex
cone generated by its support; it ends with an error if the ray is not removable.

2.15.1. Usage.

Input: a pair [fan, vector].

Output: a fan.

2.15.2. Example.

> F := fan(poshull([1, 0], [1, 1]), poshull([1, 1], [0, 1]));

F := FAN (2, 0, [0, 2])

> removeray(F, [1, 1]);

FAN (2, 0, [0, 1])

3. Functions on Toric Geometry

3.1. Introductory remarks. The TorDiv package provides several functions
on toric varieties. In most cases, the toric varieties must be nondegenerate, twocom-
plete, and have a free divisor class group. Such a toric variety can be encoded either
by a standard bunch or by a standard fan, i.e., a fan that cannot be enlarged with-
out adding new rays, and the primitive vectors of the rays of which generate the
ambient lattice.

Most of the functions of the TorDiv package can handle both types of input,
bunches and fans. However, the calculations are mainly based on bunches of cones.
Hence, entering a bunch makes the computation in general much faster, because
then internal conversion routines are avoided.

In many functions one, can fix, by entering an additional argument, an associ-
ated pair [P, Q] of integral matrices for the computation. Recall that, to a standard
fan ∆ in Zn one associates an exact sequence of integral linear maps

0 // Zl
I

// Zm P
// Zn // 0,

where P : Zm → Zn induces a one-to-one correspondence between the canonical
basis vectors of Zm and the primitive lattice vectors of the rays of ∆. Analogously,
to a standard bunch of cones, one associates an exact sequence of integral linear
maps completing the bunch projection Q : Zm → Zl:

0 Zloo Zm
Q

oo ZnJ
oo 0.oo

By construction, these two sequences are dual to each other, and they are deter-
mined by the pair [P, Q]. We say that [P, Q] is an associated pair to the fan or,
respectively, the bunch of cones under consideration.

Note, that fixing an associated pair means fixing a numbering of the invariant
divisors of the corresponding toric variety, and fixing a choice of coordinates for the
divisor class group.

3.2. amplecone. Given a standard bunch [a standard fan], this function com-
putes the closure of the cone of ample divisor classes of the corresponding toric
variety. In case of a fan as argument, an associated pair can optionally be pre-
scribed. If the ample cone is empty, i.e., the variety is not quasiprojective, then the
function returns an error.

34 3. THE TORDIV FUNCTIONS

3.2.1. Usage.

Input: a standard bunch [a standard fan; optionally: an associated pair].

Output: a cone.

3.2.2. Example.

> F := projspace(2);

F := FAN(2, 2, 0, 3, [0, 3])

> amplecone(F);

CONE(1, 1, 0, 1, 1)

3.3. canonclass. Given a standard bunch [a standard fan], this function com-
putes the canonical divisor class of the corresponding toric variety. In case of a fan
as argument, an associated pair can optionally be prescribed.

3.3.1. Usage.

Input: a standard bunch [a standard fan; optionally: an associated pair].

Output: a list of integers.

3.3.2. Example.

> F := projspace(2);

F := FAN(2, 2, 0, 3, [0, 3])

> canonclass(F);

[−3]

3.4. cartierdiv. Given a standard bunch [a standard fan], this function com-
putes the group of invariant Cartier divisors of the corresponding toric variety. In
case of a fan as argument, an associated pair can optionally be prescribed.

3.4.1. Usage.

Input: a standard bunch [a standard fan; optionally: an associated pair].

Output: a listlist of integers.

3.4.2. Example.

> F := projspace(2);

F := FAN(2, 2, 0, 3, [0, 3])

> cartierdiv(F);

[[1, 0, 0], [0, 1, 0], [0, 0, 1]]

3.5. coxconstr. Given a nondegenerate fan ∆ in a lattice Zn, this func-
tion computes a Cox construction. By default the output is a projection matrix
P : Zm → Zn, and a list of cones. The option fan transforms the latter list into a
fan. Moreover, for a standard fan ∆ an associated pair can optionally be prescribed.

3.5.1. Usage.

Input: a fan; optionally: an associated pair.

Option: fan.

Output: a matrix, and a list of cones [a fan].

3. FUNCTIONS ON TORIC GEOMETRY 35

3.5.2. Example.

> F := projspace(2);

F := FAN(2, 2, 0, 3, [0, 3])

> coxconstr(F,fan);

[

[
1 0 −1
0 1 −1

]
, FAN(3, 3, 0, 3, [0, 3, 0])]

3.6. effectivecone. Given a standard bunch [a standard fan], this function
computes the cone of effective divisor classes of the associated toric variety. In case
of a fan as argument, an associated pair can optionally be prescribed.

3.6.1. Usage.

Input: a standard bunch [a standard fan; optionally: an associated pair].

Output: a cone.

3.6.2. Example.

> F := projspace(2);

F := FAN(2, 2, 0, 3, [0, 3])

> effectivecone(F);

CONE(1, 1, 0, 1, 1)

3.7. freecovering. Given a nondegenerate fan ∆ this function computes a
standard fan ∆′ such that there is a finite toric morphism X ′ → X of the corre-
sponding toric varieties. Note that X ′ has a free divisor class group.

3.7.1. Usage.

Input: A fan.

Output: A fan.

3.7.2. Example.

> F := fan(poshull([1,0],[1,2]));

F := FAN(2, 0, 1, [0, 1])

> CF := freecovering(F);

CF := FAN(2, 0, 1, [0, 1])

> rays(CF);

{[1, 1], [1, 0]}

3.8. isdivisorial. Given a nondegenerate fan, this function checks, whether
or not the corresponding toric variety X is divisorial, i.e., is covered by affine open
subsets of the form X \ D with an effective Cartier divisor D.

3.8.1. Usage.

Input: a fan.

Output: a boolean.

36 3. THE TORDIV FUNCTIONS

3.8.2. Example.

> F1 := projspace(2);

F := FAN(2, 0, 1, [0, 3])

> isdivisorial(F1);

true

3.9. isfano. Given a standard bunch [a standard fan], this function checks
whether or not the corresponding toric variety is a Fano variety, i.e., the anticanon-
ical divisor is Cartier and ample.

3.9.1. Usage.

Input: a standard bunch [a standard fan].

Output: a boolean.

3.9.2. Example.

> F := hirzebruch(1);

F := FAN(2, 2, 0, 4, [0, 4])

> isfano(F);

true

> F := hirzebruch(2);

F := FAN(2, 2, 0, 4, [0, 4])

> isfano(F);

false

3.10. isgorenstein. Given a standard bunch [a standard fan], this function
checks whether or not the corresponding toric variety is a Gorenstein variety, i.e.,
the anticanonical divisor is Cartier.

3.10.1. Usage.

Input: a standard bunch [a standard fan].

Output: a boolean.

3.10.2. Example.

> F := projspace(2);

F := FAN(2, 2, 0, 3, [0, 3])

> isgorenstein(F);

true

3.11. isquasiprojective. Given a fan, this function tests whether or not
the corresponding toric variety is quasiprojective.

3.11.1. Usage.

Input: a fan.

Output: a boolean.

3. FUNCTIONS ON TORIC GEOMETRY 37

3.11.2. Example.

> F := projspace(3);

F := FAN(3, 3, 0, 4, [0, 0, 4])

> isquasiprojective(F);

true

> F := freebentcube();

F := FAN(3, 3, 0, 8, [0, 0, 6])

> isquasiprojective(F);

false

3.12. isprojective. Given a fan, this function tests whether or not the cor-
responding toric variety is quasiprojective.

3.12.1. Usage.

Input: a fan.

Output: a boolean.

3.12.2. Example.

> F := projspace(3);

F := FAN(3, 3, 0, 4, [0, 0, 4])

> isprojective(F);

true

> F := freebentcube();

F := FAN(3, 3, 0, 8, [0, 0, 6])

> isprojective(F);

false

3.13. istwocomplete. Given a nondegenerate fan, this function checks whether
or not the corresponding toric variety X is 2-complete, i.e. does not admit open
toric embeddings X ⊂ X ′ with X ′ \ X nonempty of codimension at least two.

3.13.1. Usage.

Input: A fan.

Output: A boolean.

3.13.2. Example.

> C1 := posorthant(2):
> C2 := poshull([-1,-1]):
> F := fan(C1,C2);

F := FAN(2, 2, 0, 3, [1, 1])

> istwocomplete(F);

false

38 3. THE TORDIV FUNCTIONS

3.14. kajiwaraconstr. Given a nondegenerate fan ∆ in a lattice Zn, corre-
sponding to a divisorial toric variety, this function computes Kajiwara’s quotient
presentation, see [11]. By default the output is a projection matrix P : Zm → Zn,
a cone and a list of faces of that cone. The option fan transforms the list of faces
into a fan. If the input fan does not correspond to a divisorial toric variety, the
function produces an error.

3.14.1. Usage.

Input: a fan.

Options: fan.

Output: A triple: matrix, cone, list of faces [fan].

3.14.2. Example.

> F1:=wprojspace(1,1,2);

F1 := FAN(2, 0, 1, [0, 3])

> kajiwaraconstr(F1);

[

[
0 0 −1
1 −1 1

]
, CONE(3, 3, 0, 3, 3),

[CONE(3, 2, 0, 2, 2), CONE(3, 2, 0, 2, 2), CONE(3, 2, 0, 2, 2)]]

3.15. movingcone. Given a standard bunch [a standard fan], this function
computes the cone of moving divisor classes of the associated toric variety, i.e.
divisors which contain no prime divisors in its base locus. In case of a fan as
argument, an associated pair can optionally be prescribed.

3.15.1. Usage.

Input: a standard bunch [a standard fan; optionally: an associated pair].

Output: a cone.

3.15.2. Example.

> F := projspace(2);

F := FAN(2, 2, 0, 3, [0, 3])

> movingcone(F);

CONE(1, 1, 0, 1, 1)

3.16. picardgroup. Given a standard bunch [a standard fan], this function
computes the Picard group of the corresponding toric variety. In case of a fan as
argument, an associated pair can optionally be prescribed.

3.16.1. Usage.

Input: a standard bunch [a standard fan; optionally: an associated pair].

Output: a listlist of integers.

3.16.2. Example.

> F := projspace(2);

F := FAN(2, 2, 0, 3, [0, 3])

> picardgroup(F);

[[1]]

4. FUNCTIONS ON GEOMETRIC INVARIANT THEORY 39

3.17. samplecone. Given a standard bunch [a standard fan], this function
computes the cone of semiample divisor classes of the corresponding toric variety,
i.e. divisor classes with empty stable base locus. In case of a fan as argument, an
associated pair can optionally be prescribed. An associated pair can be fixed via
an optional argument.

3.17.1. Usage.

Input: a standard bunch [a standard fan; optionally: an associated pair].

Output: a cone.

3.17.2. Example.

> F := projspace(2);

F := FAN(2, 2, 0, 3, [0, 3])

> samplecone(F);

CONE(1, 1, 0, 1, 1)

3.18. twocompletion. Given a nondegenerate fan ∆, this procedure com-
putes a fan ∆′ such that the the toric variety X associated to ∆ is an open toric
subset of the toric variety X ′ associated to ∆′, the complement X ′ \ X is codi-
mension at least two in X ′ and X ′ is 2-complete. Note that in general X ′ is not
unique.

3.18.1. Usage.

Input: a fan.

Output: a fan.

3.18.2. Example.
> C1 := poshull([1,0]):
> C2 := poshull([-1,-1]):
> C3 := poshull([0,1]):
> F := fan(C1,C2,C3);

F := FAN(2, 2, 0, 3, [3, 0])

> twocompletion(F);

FAN(2, 2, 0, 3, [0, 3])

4. Functions on Geometric Invariant Theory

4.1. Introductory remarks. The TorDiv package provides several functions
on Geometric Invariant Theory for effective diagonal torus actions on Km.

Usually, an effective diagonal action of a torus T = (K∗)l is encoded by the list
of weights w1, . . . , wm ∈ Zl of the variables T1, . . . , Tm. Alternatively, the action can
be encoded by a matrix Q having the weights w1, . . . , wm as columns. Effectivity
merely means that the weights w1, . . . , wm generate Zl as a lattice.

In cases where it can be of importance for the computations, one can as well
enter a torus action by providing an associated pair [P, Q] of integral matrices. In
such a pair, the columns of Q are precisely the weights w1, . . . , wm, and P provides
an exact sequence:

0 // Zl
Q>

// Zm P
// Zn // 0.

40 3. THE TORDIV FUNCTIONS

4.2. admitsgoodquot. Given a diagonal torus action on Km, and a fan de-
scribing an open toric subset U ⊂ Km, this function checks, whether or not U
admits a good quotient with by the given torus action.

4.2.1. Usage.

Input: a fan and a listlist of integers [a matrix];

Output: a boolean.

4.2.2. Example.

> Q := [[-1],[1]];

Q := [[−1], [1]]

> F := fan(poshull([1,0]), poshull([0,1]));

F := FAN(2, 2, 0, 2, [2, 0])

> admitsgoodquot(F,Q);

false

4.3. chamber. Given a diagonal torus action on Kn and a weight of the torus,
this function computes the corresponding GIT chamber.

4.3.1. Usage.

Input: a list of integers, and a listlist of integers [a matrix].

Output: a cone.

4.3.2. Example.

> Q := [[1,0,0],[0,1,0],[1,0,1],[0,1,1]];

Q := [[1, 0, 0], [0, 1, 0], [1, 0, 1], [0, 1, 1]]

> w := [2,2,1];

w := [2, 2, 1]

> chamber(w,Q);

CONE(3, 3, 0, 3, 3)

4.4. gitfan. Given a diagonal torus action on Km, this function computes
the associated GIT fan.

4.4.1. Usage.

Input: a listlist of integers [a matrix].

Output: a fan.

4.4.2. Example.

> QL := [[1],[-1]];

QL := [[1], [−1]]

> F := gitfan(QL);

F := FAN(1, 1, 0, 2, [2])

> rays(F);

{[1], [−1]}

> QL := [[1],[1]];

QL := [[1], [1]]

4. FUNCTIONS ON GEOMETRIC INVARIANT THEORY 41

> F := gitfan(QL);

F := FAN(1, 1, 0, 1, [1])

> rays(F);

{[1]}

4.5. gitlimit. Given a diagonal torus action on Km, this function computes
the fan of the normalization of the limit of all Mumford quotients. The action can
be entered as a list of weights [weight matrix] or as an associated pair for the action.

4.5.1. Usage.

Input: a listlist of integers [a matrix, an associated pair].

Output: a fan.

4.5.2. Example.

> QL := [[1],[-1]];

QL := [[1], [−1]]

> F := gitlimit(QL);

F := FAN(1, 1, 0, 1, [1])

> rays(F);

{[1]}

> QL := [[1],[1]];

QL := [[1], [1]]

> F := gitlimit(QL);

F := FAN(1, 1, 0, 2, [2])

> rays(F);

{[1], [−1]}

4.6. quotientfan. Given a diagonal torus action on Km, and a fan describing
an open toric subset of Km, this function computes the fan of the quotient variety
of the subset by the given action. The function checks whether this quotient exists,
unless the optional argument nocheck is given. Instead of the weight matrix, an
associated pair for the action can be given.

4.6.1. Usage.

Input: a fan, and a listlist of integers [a matrix, an associated pair].

Option(s): nocheck.

Output: a fan.

4.6.2. Example.

> Q := [[1],[1],[1]];

Q := [[1], [1], [1]]

> w:=[1];

w := [1]

> F := semistablepoints(w,Q);

F := FAN(3, 3, 0, 3, [0, 3, 0])

> QF := quotientfan(F,Q);

42 3. THE TORDIV FUNCTIONS

QF := FAN(2, 2, 0, 3, [0, 3])

4.7. semistablepoints. Given a diagonal torus action on Km, and a weight
for this action, this function computes the fan of the open toric subvariety of Km

consisting of the semistable points defined by the given weight. Instead of the
weight matrix, an associated pair for the action can be given.

4.7.1. Usage.

Input: a listlist of integers [a matrix, a pair of matrices];

Output: a fan.

4.7.2. Example.

> Q := [[1],[1],[1]];

Q := [[1], [1], [1]]

> w:=[1];

w := [1]

> F := semistablepoints(w,Q);

F := FAN(3, 3, 0, 3, [0, 3, 0])

4.8. weight2bunch. Given a diagonal torus action and a weight w of the torus,
this function computes the bunch corresponding to the GIT chamber of w.

4.8.1. Usage.

Input: a list of integers, and a listlist of integers [a matrix].

Output: a bunch.

4.8.2. Example.

> Q := [[1,0,0],[0,1,0],[1,0,1],[0,1,1]];

Q := [[1, 0, 0], [0, 1, 0], [1, 0, 1], [0, 1, 1]]

> w := [2,2,1];

w := [2, 2, 1]

> B := weight2bunch(w,Q);

B := BUNCH(4, 3, 2)

> bunchcones(B);

[CONE(3, 3, 0, 3, 3), CONE(3, 3, 0, 3, 3)]

5. Functions on Polyhedral Divisors

5.1. Introductory remarks. TorDiv provides several function to calculate
polyhedral divisors for subtorus actions on toric varieties; for the theoretical back-
ground, we refer to [1].

5.2. base. Procedure to extract the fan of the base variety from the type
POLDIV (polyhedral divisor).

Input: a polyhedral divisor.

Output: output: a fan.

5. FUNCTIONS ON POLYHEDRAL DIVISORS 43

5.2.1. Example.

> P := ppdivisor([[1],[1]])[2];

P := POLDIV (1, 1)

> base(P);

FAN (1, 0, [2])

5.3. basedim. Procedure to extract the dimension of the base variety from
the type POLDIV (polyhedral divisor).

Input: a polyhedral divisor.

Output: output: an integer.

5.3.1. Example.

> P := ppdivisor([[1],[1]])[2];

P := POLDIV (1, 1)

> basedim(P);

1

5.4. coefficients. Procedure to extract the list of polyhedral coefficients
from the type POLDIV (polyhedral divisor).

Input: a polyhedral divisor.

Output: output: a list of pairs (vector, polyhedron).

5.4.1. Example.

> P := ppdivisor([[1],[1]])[2];

P := POLDIV (1, 1)

> coefficients(P);

[[[1],POLYHEDRON (1, 1, 0, [1, 1], [1])], [[−1],POLYHEDRON (1, 1, 0, [1, 1], [1])]]

5.5. imagefan. Computes the coarsest common refinement of the images of
all faces of a cone σ under a projection Q of lattices. The cone σ is assumed to be
of full dimension but not necessarily pointed.

5.5.1. Usage.

Input: a cone and a listlist of integers [a matrix];

Output: a fan.

5.5.2. Example.

> sigma := poshull([1,0,0],[0,1,0],[0,1,1],[1,0,1]);

σ := CONE (3, 3, 0, 4, 4)

> Q := [[1,0],[1,1],[0,2]];

Q := [[1, 0], [1, 1], [0, 2]]

> imagefan(sigma, Q);

FAN (2, 0, [0, 3])

5.6. ppdivisor. Computes the pp-divisor of diagonal torus action on Cn.

Input: a listlist of integers [a matrix, an associated pair];

Output: a fan and a polyhedral divisor.

44 3. THE TORDIV FUNCTIONS

5.6.1. Example.

> Q := [[1],[1]];

Q := [[1], [1]]

> ppdivisor(Q);

[FAN (1, 0, [2]) ,POLDIV (1, 1)]

5.7. ppfan. Computes the fan of pp-divisors for a given semiprojective toric
variety X and subtorus action. If X is affine, the result is a minimal pp-divisor for
X .

Input: a fan [a cone] and a listlist of integers [a matrix, an associated pair];

Output: a fan and a a list of polyhedral divisors.

5.7.1. Example.

> X := projspace(2);

X := FAN (2, 0, [0, 3])

> Q := [[1],[0]];

Q := [[1], [0]]

> ppfan(X,Q);

[FAN (1, 0, [2]) , [POLDIV (1, 1) ,POLDIV (1, 1) ,POLDIV (1, 1)]]

5.8. slice. Computes the slice of a fan of polyhedral divisors with respect to
a list of weighted divisors. If the second argument is a list of pairs (ray, weight),
then missing rays are assigned the weight 0.

Input: a list of polyhedral divisors and a list of pairs (vector, integer) [a
function vector 7→ integer];

Output: output: a list of polyhedra.

5.8.1. Example.

> F := ppfan(projspace(2), [[1],[0]])[2];

F := [POLDIV (1, 1) ,POLDIV (1, 1) ,POLDIV (1, 1)]

> slice(F, [[[1],1]]);

[POLYTOPE (1, 0, 1, 1) ,POLYTOPE (1, 0, 1, 1) ,POLYTOPE (1, 0, 1, 1)]

> slice(F, x -> 0);

[POLYTOPE (1, 0, 1, 1) ,POLYTOPE (1, 0, 1, 1) ,POLYTOPE (1, 0, 1, 1)]

5.9. tailcone. Procedure to extract the tail cone from the type POLDIV
(polyhedral divisor).

Input: a polyhedral divisor.

Output: output: a cone.

5.9.1. Example.

> P := ppdivisor([[1],[1]])[2];

P := POLDIV (1, 1)

> tailcone(P);

CONE (1, 1, 0, 1, 1)

6. EXAMPLES 45

5.10. torusdim. Procedure to extract the dimension of the acting torus from
the type POLDIV (polyhedral divisor).

Input: a polyhedral divisor.

Output: output: an integer.

5.10.1. Example.

> P := ppdivisor([[1],[1]])[2];

P := POLDIV (1, 1)

> torusdim(P);

1

6. Examples

6.1. Introductory remarks. The TorDiv package provides a couple of stan-
dard examples of complete toric varieties, including nonprojective ones. Further
examples of projective toric varietes can be obtained via the normalfan function
and the various examples of polytopes implemented in the convex package.

6.2. cutpyramid. A Q-factorial complete nonprojective toric variety of di-
mension three.

6.2.1. Usage.

Output: a fan.

6.2.2. Example.

> F := cutpyramid();

F := FAN(3, 0, 1, [0, 0, 8])

6.3. freebentcube. A complete toric variety of dimension three having trivial
Picard group.

6.3.1. Usage.

Output: a fan.

6.3.2. Example.

> F := freebentcube();

F := FAN(3, 0, 1, [0, 0, 6])

6.4. hirzebruch. The a-th Hirzebruch Surface.

6.4.1. Usage.

Input: an integer

Output: a fan.

6.4.2. Example.

> F := hirzebruch(2);

F := FAN(2, 0, 1, [0, 4])

> rays(F);

{[1, 0], [0, 1], [0, −1], [−1, 2]}

Bibliography

[1] K.. Altmann, J. Hausen: Polyhedral divisors and algebraic torus actions. Math. Ann. 334,
557–607 (2006)

[2] F. Berchtold, J. Hausen: Homogeneous coordinates for algebraic varieties. J. Algebra 266,
No. 2, 636–670 (2003)

[3] F. Berchtold, J. Hausen: Bunches of cones in the divisor class group — A new combinatorial
language for toric varieties. Int. Math. Res. Not. 2004, 261–302 (2004)

[4] A. Bia lynicki-Birula: Algebraic Quotients. In: R.V. Gamkrelidze, V.L. Popov (Eds.), Ency-
clopedia of Mathematical Sciences, Vol. 131., 1–82 (2002)

[5] A. Bia lynicki-Birula, J. Świȩcicka: A recipe for finding open subsets of vector spaces with a
good quotient. Colloq. Math. 77, No. 1 (1998), 97–114

[6] H. Cohen: A course in computational algebraic number theory. Springer GTM 138, 2nd cor-
rected printing. Berlin, Heidelberg: Springer Verlag (1995)

[7] D. Cox: The homogeneous coordinate ring of a toric variety. J. Alg. Geom. 4 (1995), 17–50
[8] M. Franz: Convex, a software package for maple,
http://www-fourier.ujf-grenoble.fr/ franz/convex/, 2004

[9] W. Fulton: Introduction to toric varieties. The William H. Roever Lectures in Geometry,
Princeton University Press (1993)

[10] J. Hausen: Producing good quotients by embedding into toric varieties. Sém. et Congr. 6
(2002), 193–212

[11] T. Kajiwara: The functor of a toric variety with enough effective Cartier divisors. Tôhoku
Math. J. 50, 139–157 (1998)

[12] D. Mumford, J. Fogarty, F. Kirwan: Geometric invariant theory. 3rd enl. ed.. Ergebnisse der
Mathematik und ihrer Grenzgebiete. Berlin: Springer-Verlag. (1993)

[13] T. Oda: Convex Bodies and Algebraic Geometry. Ergebnisse der Mathematik und ihrer
Grenzgebiete, Band 15. Springer Verlag (1988)

[14] T. Oda, H.S. Park: Linear Gale transforms and Gelfand-Kapranov-Zelevinskij Decomposi-
tions. Tôhoku Math. J., 43 (1991), 375–399

[15] J. Świȩcicka: Quotients of toric varieties by actions of subtori. Colloq. Math. 82, No. 1 (1999),
105–116

47

