ALGEBRA

BLATT 3

Abgabe: 11.05.2023, 10:00 Uhr (Postfach im C-Bau, 3. Stock)

Aufgabe 1. Es sei $\varphi \colon G \to H$ ein Homomorphismus endlicher Gruppen. Beweise folgende Aussagen:

- (i) Es gilt $|G| = |\text{Kern}(\varphi)| \cdot |\text{Bild}(\varphi)|$.
- (ii) $|\text{Bild}(\varphi)|$ teilt |G|.
- **Aufgabe 2.** Bestimme alle Homomorphismen $\mathbb{Z}/24\mathbb{Z} \to \mathbb{Z}/18\mathbb{Z}$.
 - **Aufgabe 3.** (i) Gib einen Isomorphismus von $\mathbb{Z}/n\mathbb{Z}$ auf eine Untergruppe der Permutationsgruppe S_n an.
 - (ii) Gib einen Isomorphismus von $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ auf eine Untergruppe der Permutationsgruppe S_4 an.
 - **Aufgabe 4.** Eine Operation $G \times X \to X$ heisst *frei*, falls jede Isotropiegruppe G_x trivial ist, wobei $x \in X$. Eine Operation $G \times X \to X$ heißt *transitiv*, falls es zu je zwei $x_1, x_2 \in X$ ein $g \in G$ gibt mit $x_2 = g \cdot x_1$. Beweise folgende Aussagen:
 - (i) Operiert eine Gruppe G frei auf einer endlichen Menge X, so ist G endlich und |X| ist ein Vielfaches von |G|.
 - (ii) Operiert eine endliche Gruppe G transitiv auf einer Menge X, so ist X endlich und |G| ist ein Vielfaches von |X|.