
A First Expedition to
Tropical Geometry

Johannes Rau

April 1, 2017

1 2
3 4

5

6, 7, 8



A First Expedition to Tropical Geometry 1 The Basics

1 The Basics
About these Notes
These notes are based on a three hours mini course I gave at Tehran university.
The course was designed for undergraduate students without prior knowledge
to tropical geometry (nor necessarily algebraic geometry). The notes consist
of two chapters covering the the first two lectures of the mini course. The
first chapter is an introduction to the basics of tropical geometry, in particular
tropical curves in R2. The second chapter contains applications of tropical
geometry to enumerative geometry in the plane (Correspondence theorem).
The third lecture on matroids, phylogenetics, and tropical Grassmannians is not
contained in these notes (yet ;).

What is tropical geometry?
Tropical geometry is a new, combinatorial approach to geometry (algebraic,
symplectic, arithmetic). It is related and originated from various sources, for
example

© Viro’s patchworking method, amoeba theory,

© toric geometry, Gröbner bases,

© Berkovich theory/non-archimedean geometry.

If you are acquainted with some of these topics, you might encounter familiar
ideas and constructions here.

Before we get started, let us answer the question of all questions: Why
is tropical geometry called tropical? To make it short, there is no deeper
meaning to it! The adjective “tropical” appeared in the context of the algebraic
structures underlying tropical geometry, which we will learn more about in
the next section. It was apparently coined in this context (and before the
advent of tropical geometry) by some French colleagues to honor the pioneering
contributions of the Hungarian-born Brazilian mathematician Imre Simon (who
worked in São Paolo near the Tropic of Capricorn)! It seems that the exact details
of how this terminology developed are not even clear (cf. this Mathoverflow
discussion).

How to start?
To get started, I am going to present tropical geometry as a new type of
algebraic geometry. What is algebraic geometry about? You take one (or several)
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over R over C

R2

⊂ C2

Figure 1 The set of solutions of w2 = z3− 3z2 + 2z, schematically. The real solutions
(on the left hand side) form a 1-dimensional manifold with two component. The
complex solutions (on the right hand side) form a torus surface minus one point
in C2.

polynomial equation(s) and want to study the structure of the solution set. Let
us take for example an equation in two variables.

w2 = z3 − 3z2 + 2z

One of the great features of algebraic geometry is that you can choose where to
look for solutions. More precisely, for any field K containing the coefficients of
your equation, you can study the set of solutions with coordinates in this field.
In our example, one natural choice would be K = R. This is the case we can
actually draw. For this specific equation, we get a one-dimensional subset of
R2 consisting of one closed and one open components (see Figure 1). Another
choice would be K = C, in which case we obtain a two-dimensional surface in
C2. Again, in this particular example one can check that this (Riemann) surface
is homeomorphic to a torus with a single point removed (see Figure 1 again). If
we start to change the coefficients of the equation, say to w2 = z3 − 2z2 + z− 2,
then the R-picture may change as well (in the given example the two connected
components of the curve get “glued” to a single one), while the C-picture stays
essentially (i.e. topologically) the same. The power of algebraic geometry stems
from the fact that these two pictures, which look and behave so differently,
show nevertheless some strong similarities from an algebraic point of view and
can be treated by the same algebraic methods.
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We now go one step further and replace real numbers or complex numbers
(or any other field) by tropical numbers. To some extent tropical geometry is
nothing else but algebraic geometry over tropical numbers. Alright, then what
are tropical numbers?

1.1 Tropical numbers
We define two new operations on the set T = {−∞} ∪R called tropical addition
and tropical multiplication. In order to distinguish them from classical addition
and multiplication, we put them in quotation marks. The two operations are
defined by

“x + y” := max{x, y},
“x · y” := x + y.

Regarding −∞, we use the convention max{−∞, y} = y and −∞ + y = −∞.
Hence, tropical addition is ordinary maximum, and tropical multiplication is
ordinary plus. This might seem a little strange on first sight, so let us practice a
little bit to get a feeling.

“1 + 1” = 1, “1 · 1” = 2,
x = “0 · x” 6= “1 · x” = x + 1.

Note that both operations have neutral elements, namely −∞ for “ + ” and 0
for “ · ”. (I will refrain from writing things like 0T and 1T since this can cause
(even more) confusion). Moreover, both operations are commutative and the
distributivity law

“x(y + z)” = “xy + xz”

holds (Check this!). Finally, any element x ∈ T \ {−∞} = R has an inverse
with respect to “ · ” (namely −x), in other words, (T \ {−∞}, “ · ”) is a group.
So, T is a field, right? No, of course! The big defect of tropical arithmetics is
that tropical addition “ + ” does not allow inverses!! Indeed, tropical addition
is idempotent, which is to say

“x + x” = x.

In some sense, we as far away from having inverses as we can get (in particular,
not even the cancellation property holds). Nevertheless, these operations are
the basis of tropical geometry.
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Definition 1.1 The set T equipped with operations “ + ” and “ · ” is called the
semifield of tropical numbers.

Tropical arithmetic can be understood as a limit of classical arithmetic under
logarithm. This is sometimes called Maslov dequantization. Do the calculations
yourself in the following exercise.

Exercise 1 Fix a real number t > 1 and define arithmetic operations on
R ∪ {−∞} by

“x +t y” = logt(t
x + ty),

“x ·t y” = logt(t
x · ty).

Show that these operations converge to tropical arithmetic “ + ” and “ · ” for
t→ ∞.

Following the idea from the first paragraphs, we will now attempt to do
algebraic geometry over T. However, since T is not a field (not even a ring), we
are bound to leave the framework of classical algebraic geometry and be ready
to encounter a quite different type of geometry in the next sections.

1.2 Tropical polynomials
We just emphasized that T is not a field. But what do we actually need in
order to do algebraic geometry? As explained in the first paragraphs, to get
started we just need polynomials, and fortunately polynomials only involve
addition and multiplication, no inverses. We can therefore write down tropical
polynomials without any difficulties, e.g. a univariate polynomial like that:

f (x) = “
n

∑
i=1

aixi” = max
i=1,...,n

{ai + ix}.

Here, the coefficients are tropical numbers ai ∈ T. Look at this carefully. The
first expression is that of a usual polynomial, just using tropical operations.
The second expression just reformulates what that means in ordinary terms.
The terms ai + ix are ordinary affine linear functions, and taking the maximum
leads to a convex, piecewise linear function f : T→ T. An example is depicted in
Figure 2.

Let us look at examples with more variables. In the following, we will mostly
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0

x 2x− 2

Figure 2 The graph of the tropical polynomial f (x) = “0 + x + (−2)x2”. The three
terms turn into three affine linear functions 0, x and 2x− 2. Taking the maximum
we obtain a convex, piecewise linear function.

work with two variables. Such polynomials look as follows.

f (x1, x2) = “ ∑
(i,j)∈S

aijxi
1xj

2” = max
(i,j)∈S

{aij + ix + jx}

Here, S is a finite subset of N2 (or, for Laurent polynomials, S ⊂ Z2). For the
sake of simpler notation, we set aij = −∞ if (i, j) /∈ S. It is instructive (and
useful when we add even more variables) to use multi index notation. For any
I ∈ Z2, using the notation xI = xI1

1 xI2
2 , we get

“xI” = 〈I, x〉,

where the brackets on the right hand side denote the standard scalar product in
R2. Again, we see that tropical arithmetics turns monomials into (affine) linear
functions. In general, the multi index notation gives

f (x) = “ ∑
I∈S

aI xI” = max
I∈S
{aI + 〈I, x〉}.

Two examples are given in Figure 3.
The tropical semifield T is algebraically closed in the sense that any tropical

polynomial in one variable can be factorized into linear factors. Check out the
details in the following exercise.
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Figure 3 The graphs of two polynomials in two variables. The plot on the left
shows the linear polynomial f = “0 + x + y”. On the right hand side, we see the
graph of the quadratic polynomial f = “0 + x + y + (−1)x2 + 1xy + (−1)y2”.

Exercise 2 Let f ∈ T[x] be a univariate tropical polynomial of degree d and
with non-vanishing constant term (i.e. NP( f ) = [0, d] ⊂ R). Show that there
exist c ∈ R and α1, . . . , αn ∈ R (unique up to reordering) such that

f (x) = “c
n

∏
i=1

(x + αi)”

for all x ∈ R (Watch out: This is an equality of functions R → R, not of
polynomials).

1.3 Zero Sets
OK, we have polynomials, but in algebraic geometry we are interested in the
zero sets of polynomials, like

V(F) = {z ∈ Kn : F(z) = 0} ⊂ Kn,

for some F ∈ K[z1, . . . , zn]. This is where the peculiarities of tropical geometry
start. Recall from section 1.1 that the tropical counterpart of zero is −∞. But
look at our examples of tropical polynomial. None of these functions ever attain
the value −∞. This is not a peculiarity of the chosen polynomials but rather
the normal behavior, due to the idempotency of tropical addition (note that
“x + y” = −∞ if and only if x = y = −∞). We therefore need a different
definition of zero sets for tropical polynomials. At this point, I will just present
this alternative definition without much motivation. Some justification for the
definition will appear gradually as we proceed.
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Definition 1.2 Let f ∈ T[x1, . . . , xn] be a tropical polynomial. The tropical
hypersurface/tropical zero set of f is defined to be

V( f ) :={x ∈ Rn | f : Rn → R is not differentiable at x}
={x ∈ Rn | at least two terms in f (x) attain the maximum}
={x ∈ Rn | ∃I 6= J ∈ Zn such that f (x) = “aI xI” = “aJx J”}.

Please, convince yourself that the equality signs are justified.

Remark 1.3 In these notes, we will restrict our attention to tropical geometry
in Rn, instead of Tn. In classical terms, this corresponds to varieties in (K∗)n

instead of Kn (so-called very affine varieties). This is also why we may
allow Laurent polynomials, i.e. negative exponents. This restriction to finite
coordinates is mostly for simplicity — some care is needed when extending
the subsequent constructions to infinite coordinates (so-called points of higher
sedentarity).

0 2

Figure 4 The tropical zero sets/hypersurfaces associated to the polynomials
“0 + x + (−2)x2”, “0 + x + y” and “0 + x + y + (−1)x2 + 1xy + (−1)y2”. In the
univariate case, we obtain a finite collection of points. For two variables, we obtain
a graph in R2.

Example 1.4 Let us have a look at the polynomials which we encountered in the
previous figures. The univariate polynomial f (x) = “0 + x + (−2)x2” breaks at
two points (with the constant and linear resp. linear and and quadratic term
attaining the maximum). Hence, the tropical zeros of f are V( f ) = {0, 2}. In
the case of two variables, the break loci of our polynomials are one-dimensional
graphs embedded in R2. In Figure 4, we depict the “zero sets” of the two
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polynomials from the previous figure.

Example 1.5 Even though in these notes we will mostly deal with curves,
it might be instructive to see some examples of higher-dimensional tropical
varieties. You can find a hyperplane and a surface of degree 2 in Figure 5 and
Figure 6.

Figure 5 The tropical hyperplane V(“0 + x1 + x2 + x3”).

Figure 6 Two views of a tropical conic surface.
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1.4 Dual subdivisions
In the previous examples we saw that tropical hypersurfaces are objects from
polyhedral geometry. Their computation belongs to the realm of linear program-
ming and is arguably much simpler than in the classical case. Still, for more
complicated polynomials it can be a very tedious task to compute a tropical
hypersurface. A useful tool in this context is the so-called dual subdivision.
It is a subdivision of the Newton polytope of f which encodes at least the
combinatorial structure of V( f ) (neglecting the lengths, areas, volumes of cells).
We need a few definitions first. Given a tropical polynomial f ∈ T[x1, . . . , xn],
we define

© the support supp( f ) := {I ∈ Zn | aI 6= −∞},

© the Newton polytope NP( f ) := ConvHull(supp( f )),

© the lifted support Lsupp( f ) := {(I,−aI) | I ∈ supp( f )} ⊂ Zn × R,

© the lifted Newton polytope LNP( f ) := ConvHull(Lsupp( f )).

In the following, a subdivision S of a polytope P is defined to be a collection
of polytopes such that

(a) P =
⋃

Q∈S Q,

(b) if S contains Q, then it also contains all faces of Q,

(c) if Q, Q′ ∈ S , then the intersection Q ∩Q′ is a common face.

Definition 1.6 The dual subdivision SD( f ) is the subdivision of NP( f ) obtained
from projection of the lower faces of LNP( f ) to NP( f ) (along Rn × R→ Rn).

Instead of giving a careful definition of lower faces, let us look at an example.

Example 1.7 Figure 7 depicts the computation of the dual subdivision of

f = “(−1) + x + y + xy + (−1)x2 + (−1)y2”.

It turns out that SD( f ) consists of 4 (minimal) triangles, 9 edges, and 6 vertices
(every lattice point in NP( f ) is used).

The important feature of SD( f ) is that it is dual to V( f ) in a quite straightfor-
ward sense. To keep the exposition simpler, in the following statement we only
consider the case n = 2 which means that V( f ) is just a graph, with some open
ends, linearly embedded in R2.
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Figure 7 The computation of the dual subdivision of f = “(−1) + x + y + xy +
(−1)x2 + (−1)y2” in three steps. To the left, the Newton polytope NP( f ) and
the lifted support Lsupp( f ). In the middle, the lifted Newton polytope LNP( f ).
Projecting the lower faces back to NP( f ), we obtain the dual subdivision SD( f ).

Proposition 1.8 Let f ∈ T[x1, x2] be a non-trivial tropical polynomial. Then
V( f ) and SD( f ) are dual in the following sense. There exist bijections

{vertices of V( f )} ←→ {maximal cells of SD( f )},
{edges of V( f )} ←→ {edges of SD( f )},

{connected components of R2 \V( f )} ←→ {vertices of SD( f )},

such that

© all inclusion relations are inverted,

© dual edges are orthogonal to each other.

The punchline of this statement is that the dual subdivision encodes the
combinatorial structure of V( f ) (i.e. the combinatorics of the graph and the
directions/slopes of the edges in R2) while it forgets about metric information
(the lengths of the edges and the global position of V( f ) in R2).

Example 1.9 In Figure 8, you can find some conics with associated subdivisions.
The first two examples correspond to cases which appeared before. In Figure 9
we depicted two cubic curves. Note that in the curve on the right hand side,
two edges intersect transversely in a 4-valent vertex, which corresponds to a
parallelogram in the dual subdivision. Finally, in Figure 10 you can find the
three-dimensional subdivision corresponding to the conic surface from Figure 6.
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Figure 8 Some tropical conics with their dual subdivisions. The first two curves ap-
peared in the examples before. Note that edges in the curve and in the subdivision
are orthogonal to each other.

Exercise 3 Let f1, f2, f3 ∈ T[x, y] be the tropical polynomials given by

f1 = “(−1) + x + 1y + x2 + xy + (−1)y2”,

f2 = “(−2) + (−2)x3 + (−2)y3 + x + y + x2 + y2 + x2y + xy2 + 1xy”,

f3 = “0 + (−1)x + (−3)x2 + y + 1xy + x2y + (−2)y2 + xy2 + x2y2”.

In order to compute the associated tropical curves V( fi), proceed as follows.

(a) Compute the Newton polytopes NP( fi) and the dual subdivisions
SD( fi).

(b) Compute (some of) the vertices of V( fi). (Each triangle in SD( fi) singles
out three terms of fi. The corresponding vertex is the point where these
three terms attain the maximum simultaneously.)

(c) Draw the curves V( fi) ⊂ R2 by adding the edges.

Let ∆ ⊂ R2 be a (convex) polytope. The subdivisions S of ∆ which are of
the form S = SD( f ) for some tropical polynomial with NP( f ) = ∆ are called
regular or convex subdivisions (since they are induced by a convex function on ∆
whose graph is the lower hull of LNP( f )).
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Figure 9 Two cubic curves with dual subdivisions. Both curves contain a cycle
now. The right hand side curve also contains two edges intersecting each other
transversely, corresponding to a parallelogram in the dual subdivision.

Exercise 4 Show that the subdivision in Figure 11 is not a regular subdivision
(in particular, there does not exist a tropical curve dual to it).

1.5 Fundamental theorem
In the previous sections, we have made our first steps in the bizarre dreamland
of tropical curves. Let us wake up for a second and search for connections to
reality. What do these these peculiar graphs/polyhedral complexes have to do
with the real world of classical algebraic geometry? It all starts with logarithm.
We set

Log : (C∗)n → Rn,
(z1, . . . , zn) 7→ (log |z1|, . . . , log |zn|).

You might be puzzled, since this map does not at all belong to the world of
algebraic geometry. It is therefore no surprise that images of algebraic varieties

13
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Figure 10 The dual subdivision of a three-dimensional Newton polytope corre-
sponding to the conic surface depicted in Figure 6.

Figure 11 A non-regular subdivision

under Log look rather strange. Such images have been baptized amoebas — a
name which is hopefully explained by the following examples. We restrict to
hypersurfaces here and use the following notation. For any classical polynomial
F ∈ C[z1, . . . , zn], we set

A(F) := Log(V(F) ∩ (C∗)n) ⊂ Rn.

Amoebas have been studied before tropical geometry and are of independent
interest. Here, however, instead of saying more about their properties, we
content ourselves with some examples. In Figure 12 and Figure 13 you find the
amoebas of a line (namely A(1 + z + w)) and a cubic curve.

The pictures have a certain resemblance with tropical hypersurfaces, but we
are certainly not there yet. The second step is a certain limit process. The
logarithm is always taken with respect to a base (say, above we used logarithm

14
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L ⊂ (C∗)2

LRx

y

LR

L ⊂ (C∗)2

LR

x

y

LR

y

x

A(LR)

A(L)

| · | log

Figure 12 The amoeba of line (courtesy of Lionel Lang). In the top row, the real
resp. complex solutions to the linear equation 1 + z + w are shown. The second
row shows the consecutive effects of the absolute value resp. logarithm map on
the set of real solutions. In fact, one can show that the image of LR forms the
boundary of A(1 + z + w), while each interior point is the image of a pair of
complex conjugated points in L \ LR.

C ⊂ (C∗)2

A(C) ⊂ R2

CR

A(CR)

Figure 13 A more complicated amoeba (courtesy of Lionel Lang). This one comes
from a quartic curve (and is still of very special type, in fact).

with base 10). We are now going to let this base go to infinity. Here are the
necessary changes. We start with a family of polynomials depending on some
parameter t ∈ R. We can write this as

Ft = ∑ αI(t)zI ,

where the coefficients are now functions of t. Let Logt be the same coordinate-
wise logarithm as before, but now taken with respect to base t (we assume t > 1
throughout the following). By the standard rules of logarithm, this just means

15
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that we rescale the previous map by

Logt =
1

log t
Log .

Again, we set
At(Ft) := Logt(V(Ft) ∩ (C∗)n) ⊂ Rn.

Now, letting t go to infinity, we get log t → +∞, so everything gets shrunk
towards the origin and the amoebas get thinner and thinner: These poor things
really starve to death until only their bones are left! The skeletons that remain,
surprising as it may be on first sight, turn out to be tropical hypersurfaces!!!
(The violent analogy to biology is flawed since real world amoebas do not have
skeleta! ;) Check out Figure 14 for an example.

t = 10 t large t = ∞

Figure 14 The starving of a malnourished amoeba, down to its tropical skeleton.

Here is the precise statement (for hypersurfaces), which is sometimes referred
to as the fundamental theorem of tropical geometry.

Theorem 1.10 — Fundamental theorem of tropical hypersurfaces. Let Ft =
∑ αI(t)zI be a family of complex polynomials as before. We assume that

© for t� 1, the support supp(Ft) stabilizes (say, to S ⊂ Zn),

© for all I ∈ S, there exist bI ∈ C∗ and aI ∈ R such that for t→ ∞

αI(t) ∼ bItaI .

Then the limit of amoebas converges to

lim
t→∞
At(Ft) = V( f ) ⊂ Rn,

16
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where V( f ) is the tropical hypersurface associated to the polynomial f =
∑ aI xI . (The coefficients of f are the orders of growth of αI(t) from above).

In other words (and more general):

Tropical varieties appear as limits of amoebas of
families of classical algebraic varieties.

Remark 1.11 In the above theorem, we are taking the limit of subsets in Rn,
the meaning of which is possibly ambiguous. One possibility for making this
precise relies on the notion of Hausdorff metric (on compact subsets of Rn).
We are not going into the details here.

Remark 1.12 Why do we need families of hypersurfaces? Let us look at the
special case when Ft ≡ F is constant. As explained above, Logt =

1
log t Log is

just a rescaling. So all that happens in this case is that we shrink the amoeba
A(F) to the origin, with only asymptotic directions ofA(F) surviving. In other
words, the limit limt→∞At(F) is a fan in Rn centered at the origin. These fans
have been studied some time before the advent of tropical geometry under
the names Bergman fans and logarithmic limit sets. Note that the coefficients
of the tropical polynomial on the right hand side are all 0, so SD( f ) is just
the undivided Newton polytope and V( f ) is indeed a fan, in accordance with
the statement. It is only by allowing families of hypersurfaces that we obtain
more interesting limits like the tropical curves shown in the examples.

A glimpse of proof. For concreteness, let us restrict to the case n = 2. We only
want to give the main idea for one of the inclusions, namely

lim
t→∞
At(Ft) ⊂ V( f ).

Let (z1(t), z2(t)) be a family of points in (C∗)2, depending on the parameter
t. We are interested in the dominant terms of the functions zi(t) for t → ∞.
Assume the highest order of t in zi(t) is xi ∈ R, i.e. we can write

zi(t) = citxi + lower order terms.

Note that this means limt→∞ Logt(z1(t), z2(t)) = (x1, x2). Plugging (z1(t), z2(t))
into Ft, for each term of Ft we get

αij(t)z1(t)iz2(t)j = (bijci
1cj

2) · t
aij+ix1+jx2 + lower order terms.

17
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The expression in the exponent is equal to the corresponding term in the tropical
polynomials. Hence we conclude

Ft(z1(t), z2(t)) = const · t f (x1,x2) + lower order terms.

Let us now assume that (z1(t), z2(t)) ∈ V(Ft) for all t (in which case (x1, x2) ∈
limt→∞At(Ft)). Of course, this implies Ft(z1(t), z2(t)) ≡ 0 and hence the
constant appearing in the above expression must be zero. Since for each single
term, the coefficient bijci

1cj
2 is non-zero, this can only hold true if at least two

terms of Ft(z1(t), z2(t)) contribute to the maximal order t f (x1,x2). But this is
equivalent to the maximum in f (x1, x2) being attained at least twice. Hence
(x1, x2) ∈ V( f ). �

The proof shows that tropical arithmetics somehow capture the behavior
of the leading exponents of power series. We can now understand better the
motivation behind the definition of V( f )/tropical zeros: A sum of functions
in t can only be zero if the maximal leading order in t occurs in at least two of the
summands.

1.6 The Balancing Condition
In the previous sections we learned that planar tropical curves have the structure
of graphs embedded piecewise linearly in R2. In the set of all such graphs,
tropical curves are distinguished by certain properties which are somehow
encoded in the fact that they admit dual subdivisions. The goal of this section
is to make these properties more explicit. While the material in this section
will not be used much in these notes, it plays an important role in the general
theory of tropical varieties (which are not necessarily hypersurfaces).

A polyhedron in Rn is a (not necessarily bounded) intersection of finitely many
affine halfspaces in Rn. Similar to the notion of subdivision of a polytope, we
define a polyhedral complex P in Rn to be a collection of polyhedra such that

(a) if P contains Q, then it also contains all faces of Q,

(b) if Q, Q′ ∈ P , then the intersection Q ∩Q′ is a common face.

We will often abuse notation and use the same letter for P and its support

|P| =
⋃

Q∈P
Q.

18
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0

E

RE
P

vE/P l(σ) = 2 ω(E) = 2

Figure 15 A tropical curve as a rational graph: All edges E have rational slope, i.e.
the linear space RE is generated by an integer vector. On the left hand side, a
primitive generator vE/P with respect to the endpoint P is shown. On the right
hand side, the weight ω(E) of an edge is calculated as the integer length l(σ) of
the dual edge σ.

For any f ∈ T[x, y] the tropical curve C = V( f ) is a polyhedral complex of
pure dimension 1 in R2. One immediate consequence of the existence of dual
subdivisions is that the edges of C have rational slope. More precisely, let RE
denote the linear space spanned by the edge E in C. Then there exists an integer
vector vE ∈ Z2 which spans RE,

RE = 〈vE〉R, vE ∈ Z2.

See Figure 15. We say that C is a rational polyhedral complex. Moreover, the
edges of C carry natural integer weights as follows. Let E be an edge of C and
let σ ∈ SD( f ) be the dual edge in the dual subdivision. We set the weight of E
to be the integer length of σ,

ω(E) := l(σ) := #(σ ∩ Z2)− 1.

A polyhedral complex with weights on the maximal cells is called a weighted
polyhedral complex.

An integer vector v ∈ Z2 is called primitive if it is minimal among all integer
vectors in this direction, i.e.

w = λv, λ ∈ R, w ∈ Z2 =⇒ λ ∈ Z.

See Figure 15. Let E be an edge of C and let P ∈ E be an endpoint of E (hence a
vertex of C). The unique primitive vector of RE pointing from P in the direction
of E is called primitive generator of E modulo P and denoted by

vE/P ∈ Z2.

We are now ready to formulate the so-called balancing condition (see Fig-
ure 16).
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Proposition 1.13 Let C = V( f ) be a tropical curve. Then for any vertex P ∈ C
the balancing condition

∑
E3P

ω(E)vE/P = 0

is satisfied (where the sum runs through all edges of C containing P).

We say that C is a balanced (weighted, rational) polyhedral complex.

(
1
0

)
(

0
−1

)
(
−1
1

) (
−1
0

)
(
−1
−1

)
(

2
1

)

Figure 16 The balancing condition in two examples. Here, all weights are 1.

Proof. In fact, we just manufactured the definitions in such a way for the
statement to hold: The vector ω(E)vE/P rotated by 90 degrees is equal to the
vector that connects the two endpoints of the dual edge σ of E in SD( f ). Let
E1, . . . , En be a counterclockwise ordering of the edges around P. Then the path
ω(E1)vE1/P, . . . , ω(En)vEn/P retraces the boundary of the 2-cell τ in SD( f ) dual
to P (rotated by 90 degrees again). The balancing condition is therefore just a
reformulation of the fact that the boundary of a polygon closes up. �

The importance of the balancing condition stems from the fact that it charac-
terizes tropical hypersurfaces completely.

Proposition 1.14 Let Γ ⊂ R2 be a weighted rational polyhedral complex of
dimension 1 such that the balancing condition holds at each vertex of Γ. Then
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there exists a tropical polynomial f ∈ T[x, y] such that

Γ = V( f ).

Moreover, f is unique up to rescaling to “λ f ” = λ + f , λ ∈ R.

Exercise 5 Can you prove this?

Let us briefly mention how to generalize the definitions and statements
in higher dimensions. Let f ∈ T[x1, . . . , xn] be a general polynomial and
let V = V( f ) be the associated tropical hypersurface. Again, V is a rational
polyhedral complex which this time means that for any cell F of V the linear
space RF spanned by F admits a basis consisting of integer vectors only. Such
a basis is called primitive if any integer vector in the span can be written as a
linear combination with integer coefficients. The maximal cells of V are called
facets. The dual cells of facets in V are still edges (one-dimensional), hence we
can use the same definition to assign positive integer weights ω(F) to the facets
of V. A cell of codimension 1 is called a ridge. Let Q ⊂ F be a ridge contained
in a facet. A primitive generator of F modulo Q is an integer vector pointing
from Q in the direction of F which can be extended to a primitive basis of RF
by adding a primitive basis of RQ. The balancing condition is now a condition
for any ridge and reads as

∑
F⊃Q

ω(F)vF/Q ∈ RQ.

We have the following statement.

Proposition 1.15 Let Γ ⊂ Rn be a weighted rational polyhedral complex of
dimension n− 1. Then Γ satisfies the balancing condition at each ridge if
and only if Γ is a tropical hypersurface Γ = V( f ). In this case, the tropical
polynomial f is unique up to rescaling “λ f ” = λ + f , λ ∈ R.

Exercise 6 Try to prove this as well.

In fact, we are slightly cheating here. All the statements here are in fact
statements about the supports of the polyhedral complexes, or about polyhedral
complexes up to refinements. For example, the equality Γ = V( f ) means that
the supports of the two polyhedral complexes are the same and that the weights
on overlapping facets agree.
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By what we have said in this section, it is natural to use the balancing
condition in order to characterize arbitrary tropical varieties.

Definition 1.16 A tropical variety of dimension m in Rn (a a very affine tropical
variety is a balanced (weighted, rational) polyhedral complex Γ ⊂ Rn of pure
dimension m.

1.7 Further exercises
Let ∆d := ConvHull{(0, 0), (d, 0), (0, d)} be the triangle of size d. Let f ∈ T[x, y]
be a tropical polynomial and let C = V( f ) be the associated tropical curve.

Definition 1.17 We define the (arithmetic) genus of C = V( f ) to be the first
Betti number g(C) := b1(C) (i.e. the number of independent cycles in C, as a
graph).
Moreover, if NP( f ) = ∆d we say that C = V( f ) has (projective) degree d.

A famous formula of classical algebraic geometry says that the genus of a
smooth planar curve of degree d is equal to

g =
(d− 1)(d− 2)

2
.

Here is the tropical version.

Exercise 7 — Genus formula. Let C = V( f ) be a tropical curve in R2. Show
that g(C) is equal to the number of vertices of SD( f ) that lie in the interior of
NP( f ). Show that if C is of degree d and each integer point in ∆d ∩ Z2 occurs
as a vertex in SD( f ), then we obtain the classical genus formula from above.

Complex planar (projective) curves satisfy the so-called Bézout theorem: The
number of intersection points (counted with multiplicities) of two given curves
is equal to the product of their degrees. Here is the tropical analogue.

Let C1 = V( f1) and C2 = V( f2) be two tropical curves of degree d1 and
d2. Assume that C1, C2 do not intersect in vertices. For any intersection point
p ∈ C1 ∩ C2, let ei ⊂ SD( fi) denote the edge dual to the edge of Ci containing p.
We define the intersection multiplicity of p by

multp(C1, C2) = |det(v1, v2)|,

where vi is a vector connecting start and end point of ei (orientation is not
important, since we take the absolute value).
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Exercise 8 — Bézout’s theorem. Show that the number of intersection points
of C1 and C2, counted with this multiplicity, is equal to

∑
p∈C1∩C2

multp(C1, C2) = d1d2.
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2 Enumerative Geometry

2.1 Counting things — why not?
When the ancient Greeks did geometry, they often did it in terms of construction
problems. Here is a very simple example. Given a line segment pq in the plane,
how can we construct a equilateral triangle such that pq is one of its sides?
Answer: Draw two circles with midpoints p and q respectively, both of radius
pq. The intersection point of these circles gives the third vertex of the triangle
(see Figure 17). We might generalize this type of problems in the following way.
Fix

© a class of geometric objects (here, triangles),

© some geometric conditions, (having pq as side, being equilateral).

The question is: Can you find a construction algorithm which produces a
specific element in the class of objects which satisfies all the conditions?

But wait, here is something funny: In our above example, we did not construct
one but, in fact, two triangles satisfying the conditions. Obviously, the two
circles intersect in two points and we can use both of them as third vertex for
our triangle. The ancient mathematicians sometimes noticed that a construction
problem could be solved in several ways, but it was usually not worth more than
a side remark to them. Here is a more interesting example for this multiplicity
of solutions, known as Apollonius’s problem or Circles of Apollonius. Among other
things, Apollonius of Perga (~ 200 BC) posed the following problem. Fix three
circles in the plane (say non-intersecting and not contained one in another).
Construct a circle which is tangent to each of the three given circles! Beyond
finding explicit construction methods for this problem, Apollonius (and later
researchers) noticed something very interesting: There are exactly 8 circles
solving the problem, i.e. being tangent to the three given circles (see Figure 17).

Exercise 9 Can you find an (heuristic) argument why there are exactly 8
circles tangent to three given circles?

Note (again) that when moving the three initial circles around, the solution
circles obviously change. However, the number of solutions, here 8, does not
change. It is really an invariant number associated to the abstract geometric
problem, not to the specific instance of the problem once we fix the three initial
circles. Hence we may shift the focus from
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p

q

Figure 17 Some geometric construction problems. To the left, the construction
of an equilateral triangle. Note that the second intersection point of the circles
gives a second solution. To the right, a beautiful demonstration of the famous
Circles of Apollonius (by Melchoir – Own work, CC BY-SA 3.0, https://commons.
wikimedia.org/w/index.php?curid=4056136). Given the three initial circles (in
black), there exist 8 circles (in shaded colors) which are tangent to each of the
black circles. Can you see why?

© How to construct a (single) solution of the geometric problem?

to

© How many solutions does the geometric problem have?

© Does this number depend on the specific geometric conditions, or is it an
invariant of the (abstract) problem?

This shift of attention from “constructing” to “counting” forms the basis of
what is called enumerative geometry.

2.2 Counting algebraic curves in the plane
We now make an big step forward from this still rather simple enumerative
problem to a whole family of problems which are of very archetypal form
in modern enumerative geometry. Instead of circles, we now want to count
algebraic curves of given genus g and degree d in the plane. Instead of tangency
conditions, we will now pose point conditions, meaning that the curves are
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supposed to pass through a given collection of points p1, . . . , pN . You might not
have heard of these notions before, so let me give you a quick overview.

We will mostly work over the complex numbers, hence “plane” refers to the
complex 2-dimensional (real 4-dimensional) space C2 (advanced readers can
use projective plane CP2 instead). We already have a good understanding of
what an algebraic curve is from Section 1: Any polynomial F ∈ C[z, w] defines
an algebraic curve as its zero set in C2

C = V(F) = {(z, w) ∈ C2 : F(z, w) = 0}.

In the following, we will always assume that F is an irreducible polynomial, in
which case we also call C irreducible. The degree of C is just the degree of F, i.e.
the maximal number of factors (z and w) appearing in a term of F (again, more
advanced readers may think of homogeneous polynomials of some degree in
three variables, instead).

Figure 18 An algebraic curve over C, after removing a finite number of points, can
be compactified to a unique compact Riemann surface. The figure depicts compact
surfaces of genus 1, 2, and 3 (by Oleg Alexandrov – Own work, MATLAB, Public
Domain, https://en.wikipedia.org/wiki/User:Oleg_Alexandrov/Pictures).

For the genus, recall that C is a real 2-dimensional object. In fact, away from
finitely many singular points, C carries the structure of a Riemann surface (note
the irony in calling the same object (algebraic) curve and (Riemann) surface).
There exists a unique completion of this Riemann surface to a compact Riemann
surface (meaning without punctures or open ends). The (geometric) genus of C is
defined to be the genus of this Riemann surface. This, in turn, is the number of
holes of the surface, or in other words, the number of handles one has to attach
to a sphere in order to construct the surface. The examples we met in section 1
are elliptic curves (i.e. degree 3, genus 1, see Figure 1) and lines (i.e. degree 1,
genus 0, see Figure 12). Higher genus surfaces can be found in Figure 18.

We are now ready to introduce the (family of) enumerative problem which
will be our main focus in this section.
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Enumerative Problem Fix integers d > 0 and g ≥ 0. Set N = 3d− 1 + g. Fix
N generic points p1, . . . , pN in C2. How many irreducible algebraic curves of
degree d and genus g pass through all the points p1, . . . , pN?

Cp1

p2

p3

p4

pN How
many??

Figure 19 Fix integers d > 0 and g ≥ 0. Set N = 3d− 1 + g. Fix N generic points
p1, . . . , pN . How many irreducible algebraic curves of degree d and genus g pass
through all the points p1, . . . , pN?

Let us collect a few facts regarding this problem.

© The number N is chosen such that we expect a finite number of solutions
to this counting problem (namely, N is equal to the number of parameters
for an algebraic curve of degree d and genus g and each point condition
imposes one equation on these parameters).

© The term “generic” will not be explained carefully here. You should think
of the points as chosen sufficiently randomly, such that no “special” point
configurations (like three points on a line) occur. This can be made precise,
in such a way that the set of generic point configurations forms an open
dense subset in the set of all point configurations. In other words, nearly
all point configurations are generic.

© Indeed, one can show that for g ≤ (d−1)(d−2)
2 and a generic point configura-

tion p1, . . . , pN, the number of curves solving the enumerative problem is
finite and non-zero. Moreover, this number is independent of the position
of the points p1, . . . , pN (as long as they are generic). This is completely
analogous to the number 8 in Apollonius’s problem being independent of
the chosen three circles.

© We denote this number, which only depends on d and g, by

Nd,g.
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© The number (d−1)(d−2)
2 appearing above is the maximal genus that a curve

of degree d can have. Moreover, for any “generic” (again) polynomial F,
the compactification of the curve C = V(F) in CP2 is a smooth curve, in
which case its genus is in fact equal to

g(d) =
(d− 1)(d− 2)

2
.

It follows that whenever we set g < g(d) in our enumerative problem, we
are actually counting curves with singularities. However, one can show that
for generic point configurations only the simplest type of singularities, so-
called simple nodes, appear. They locally look like the transverse intersection
of two branches of C (in an analytic neighborhood, they look like the
intersection of two coordinate lines zw = 0). The occurrence of a node
reduces the genus of the curve by one, i.e.

g(C) = g(d)− #nodes(C).

Therefore, in an equivalent reformulation of the enumerative problem we
could drop the genus g and instead ask for nodal curves (i.e. with at most
simple nodes for singularities) of fixed degree and fixed number of nodes.

© At the other end of the genus range, for g = 0, we are counting so-called
rational curves. Their special feature, as the name indicates, is that they
can be parametrized by rational functions. More precisely, a rational curve
is (the closure of) the image of a map of the form

ϕ : C 99K C2,

u 7→
(

f (u)
h(u)

,
g(u)
h(u)

)
,

where f , g, h ∈ C[u] are univariate polynomials of degree (at most) d (the
arrow is dashed since ϕ is not well-defined at the finitely many zeros of
the denominator).

Example 2.1 Let us get some practice with these numbers Nd,g. First, a word of
warning: We just emphasized that we work over the complex number here (and
it is actually important that our base field is algebraically closed). However, all
the following figures depict curves over the real numbers, of course, should be
merely regarded as schematic presentations.
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+ 11
more!

Figure 20 There exist exactly one line through two points and one ellipse through 5
(convexly arranged) points. Schematic representations (over R) of the enumerative
problems for N1,0 = N2,0 = N3,1 = 1 and N3,0 = 12.

(a) Through any pair of distinct points p1, p2 in the plane, you can draw
(exactly) one line. In our notation, we computed

N1,0 = 1.

(b) The next one is already a little tougher. Fix five points in the plane. How
many conic curves pass through these five points? In fact, if for example
the five points form the vertices of a convex 5-gon, then there exists exactly
one ellipse passing through these points. In other words,

N2,0 = 1.

(c) How about cubic curves? In the generic case, such curves have genus
g(3) = 1 and are called elliptic curves. Indeed, one can show again that
there is exactly one elliptic curve passing through 9 fixed generic points in
the plane. This is getting boring, right? In fact, in the maximal genus case
there is always exactly one solution curve (check out Exercise 19), i.e.

Nd,g(d) = 1.

(d) The first non-trivial case shows up for d = 3, g = 0. This means we are
searching for rational curves (with a single simple node) passing through
8 fixed points. There are twelve such curves, so

N3,0 = 12.

For a nice non-tropical computation of this number, check out Computation
2.21.
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(e) Generalizing the previous case, we can look at the next-to-maximal genus
case. One can show that

Nd,g(d)−1 = 3(d− 1)2.

This number is just the degree of the discriminant hypersurface of singular
curves inside the complete linear system |O(d)| of all curves of degree d.
It can be computed for example via the incidence variety (see Exercise 20)

I = {(C, p) : p singular point of C} ⊂ |O(d)| × CP2.

(f) In fact, these are pretty much the only examples of d, g for which Nd,g can
be computed more or less by hand. Only very few other numbers, such
as N4,0 = 620, were known to mathematicians until 30 years ago. A few
more numbers are displayed in Figure 21.

g \ d 1 2 3 4 5 6 7

0 1 1 12 620 87304 26312976 14616808192
1 1 225 87192 57435240 60478511040
2 27 36855 58444767 122824720116
3 1 7915 34435125 153796445095
4 882 12587820 128618514477

Figure 21 The values of Nd,g for some choices of d, g.

Historical remarks
Let me give a brief sketch of the history of the numbers Nd,g. I mentioned
above that only very few of the numbers Nd,g could be computed before 1990.
In the late 19th century, which is sometimes referred to as the (first) golden
era of enumerative geometry, Zeuthen was able to compute N4,0 = 620 (in
1873). Kock and Vainsecher report that until 1990, the only additional number
unveiled for g = 0 was N5,0 = 87304 (in the 1980’s). During that period,
enumerative geometry was a field for specialists, mostly algebraic geometers. It
was used as a nice playground for testing important advances in intersection
theory and moduli theory, but the main focus was often somewhere else.
This changed drastically when a small miracle happened. In the 1980’s, new
ideas from theoretical physics (string theory) began to show deep impact on
mathematics. In string theory, classical point particles are replaced by small
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strings (homeomorphic to the circle S1), and when these strings evolve in time,
they trace out a surface called world sheet. These world sheets are actually
closely related to (can be approximated by) our algebraic curves from above.
Using what is now called Mirror symmetry, physicists were able to “predict”
some enumerative numbers very similar to the Nd,g series from above — not
just a few numbers, but whole series of numbers! In the years that followed,
mathematicians tried hard to justify the physical predictions by mathematical
arguments. This lead to some great advances in mathematics (e.g. Gromov-
Witten theory as a vast generalization of this kind of enumerative geometry), and
in particular the numbers Nd,g could finally be computed. In 1994, Kontsevich
found his famous recursive formula for the case g = 0,

Nd,0 = ∑
d1+d2=d
d1,d2>0

Nd1,0Nd2,0

(
d2

1d2
2

(
3d− 4
3d1 − 2

)
− d3

1d2

(
3d− 4
3d1 − 1

))
.

In 1998, Caporaso and Harris found a (more complicated) recursive formula for
all numbers Nd,g (in fact, the formula involves an even larger set of numbers
called relative Gromov-Witten invariants).

2.3 The tropical enumerative problem
One of the outstanding early successes of tropical geometry is an alternative
computation of the numbers Nd,g. In fact, what we are going to do is carefully
translate our enumerative problem to the tropical world. It then turns out
that the classical and tropical problem have the same answer, i.e. the classical
and tropical counts produce the same numbers! This is not only a surprising
statement, but also simplifies the computation of Nd,g drastically, reducing it to
a more or less combinatorial problem (which is, however, still quite complicated
— I am taking a geometer’s standpoint here, i.e. I regard the problem as solved
once it is reduced to “pure combinatorics” ;).

The tropical set-up.
In order to reformulate our enumerative problem in the tropical world, we have
to translate the notions irreducible algebraic curve, degree and genus. Most of
this was done in section 1, but it might be more convenient to collect all the
ingredients here again.
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© A (planar) tropical curve is a set of the form

Γ = V( f )

= {x ∈ R2 | at least two terms in f (x) attain the maximum},

where f ∈ T[x, y] is a tropical polynomial. By Proposition 1.14, this
equivalent to Γ ⊂ R2 being a purely 1-dimensional rational polyhedral
complex which carries positive weights on the edges and satisfies the
balancing condition at each vertex.

© A tropical curve Γ is called irreducible if it cannot be written as

Γ = Γ1 ∪ Γ2,

for two non-empty tropical curves Γ1, Γ2. The union here is understood to
take care of the weights as well, i.e. if two edges of Γ1 and Γ2 overlap, then
the weights on this segment should be added.

© A tropical curve Γ = V( f ) is said to be of degree d if its Newton polytope is
NP( f ) = ∆d, the standard triangle of size d with corners (0, 0), (d, 0) and
(0, d). Equivalently, we can ask Γ to have d ends (counted with weights) in
each of the directions (−1, 0), (0,−1) and (1, 1), and no ends pointing in
other directions.

© The genus of a tropical curve appeared in Figure 9 and Exercise 7. The
main idea is to consider the first Betti number of Γ,

b1(Γ) = dim H1(Γ, R),

i.e. the number of independent loops in Γ. However, in analogy to the
classical case, we will also have to deal with singular tropical curves, and
in this case the definition has to be adapted. Namely, we set the (geometric)
genus of Γ to be the minimal first Betti number of an abstract graph (with
ends) which parametrizes Γ, i.e.

g(Γ) := min{b1(Γ′) : Γ′ abstract graph and ϕ : Γ′ → Γ parametrization}.

Instead of giving a precise definition of what a tropical “parametrization”
is, let us consider the example given in Figure 9. The cubic curve to the
left is actually a smooth tropical curve and its genus is 1, since it cannot be
parametrized by a graph of lower genus. The curve on the right, however,
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has a node (the 4-valent intersection point of two edges). Abstractly, you
can hence unfold this intersection point and parametrize the curve by a
tree (a graph with b1(Γ′) = 0, see Figure 22). Hence the genus of this curve
is 0.

Figure 22 The cubic curve on the right hand side has a node, which can be resolved
in a parametrization. The curve is hence of genus 0, since it can be parametrized
by the tree graph on the left hand side.

We can now formulate the tropical enumerative problem in complete analogy
to the classical case.

Enumerative Problem — tropical version. Fix integers d > 0 and g ≥ 0. Set
N = 3d− 1+ g. Fix N generic points p1, . . . , pN in R2. How many irreducible
tropical curves of degree d and genus g pass through all the points p1, . . . , pN?

Figure 23 The unique tropical line, conic, resp. cubic through two, five, resp. nine
given generic points.

Example 2.2 In Figure 23 you can find solutions to the tropical enumerative
problem for lines, conics, and smooth cubics. The case of lines can be easily
done by hand. For conics and cubics, it is easy to check that the depicted curves
are the only ones, among the curves of the same combinatorial type (i.e. with the
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same dual subdivision), which pass through the given points. To show that no
curves of different combinatorial type occur (for the specific choice of points), is
a more tedious task.

Exercise 10 Show that for any two points p1, p2 ∈ R2, there is a tropical line
passing through both of them. Which cases do you have to distinguish? Show
that this line is unique if

p2 − p1 /∈
〈(

1
0

)〉
R
∪
〈(

0
1

)〉
R
∪
〈(

1
1

)〉
R

.

Multiplicities.
There is a little twist to the tropical version of the story: Tropical curves have
to be counted with some multiplicity. The meaning of this multiplicity will
become clear in a short while. Let us define it first.

Definition 2.3 Let Γ ⊂ R2 be a tropical curve and let P ∈ Γ be a 3-valent
vertex of Γ. We define the multiplicity of P

multΓ(P) := ω(E1)ω(E2)|det(vE1/P, vE2/P)| = 2Area(σ(P)).

Here, E1, E2 are two of the three edges adjacent to P, and ω(Ei) and vE1/P
denote the corresponding weights and primitive generators. In the second
expression, σ(P) denotes the 2-cell in SD( f ) dual to P, and Area is the
standard Euclidean area measure in R2.

Exercise 11 Show that the first expression for multC(p) does not depend on
which two edges you choose, and is equal to the second expression.

Definition 2.4 Let Γ ⊂ R2 be a tropical curve. We define the multiplicity of C

mult(Γ) := ∏
P∈Γ

P 3-valent

multΓ(P).

Note that the product runs through 3-valent vertices of Γ only.

Example 2.5 Note that in the examples of Figure 23, all vertex multiplicities are
1. It follows that the multiplicity of each of the three curves is 1, as well.
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Back to our enumerative problem. Fix integers d > 0 and 0 ≤ g ≤ (d−1)(d−2)
2

and a generic point configuration P = (p1, . . . , pN) in R2. Here are a few facts.

© The set Σtrop(P) of tropical curves of degree d and genus g passing through
p1, . . . , pN is finite and non-empty.

© All the curves in Σtrop(P) are nodal, which means that all vertices are either
3-valent or “nodes”. Equivalently, the dual subdivision of such a curve
consists of triangles and parallelograms only. The previous definition of
multiplicity is well-behaved only for this type of curves.

© We denote the count of curves in Σtrop(P), weighted with their respective
multiplicities, by

Ntrop
d,g := ∑

Γ∈Σtrop(P)
mult(Γ).

It turns out that this number is, again, independent of the point configu-
ration P (as long as it is generic). This can be proven “purely tropically”,
but it also follows from the Correspondence theorem which we are going
to state next.

2.4 The Correspondence theorem
We are now ready to present the main theorems of this section.

Theorem 2.6 For any admissible choice of d, g, we have

Nd,g = Ntrop
d,g .

In fact, the statement follows from a considerably stronger statement due to
Mikhalkin (around 2002).

Theorem 2.7 — Correspondence theorem. We fix the following data.

© Fix integers d > 0 and 0 ≤ g ≤ (d−1)(d−2)
2 . Fix a generic point configura-

tion P = (p1, . . . , pN) in R2.

© Fix a continuous family of classical generic point configuration Q(t) =
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(q1(t), . . . , qN(t)) in (C∗)2 for all t > 1 such that

lim
t→∞

Logt(Q(t)) = P ,

meaning that limt→∞ Logt(qi(t)) = pi for all 0 ≤ i ≤ N.

© Denote by Σ(Q(t)) the set of classical algebraic curves of degree d and
genus g passing through Q(t). Analogously, denote by Σtrop(P) the set
of tropical curves of degree d and genus g passing through P .

Then the following holds true.

© The amoebas of the classical curves in Σ(Q(t)) converge to tropical
curves in Σtrop(P) for t→ ∞. Slightly abusing notation, we write this as

lim
t→∞

Logt(Σ(Q(t))) ⊂ Σtrop(P).

© In fact, the two sets in the previous equation are equal, and the number of
classical curves in Σ(Q(t)) whose amoebas converge to a given tropical
Γ ∈ Σtrop(P) is equal to mult(Γ),

mult(Γ) = #{curves in Σ(Q(t)) with amoebas converging to Γ}.

We can think of the theorem in terms of a map

Trop : Σ(Q(t))→ Σtrop(P),

say, for some large t, assigning to each classical curve the limit of its amoeba.
The statement then says that this map is surjective and the size of the fibers is

#Trop−1(Γ) = mult(Γ).

In some sense, the strength of the theorem relies on the fact that this size of the
fibers can be computed so easily and explicitly in terms of the combinatorics of
the tropical curves (note, for example, that is independent of how the points in
P are sitting inside of Γ.

Example 2.8 In Figure 24 you can find the tropical computation of Ntrop
3,0 = 12.

For the particular choice of point configuration P , there are nine tropical curves
Γ1, . . . , Γ9 of degree 3 and genus 0 passing through P . The first (top left) curve
Γ1 is special, since it contains an edge of weight 2. Thus the two adjacent
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ω(E) = 2

Figure 24 The tropical computation of N3,0 = 12 as Ntrop
3,0 = 4 + 1 + . . . + 1 = 12.

The first curve has multiplicity 4, since the two vertices adjacent to the edge of
weight 2 contribute with multiplicity 2 each. All other curves have multiplicity 1.

vertices P, Q have multiplicity multΓ1(P) = multΓ1(Q) = 2. All other vertex
multiplicities are 1. Hence we compute

mult(Γ1) = 4,
mult(Γi) = 1 for all i ∈ {2, . . . , 9},

Ntrop
3,0 = 4 + 8 · 1 = 12.

Note also that the first curve Γ1 is a tree per se, while all other curves contain a
node which can be “resolved” in order to obtain a genus 0 parametrization.

Summary.
The computation of the numbers Nd,g can be reduced to the corresponding
tropical enumerative problem and the computation of the numbers Ntrop

d,g . This
means we can, instead of counting algebraic curves over C, count certain
piecewise linear graphs in R2. This can still be quite difficult to perform in
practice. For example, why are the nine curves displayed in Figure 24 all the
curves that appear in the the computation of Ntrop

3,0 ? Nevertheless, the tropical
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count is in spirit a finite combinatorial problem and could for example be turned
into an (computationally horrible) algorithm along the lines

(a) Enumerate all (finitely many) combinatorial types of tropical curves of
degree d and genus g.

(b) Check for each type whether a curve of this type passes through the given
points (this is a problem in linear programming).

(c) If you find a curve passing through P , compute its multiplicity and sum
up.

Given the history of the numbers Nd,g alluded to above, this is a rather remark-
able result!

2.5 Floor diagrams
As explained above, the Correspondence theorem reduces the computation of
the numbers Nd,g to a considerably simpler and almost combinatorial problem.
Still, it is very complicated — even the computation for Ntrop

3,0 = 12 is difficult
to do by hand. Is there some trick to exploit the power of the Correspondence
theorem more systematically? Yes, of course!

Stretch your points!
The main idea behind floor diagrams is to use some freedom which we have
neglected so far. In analogy to the classical case, the numbers Ntrop

3,0 do not
depend on the point configuration p1, . . . , pN in R2, as long as we choose
them generically. So why not choose a special generic point configuration?
This sounds contradictory, but what it really means is just this. Among the
abundance of generic point configuration, we can of course choose a certain
subclass of configurations with some special properties. In our case, we are
interested in vertically stretched point configurations.

Definition 2.9 A point configuration p1, . . . , pN in R2 called vertically stretched
if for any pair of points pi, pj, the difference in the y-coordinates is much
greater than the difference in the x-coordinates, i.e.

(pj − pi)y > C · (pj − pi)x,
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for C � 0 (how big one should choose C might depend on d and g). We use
the convention to number the points from top to bottom, i.e. p1 is the top
point, pN is the lowest point.

p1
p2

pN

Figure 25 If the points are vertically stretched (like on the left), then all curves
passing through these points are floor decomposed. This means that the edges
of the dual subdivision cover all horizontal line segments in NP( f ) (the blue
segments on the right).

What happens if we count curves passing through this kind of point configu-
ration? Well, the curves which appear will also be of a special kind, in some
sense. Here is the precise description (cf. Figure 25).

Definition 2.10 A tropical curve C is called floor decomposed if the primitive
vector v for any edge has first coordinate vx ∈ {0,±1}, and all non-vertical
edges have weight 1. Equivalently, the edges of the dual subdivision SD( f )
cover all the horizontal line segments

NP( f ) ∩ (R× Z).

Exercise 12 Show that the two conditions given in the definition are equiva-
lent.

Proposition 2.11 Let p1, . . . , pN generic vertically stretched point configura-
tion in R2. Then all the curves of genus g and degree d passing through these
points are floor decomposed.

Example 2.12 If you go back to Figure 24, you will find that the given point
configuration is indeed stretched vertically — sufficiently enough such that all
the nine solution curves are floor decomposed.
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Floor diagrams
OK, this all very nice, but how can we actually take advantage of the considera-
tions in the previous paragraph? We need to find a way to encode the structure
of a floor decomposed curve in a more combinatorial way, and to understand
the possibilities for how such a curve can pass through the given points. To do
so, we need some terminology first. Let C be a floor decomposed curve. The
vertical edges of C (drawn in red in Picture 25) are called elevators. Here, similar
to the genus computation, we do not consider transverse intersection points of
two edges as actual vertices of the curve (in other words, we are in fact referring
to the edges of Γ, where Γ → C is the genus g parametrization of C). After
removing the interior of all elevators, we are left with a disconnected graph.
The connected components of this graph are called the floors of C (drawn in
blue in Figure 25).

Construction 2.13 Floor diagrams are abstract graphs which are obtained
from a floor decomposed curve by the following construction. Each elevator
either connects two floors or starts at one floor and goes of to infinity. We
can hence form a abstract graph D (with ends), where each floor represents a
vertex, and each elevator e gives an edge of D, attached to the vertices which
represent the floors adjacent to e (see Figure 26). Moreover, note that in the
example of Figure 25, each floor and each elevator contain exactly one of the
chosen points pi. This is actually no coincidence, but always the case. Hence,
we may label each vertex/edge of D by the label i of the point pi which lies
on the corresponding floor/elevator. This gives a labeling of all vertices and
edges of D by the numbers {1, . . . , N}.

It turns out that we can actually restore the curve C from this construction,
so D is the combinatorial object we are looking for and it makes sense to turn
this into a rigorous definition first.

Definition 2.14 A floor diagram D of degree d and genus g is a connected
oriented graph (with ends) with weights ω(e) ∈ N on the edges such that

© the graph D has no oriented cycles, but first Betti number b1(D) = g,

© the graph D consists of d vertices and has d ends, all ends are oriented
outwards of D,

© the total loss at each vertex, i.e., the weighted sum of outgoing minus
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1 2

3 4
5

6, 7, 8

Figure 26 On the left, the construction of a floor diagram. We draw the vertices as
flat fat dots and use the convention that all edges are oriented downwards (and
that only non-trivial edge weights are shown). The numbers indicate the induced
marking encoding which floor/elevator intersects which point pi. On the right, a
sketch of the construction of a floor in the “inverse construction”. Note that the
vertically stretched property is not correctly displayed.

incoming edges, is 1,

∑
a→e

ω(e)− ∑
e→a

ω(e) = 1.

Consider the union V ∪ E of all vertices and edges of D. It carries a partial
order induced from the orientation of D (where a is smaller than b if b can be
reached from a by an oriented path).

Definition 2.15 A bijection

m : V ∪ E→ {1, . . . , N}

which satisfies a < b⇒ m(a) < m(b) (i.e., each extension of the partial order
to a total order) is called a marking of D.

Let M(D) denote the number of distinct markings for D. By distinct we
mean that we consider two markings to be the same if they only differ by an
(oriented) automorphisms of D. We define the multiplicity of D by

mult(D) := M(D)∏
e

ω(e)2.

Example 2.16 Let us again consider the case d = 3 and g = 0. If we perform
Construction 2.13 for all the nine curves in Figure 24, we end up with the 3
floor diagrams depicted in Figure 27. It is easy to check that all three graphs
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2

1 · 4 3 · 1 5 · 1

Figure 27 Floor diagrams of degree 3 and genus 0 with multiplicity computation.
Note that the number of markings (the first number in each product) is exactly
the number of tropical curves from Figure 24 that turn into that floor diagram. In
total, we get N3,0 = 4 + 3 + 5 = 12.

satisfy the properties of Definition 2.14. The multiplicity is shown as a product
of the number of markings and the edge weight factor.

Exercise 13 Associate to each tropical curve in Figure 24 the corresponding
floor diagram in Figure 27. Check that the number of markings (the first
factor in each product) is equal to number of curves that turn into that floor
diagram. What about the second factor?

Let us now turn these considerations and examples into statements and
proofs. We (still) assume that P is a vertically stretched point configuration
and hence all curves in Σtrop(P) are floor decomposed by Proposition 2.11. Let
Dmark

d,g denote the set of all marked floor diagrams of given degree and genus.

Proposition 2.17 Construction 2.13 associates to each floor decomposed curve
in Σtrop(P) a well-defined floor diagram in Dmark

d,g . The associated map

Σtrop(P)→ Dmark
d,g

is a bijection.

Idea of proof. First we should fill the gaps left in Construction 2.13 and show that
the map is indeed well-defined. Let C be one of the curves and D the associated
floor/elevator graph. With the convention that we orient all elevators from top
to bottom (and orient the edges of D accordingly), it is quite clear that D is
a floor diagram in the sense of Definition 2.14. In particular, note that each
floor corresponds to a horizontal strip of height 1 in the dual subdivision of C.
Hence the third condition amounts to the fact that the bottom edge of such a
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strip is one segment longer than the top edge. To prove that each floor/elevator
of C contains exactly one point pi is a bit more interesting. First, since D has d
vertices, d ends and g + d− 1 inner edges, we see that the numbers match. The
easiest way to continue now is just to assume that we chose our points P even
more specially generic. For example assume the points sit on a line

y = −αx

with very large irrational slope α. (The minus sign is chosen for better agreement
with the pictures). In fact, since the slope is irrational this does not contradict
the assumption that the points are generic. Such a line intersects each elevator
and floor in at most one point. In the first case that is obvious, in the second it
follows from the fact that the slopes appearing when traversing a floor from
left to right is bounded absolutely (for example, by the degree d). Hence each
floor/elevator contains at most one and hence exactly one point pi.

It remains to show that there is an inverse map. We will at least sketch this
(cf. Figure 26). Let D be marked floor diagram. First note that the information
contained in the marking fixes the horizontal position (the x-coordinate) of
each elevator. Indeed, the edge marked by i corresponds to an elevator whose
x-coordinate agrees with that of pi. Next, we can construct the shape of a
floor from that, up to vertical translations. Say we want to construct the floor
associated to the vertex v of D. Think about it as follows. We start on the far
left with a horizontal path coming from infinity. Each time that we a pass the
y-coordinate of an elevator whose edge in D is adjacent to v, we perform a
break in our path — to the top or to the bottom depending on whether the
associated edge is an outgoing or an incoming edge at v. Moreover, how much
we break the path depends on the weight of the edge (it is equal to the change
of slope of the path). This procedure fixes the exact shape of the corresponding
floor, except for its vertical position or height in R2. However, we also have one
marked point pj associated to the floor. Obviously, there is exactly one vertical
shift of the the piecewise linear path we constructed which passes through
pj. We can now easily assemble the desired curve C from all its pieces. We
construct all the floors in the way we just described and glue in the elevators at
the points where the floors break. Since our points are assumed to be vertically
stretched, the various floors do not mingle with each other but stay separated
and hence the construction really works out. We constructed a curve C whose
associated floor diagram is obviously the diagram D we started with. Moreover,
from the uniqueness of the construction also the injectivity part follows and we
proved the claim. �
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We can now state the main statement of this section. As promised at the
beginning, it reduces the computation of the numbers Nd,g to the purely com-
binatorial problem of counting all floor diagrams of given degree and genus,
weighted with their multiplicities.

Corollary 2.18 For any choice of d > 0 and g ≥ 0 we have

Nd,g = ∑
D∈Dd,g

mult(D),

where Dd,g is the set of all (unmarked) floor diagrams of degree d and g and
mult(D) is the multiplicity defined in Definition 2.15.

Proof. By the Correspondence Theorem 2.6 we know Nd,g = Ntrop
d,g . By Proposi-

tion 2.17, the concatenated map

Σtrop(P)→ Dmark
d,g → Dd,g

has fibers of cardinality M(D), the number of markings of D. Comparing this
with the definition of mult(D), it remains to show that the multiplicity mult(C)
of a floor decomposed curve is equal to the product of the squares of all elevator
edge weights

∏
e elev.

ω(e)2.

We leave this as an exercise. �

Exercise 14 Show that the multiplicity mult(C) of a floor decomposed nodal
curve C with trivial weights on all ends is equal to

∏
e elev.

ω(e)2.

It is time for more examples! Let us use floor diagrams to (re)compute some
of the Nd,g numbers.

Example 2.19 In the maximal genus case (Examples 2.1 (a) – (c)) it is easy to
check that there is a single floor diagram of multiplicity 1 in each degree — the
“cascading” floor diagrams shown in Figure 28. We conclude Nd,g(d) = 1 if g is
maximal.
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Figure 28 Floor Diagrams of maximal genus

Exercise 15 Check that there there are no other floor diagrams of degree 3
and genus 0 than the ones shown in Figure 27. Conclude that N3,0 = 12.
(Recall that this the first time in these notes that we actually compute this
number “rigorously”).

Exercise 16 Let us extend the previous exercise to the case of one-nodal
curves, i.e. g = g(d)− 1 (cf. Examples 2.1 (d) – (e))

(a) Show that starting with a maximal genus floor diagram (see Figure 28),
the following two transformations turn it into a “one-nodal” floor
diagram (see Figure 27).

(1) Merge two edges on the same level into a single edge of weight 2.

(2) For a given vertex, remove an incoming and an outgoing edge.
Instead, glue in an edge which starts at the starting point of the
incoming edge and ends at the endpoint of the outgoing edge (if
this was an end, the the edge will also be an end).

(b) Show that all “one-nodal” floor diagram are obtained uniquely by one
of the above transformations.

(c) Sum up the multiplicities in order to show Nd,g(d)−1 = 3(d− 1)2.

Example 2.20 As a final example, let us consider a case which does not belong to
one of the special schemes previously discussed, namely d = 4, g = 1. Figure 29
shows the 11 floor diagrams which are needed in this calculation. Also the
multiplicities are given in the way as before. If we sum up, we obtain N4,1 = 225.
Again, let us emphasize again that this number was not computable by any
standard procedure for a long time. Even the afore-mentioned Caporaso-Harris
formula is rather tedious for by-hand-computations such as this. It is therefore
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3

1 · 9

2

2

2 · 16

2 2

2

4 · 4 6 · 4 7 · 4

15 · 1 9 · 1 26 · 1

2

6 · 4 21 · 1 21 · 1

Figure 29 Floor diagrams of degree 4 and genus 1. In total, we get N4,1 = 225.

remarkable that the tools of tropical geometry make it possible to compute this
number by hand!

Exercise 17 Find all floor diagrams of degree 4 and (re)compute the numbers
N4,2 = 27, N4,1 = 225, and N4,0 = 620. For the latter number, you need to
find 12 floor diagrams.

Exercise 18 If you are on a really boring train ride or an intercontinental
flight, go on to compute N5,4 = 882. Haven’t tried it myself yet ;-)

2.6 Further topics/exercises
Computation 2.21 Here is a nice classical justification for N3,0 = 12 counting
rational curves of degree 3 passing through 8 given points The argument
assumes that we are working in the projective (compact) setting alluded to
above. The 8 points in the plane fix a pencil of cubic curves in the linear
system of all cubic curves. Note that the base locus of this pencil (the common
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intersection of all its fibers) consists of 9 points (adding one extra point to the 8
points). The general fiber of the pencil is a smooth cubic curve (homeomorphic
to a torus). Let P denote the total space of the pencil. If all fibers were smooth,
its Euler characteristic would be equal to

χ(CP1 × torus) = χ(CP1) · χ(torus) = 0.

But this is not the case, since the pencil contains singular fibers, which are
actually exactly the curves we want to count. Indeed, if the eight points are
chosen generically, then each singular fiber is a rational curve with exactly
one node. We think such a fiber as coming from a torus after contracting
one of its meridians to a point (the node). This operation increases the Euler
characteristic by one, hence the correct formula is

χ(P) = #nodes in P = #singular fibers = N3,0.

Now, there is a second way to compute χ(P). Note that choosing any point
in CP2 \ {base pts} fixes a unique curve in the pencil, together with a marked
point (the point we chose). This can be extended to the base points by choosing
a tangent line of the curve at any of these points instead. In other words,
we can conclude that P is equal to the blow up of CP2 in the 9 base points.
Note that χ(CP2) = 3 and blowing up a point replaces this point by a CP1 (a
sphere), hence increases the Euler characteristic by one. We conclude

χ(P) = χ(Bl9CP2) = 3 + 9 = 12.

Exercise 19 The goal of this exercise is to show classically that Nd,g(d) = 1.
You can proceed as follows.

(a) Show that the set of all curves of degree d can be identified with (a
subset of) CPM for suitable M, using the coefficients of the polynomial
F as homogeneous coordinates. What is M? You may use that two
polynomials F, F′ describe the same curve if and only if F = λF′ for
some λ ∈ C∗.

(b) Fix one point p ∈ C2. Describe the subset Hp in CPM parametrizing
curves that pass through p. What kind of subset is it?

(c) Conclude that for generic points p1, . . . , pN, the subsets Hp1 , . . . , HpN
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intersect in a unique point.

Exercise 20 Can you also show Nd,g(d)−1 = 3(d− 1)2 classically? You need
some more advanced algebraic geometry (and ignore some details about
compactification, etc.) to do so.

(a) Similar to before, we identify CPN with the space of homogeneous
polynomials of fixed degree d, up to rescaling. Show that the set

{(F, p) :
∂F
∂z1

(p) = 0} ⊂ CPN × CP2

is an algebraic hypersurface and determine its homology class in CPN ×
CP2.

(b) Determine the homology class of

I = {(C, p) : p singular point of C} ⊂ CPN × CP2.

(c) Let D ⊂ CPN be the discriminant hypersurface corresponding to sin-
gular curves. Let π : CPN × CP2 → CPN be the projection to the first
factor. Use π∗[I ] = [D] in order to compute the degree of D.

(d) By an (heuristic) argument similar to the previous exercise, convince
yourself that the degree of D is equal to Nd,g(d)−1.
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3 References
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