Lineare Algebra 1

https://www.math.uni-tuebingen.de/de/forschung/algebra/lehre/winter-2526/lina1

Fachbereich Mathematik Arbeitsbereich Algebra Wintersemester 2025/26

BLATT 3

Abgabe: Mittwoch, den 05.11.2025, 18:00 Uhr

Aufgabe 1. Eine Gruppe $G = \{e_G, g_1, \dots, g_r\}$ mit Verknüpfung "*" wird durch ihre Verknüpfungstafel beschrieben:

- (i) Bestimme die Einheitengruppe C_{12}^* des Ringes C_{12} .
- (ii) Stelle die Verknüpfungstafeln für C_{12}^* und C_4 auf.
- (iii) Beweise oder widerlege die folgende Aussage: Es gibt einen surjektiven Gruppenhomomorphismus $C_{12}^* \to C_4$.

Aufgabe 2. Zeige, dass die folgende Abbildung ein bijektiver Körperhomomorphismus ist:

$$\kappa \colon \mathbb{C} \to \mathbb{C}, \quad a_1 + a_2 \cdot I \mapsto a_1 - a_2 \cdot I.$$

Zeige weiter:

- (i) Eine komplexe Zahl $z \in \mathbb{C}$ ist genau dann reell, d.h., von der Form z = (a, 0) mit $a \in \mathbb{R}$, wenn $\kappa(z) = z$ gilt.
- (ii) Für jede komplexe Zahl $z \in \mathbb{C}$ ist die Summe $z + \kappa(z)$ sowie das Produkt $z \cdot \kappa(z)$ reell.
- \circledast Aufgabe 3. Bestimme die Lösungsmenge des folgenden linearen Gleichungssystems über C_7 :

Aufgabe 4. Es sei $z=(z_1,z_2)\in\mathbb{C}$ eine komplexe Zahl. Bestimme zwei reelle Zahlen $a,b\in\mathbb{R}$, sodass $z^2+az+b=0$ gilt.

Die mit \circledast gekennzeichnete Aufgabe ist zur sorgfältigen schriftlichen Ausarbeitung vorgesehen und wird mit 0–4 Punkten bewertet. Für das Vorrechnen einer Aufgabe in der Übungsgruppe gibt es jeweils einen Punkt für die Studienleistung.