Lineare Algebra 1

https://www.math.uni-tuebingen.de/de/forschung/algebra/lehre/winter-2526/lina1

Fachbereich Mathematik Arbeitsbereich Algebra Wintersemester 2025/26

BLATT 1

Abgabe: Mittwoch, den 22.10.2025, 18:00 Uhr

* Aufgabe 1. Verifiziere die folgenden Äquivalenzen mit Hilfe von Wahrheitstafeln:

$$A ext{ oder } B \iff B ext{ oder } A,$$
 $\operatorname{nicht} (A ext{ oder } B) \iff (\operatorname{nicht} A) ext{ und } (\operatorname{nicht} B),$
 $A ext{ und } (B ext{ oder } C) \iff (A ext{ und } B) ext{ oder } (A ext{ und } C),$
 $A ext{ oder } (B ext{ und } C) \iff (A ext{ oder } B) ext{ und } (A ext{ oder } C).$

Aufgabe 2. Formuliere gemäß Bemerkung 1.1.4 die Negation für folgende Aussagen:

- (i) Für jede ganze Zahl x gilt: x < 1 oder x teilt 15.
- (ii) Es gibt eine ganze Zahl a, sodass $a \mid 8$ und a > 3 gilt.
- (iii) Für jede ganze Zahl a gibt es eine ganze Zahl b, sodass a + b = 0 gilt.
- (iv) Es gibt eine ganze Zahl a, sodass für jede ganze Zahl b gilt a + b = b.
- (v) Für je zwei ganze Zahlen a, b gilt genau dann $a \ge b$ und $b \ge a$, wenn a = b gilt.

Aufgabe 3. Finde ein Beispiel für eine Menge X und Teilmengen $A, B, C \subseteq X$, sodass folgendes gilt:

$$A \cap B \neq \emptyset$$
, $A \cap C \neq \emptyset$, $B \cap C \neq \emptyset$, $A \cap B \cap C = \emptyset$.

Aufgabe 4. Es sei X eine Menge und es seien Teilmengen $A, B, C \subseteq X$ gegeben. Zeige:

$$\begin{array}{rcl} X \setminus (X \setminus A) & = & A, \\ (A \setminus B) \ \cup \ (B \setminus A) & = & (A \cup B) \ \setminus \ (A \cap B), \\ A \setminus \ (B \setminus C) & = & (A \setminus B) \ \cup \ (A \cap C). \end{array}$$

Die mit \circledast gekennzeichnete Aufgabe ist zur sorgfältigen schriftlichen Ausarbeitung vorgesehen und wird mit 0–4 Punkten bewertet. Für das Vorrechnen einer Aufgabe in der Übungsgruppe gibt es jeweils einen Punkt für die Studienleistung.