ALGEBRA

BLATT 10

Abgabe: 06.07.2023, 10:00 Uhr (Postfach im C-Bau, 3. Stock)

Aufgabe 1. Zeige: Für n = 3, 4, 6 gilt $[\mathbb{Q}(e^{2\pi I/n}) : \mathbb{Q}] = 2$. Folgere daraus, dass die Menge C_n der n-ten komplexen Einheitswurzeln für n = 3, 4, 6 aus 0 und 1 konstruierbar ist.

Aufgabe 2. Zeige mittels expliziter Konstruktionen, dass die Menge C_n der n-ten komplexen Einheitswurzeln für n = 3, 4, 5, 6 aus 0 und 1 konstruierbar ist.

Aufgabe 3. Konstruiere die Lösungen $z_1, z_2 \in \mathbb{C}$ der Gleichung $z^2 + 3z + 1 = 0$ aus 0 und 1.

Aufgabe 4. Betrachte die Körpererweiterungen $\mathbb{Q} \subseteq \mathbb{L}_i \subseteq \mathbb{C}$, wobei $\mathbb{L}_1 = \mathbb{Q}(\sqrt[3]{2})$, $\mathbb{L}_2 = \mathbb{Q}(e^{\frac{2\pi i}{3}}\sqrt[3]{2})$) und $\mathbb{L}_3 = \mathbb{Q}(e^{\frac{2\pi i}{3}})$. Weiter sei $\mathbb{L}_i\mathbb{L}_j := \mathbb{Q}(\mathbb{L}_i \cup \mathbb{L}_j)$. Zeige:

- (i) $\mathbb{L}_1 \cap \mathbb{L}_2 = \mathbb{L}_1 \cap \mathbb{L}_3 = \mathbb{Q}$,
- (ii) $[\mathbb{L}_1:\mathbb{Q}] = [\mathbb{L}_2:\mathbb{Q}] = 3$, $[\mathbb{L}_3:\mathbb{Q}] = 2$,
- (iii) $\mathbb{L}_1 \mathbb{L}_2 = \mathbb{L}_1 \mathbb{L}_3 = \mathbb{Q}(\sqrt[3]{2}, e^{\frac{2\pi i}{3}}),$
- (iv) $[\mathbb{L}_1\mathbb{L}_2:\mathbb{Q}] = [\mathbb{L}_1\mathbb{L}_3:\mathbb{Q}] = 6.$

Zeige weiter, dass $(1, 2^{\frac{1}{3}}, 2^{\frac{2}{3}}, e^{\frac{2\pi i}{3}}, 2^{\frac{1}{3}}e^{\frac{2\pi i}{3}}, 2^{\frac{2}{3}}e^{\frac{2\pi i}{3}})$ eine \mathbb{Q} -Basis für $\mathbb{L}_1\mathbb{L}_2$ ist. *Hinweis:* Betrachte die Polynome $T^3 - 2 \in \mathbb{Q}[T]$ und $T^3 - 1 = (T - 1)(T^2 + T + 1) \in \mathbb{Q}[T]$.