EINFÜHRUNG IN KOMMUTATIVE ALGEBRA UND ALGEBRAISCHE GEOMETRIE

BLATT 5

Abgabe: 22.11.2023, 14:00 Uhr (Postfach im C-Bau, 3. Stock)

Aufgabe 1. Es seien X ein topologischer Raum, und es seien $U_i \subseteq X$ offene Teilmengen mit

$$X = \bigcup_{i \in I} U_i.$$

Zeige: Eine Teilmenge $A \subseteq X$ ist genau dann abgeschlossen in X, wenn für jedes $i \in I$ die Menge $A \cap U_i$ abgeschlossen in U_i ist.

Aufgabe 2. Es seien X, Y topologische Räume und es sei $\varphi \colon X \to Y$ eine Abbildung. Beweise die Aussagen aus Erinnerung 2.3.17:

- (i) Die Abbildung $\varphi \colon X \to Y$ ist genau dann stetig, wenn für jede abgeschlossene Teilmenge $B \subseteq Y$ das Urbild $\varphi^{-1}(B) \subseteq X$ abgeschlossen ist.
- (ii) Ist $\varphi \colon X \to Y$ stetig und sind $X' \subseteq X$ sowie $Y' \subseteq Y$ Teilmengen mit $\varphi(X') \subseteq Y'$, so ist die Einschränkung $\varphi_{|X'} \colon X' \to Y'$ stetig bezüglich der Teilraumtopologien auf X' und Y'.

Aufgabe 3. Bestimme die irreduziblen Komponenten der folgenden algebraischen Menge:

$$V(T_1^2 - T_2T_3, T_1T_3 - T_1) \subseteq \mathbb{K}^3.$$

Aufgabe 4. Zeige, dass die Menge

$$\{A \in \operatorname{Mat}(n, n; \mathbb{K}); \operatorname{rg}(A) \leq 1\}$$

irreduzibel in $Mat(n, n; \mathbb{K}) = \mathbb{K}^{n \times n}$ ist.