Übungen zur Vorlesung

Prof. Dr. Jürgen Hausen

Lineare Algebra 1

https://www.math.uni-tuebingen.de/de/forschung/algebra/lehre/winter-2526/lina1

Fachbereich Mathematik Arbeitsbereich Algebra Wintersemester 2025/26

BLATT 2

Abgabe: Mittwoch, den 29.10.2025, 18:00 Uhr

Aufgabe 1. Es seien X sowie Y Mengen, $\varphi \colon X \to Y$ eine Abbildung und $A \subseteq X$ sowie $B \subseteq Y$ Teilmengen. Zeige:

$$A \subseteq \varphi^{-1}(\varphi(A)), \qquad \qquad \varphi(\varphi^{-1}(B)) \subseteq B.$$

Zeige anhand von Beispielen, dass man bei keiner der beiden Aussagen Gleichheit erwarten darf. Zeige weiter

$$\varphi(\varphi^{-1}(\varphi(A))) = \varphi(A).$$

Aufgabe 2. Untersuche die folgenden Abbildungen auf Injektivität, Surjektivität und Bijektivität.

- (i) $\mathbb{R} \to \mathbb{R}$, $x \mapsto x^2$.
- (ii) $\mathbb{R}^2 \to \mathbb{R}^3$, $(x, y) \mapsto (x + y, y, 0)$.
- (iii) $\mathbb{R} \to \{2\}, x \mapsto 2$.
- (iv) $C_3 \to C_3$, $x \mapsto x + x$.

Aufgabe 3. Berechne für $n \in \mathbb{N}_{>1}$ den folgenden Ausdruck in der Gruppe $(C_n, +)$:

$$\overline{1} + \overline{2} + \overline{3} + \cdots + \overline{n-2} + \overline{n-1}$$
.

- * Aufgabe 4. Beweise folgende Aussagen:
 - (i) Sind $\varphi \colon G \to H$ und $\psi \colon H \to F$ Gruppenhomomorphismen, so ist auch die Komposition $\psi \circ \varphi \colon G \to F$ ein Gruppenhomomorphismus.
 - (ii) Es seien $n \in \mathbb{N}_{\geq 1}$ und $l \in \mathbb{Z}$. Dann ist die folgende Abbildung ein Gruppenhomomorphismus:

$$\mathbb{Z} \to C_n, \quad a \mapsto \overline{r(la; n)}.$$

Die mit \circledast gekennzeichnete Aufgabe ist zur sorgfältigen schriftlichen Ausarbeitung vorgesehen und wird mit 0–4 Punkten bewertet. Für das Vorrechnen einer Aufgabe in der Übungsgruppe gibt es jeweils einen Punkt für die Studienleistung.