EINFÜHRUNG IN KOMMUTATIVE ALGEBRA UND ALGEBRAISCHE GEOMETRIE

BLATT 12

Abgabe: 24.01.2024, 14:00 Uhr (Postfach im C-Bau, 3. Stock)

Aufgabe 1. Bestimme den Körper der rationalen Funktionen und die Dimension folgender irreduzibler affiner Varietäten:

- (i) $V(T_1^2 T_2^3) \subseteq \mathbb{K}^2$,
- (ii) $V(T_1T_2 T_3^2) \subseteq \mathbb{K}^3$.

Aufgabe 2. Es seien $f, g \in \mathbb{K}[T_1, \dots, T_n]$. Beweise die Äquivalenz folgender Aussagen:

- (i) Die Polynome f und g sind teilerfremd.
- (ii) Es gilt $\dim(V(f,g)) \leq n-2$.

Aufgabe 3. Betrachte $X := Y := \mathbb{K}^2$ und den Morphismus $\varphi \colon X \to Y, (z_1, z_2) \mapsto (z_1 z_2, z_2).$

- (i) Bestimme für jedes $w \in Y$ die Dimension der Faser $\varphi^{-1}(w)$ (setze $\dim(\emptyset) := -1$).
- (ii) Zeige, dass φ birational aber kein Isomorphismus ist.
- (iii) Zeige: Für $g: w \mapsto w_1/w_2$ gilt $g \in \mathbb{K}(Y) \setminus \mathcal{O}(Y)$ aber $\varphi^*(g) \in \mathcal{O}(X)$.

Aufgabe 4 (Identitätssatz). Es seien $\varphi, \psi \colon X \to Y$ Morphismen affiner Varietäten. Weiter sei $x \in X$ mit $\varphi(x) = \psi(x) =: y$. Beweise die Äquivalenz folgender Aussagen:

- (i) Auf jeder irreduziblen Komponente $X_0 \subseteq X$ mit $x \in X_0$ stimmen die Abbildungen φ und ψ überein.
- (ii) Die beiden Abbildungen $\varphi_x^* \colon \mathcal{O}_y \to \mathcal{O}_x$, $g_y \mapsto (\varphi^*(g))_x$ und $\psi_x^* \colon \mathcal{O}_y \to \mathcal{O}_x$, $g_y \mapsto (\psi^*(g))_x$ stimmen überein.