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The Weingarten formula



Computing expectation values

� Gaussian integrals: if X P Cd is a centered random complex Gaussian
vector, i.e. dP{dLeb � exppxx ,Axy{2q, then [Iss18]

ErXi1 � � �Xip X̄i 11
� � � X̄i 1p s �

¹
αPSp

p¹
k�1

ErXik X̄i 1
αpkq

s

� Spherical integrals: if Y is a uniform random point on the unit sphere of
Cd , then YN is a standard complex Gaussian in Cd , where N is an
independent χ2 random variable. Thus one can use the Gaussian
formula to compute the spherical integrals.

� Unitary integrals?



Computing expectation values

� Gaussian integrals: if X P Cd is a centered random complex Gaussian
vector, i.e. dP{dLeb � exppxx ,Axy{2q, then [Iss18]

ErXi1 � � �Xip X̄i 11
� � � X̄i 1p s �

¹
αPSp

p¹
k�1

ErXik X̄i 1
αpkq

s

� Spherical integrals: if Y is a uniform random point on the unit sphere of
Cd , then YN is a standard complex Gaussian in Cd , where N is an
independent χ2 random variable. Thus one can use the Gaussian
formula to compute the spherical integrals.

� Unitary integrals?



Computing expectation values

� Gaussian integrals: if X P Cd is a centered random complex Gaussian
vector, i.e. dP{dLeb � exppxx ,Axy{2q, then [Iss18]

ErXi1 � � �Xip X̄i 11
� � � X̄i 1p s �

¹
αPSp

p¹
k�1

ErXik X̄i 1
αpkq

s

� Spherical integrals: if Y is a uniform random point on the unit sphere of
Cd , then YN is a standard complex Gaussian in Cd , where N is an
independent χ2 random variable. Thus one can use the Gaussian
formula to compute the spherical integrals.

� Unitary integrals?



The Weingarten formula

Theorem. [Wei78, Col03, CŚ06] Let d be a positive integer and
i � pi1, . . . , ipq, i1 � pi 11, . . . , i

1
p1q, j � pj1, . . . , jpq, j1 � pj 11, . . . , j

1
p1q be

tuples of positive integers from t1, 2, . . . , du. Then, if p � p1»
Ud

Ui1j1 � � �Uip jp Ūi 11j
1
1
� � � Ūi 1

p1
j 1
p1
dU � 0.

If p � p1,»
Ud

Ui1j1 � � �Uip jp Ūi 11j
1
1
� � � Ūi 1p j

1
p
dU �¸

α,βPSp

δi1i 1αp1q . . . δip i
1
αppq

δj1j 1βp1q . . . δjp j
1
βppq

Wgpd , α�1βq,

where Wg is a combinatorial weight, taking as parameters the dimension
of the unitary group and a permutation.

� Has found many applications (especially in RMT, e.g. [Col03]) and
extensions (e.g. quantum groups [BC07])
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The Weingarten function
� It is a combinatorial function, in general very difficult to compute

� It can be obtained, for small p, as Wgpd , α�1βq � pC�1qα,β , where C is

the p! � p! matrix having entries Cα,β � d#pα�1βq, where #p�q is the
number of cycles function.

� Representation-theoretical formula used in practice:

Wgpd , σq �
1

p!2

¸
λ$p,`pλq¤d

χλpeq2

sλ,dp1q
χλpσq,

where χλ is the character associated to the partition λ and sλ,d is the
Schur polynomial. See [Ber04] for the complexity of computing χλ.

� Important asymptotic behavior at large d , fixed p:

Wgpd , σq � p1 � Opd�2qqMobpσqd�p�|σ|,

where |σ| � p � #σ is the length function. In particular, the matrix C
above is “almost” diagonal. The Möbius function Mob is multiplicative
on the cycles of σ and on an n-cycle it’s value is p�1qn�1Catn�1.

� Example:
³
Ud

U11U22U33Ū12Ū23Ū31 dU � Wgpd , p123qq � 2
dpd2�1qpd2�2q ,

since there is just one term in the sum, α � id and β � p123q.
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Schur-Weyl duality

Theorem. [Aub18] Consider the following two subalgebras of Mdp pCq:
A � spantAbp : A P MdpCqu and B � spantPσ : σ P Spu, where Pσ
permutes the tensor factors according to σ

Pσx1 b � � � b xp � xσp1q b � � � xσppq.

Then A and B are the commutant of each other.

� We show B1 � A. Let X P B1.
� X � 1

p!

°
σPSp

PσXP
�1
σ

� Mdp pCq is spanned by simple tensors, so it’s enough to show°
σPSp

PσX1 b � � � b XpP
�1
σ P A.

� We have, for i.i.d. �1 centered random variables εi¸
σPSp

PσX1 b � � � b XpP
�1
σ �

¸
σPSp

Xσp1q b � � � b Xσppq

� E

�
�� p¹

i�1

εi

��
p̧

j�1

εjXj

�bp
�
� .

� One can show A � spantUbp : A P Udu.



Graphical Weingarten calculus



Boxes & wires

[Pen05]



Boxes & wires
� Graphical formalism inspired by works of Penrose, Coecke, Jones...

� Tensors  decorated boxes.

M

V ∗
1

V ∗
2

V2

V3

V1

M ∈ V1 ⊗ V2 ⊗ V3 ⊗ V ∗
1 ⊗ V ∗

2

x

x ∈ V1

ϕ

ϕ ∈ V ∗
1

� Tensor contractions (or traces) V b V � Ñ C  wires.

AB = A B
C D

Tr(C) TrV1
(D)

� Maximally entangled vector Ω :�
°dimV1

i�1 ei b ei P V1 b V1

Ω =
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“Graphical” Weingarten formula: main idea

»
Ud

Ui1j1 � � �Uip jp Ūi 11j
1
1
� � � Ūi 1p j

1
p
dU �¸

α,βPSp

δi1i 1αp1q . . . δip i
1
αppq

δj1j 1βp1q . . . δjp j
1
βppq

Wgpd , α�1βq,

U (k)

Ū (β(k))

Ū (α(k))

ik

i′α(k)

jk

j′β(k)
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“Graphical” Weingarten formula: graph expansion

Consider a diagram D containing random unitary matrices/boxes U and
U�. Apply the following removal procedure:

1. Start by replacing U� boxed by Ū boxes (by reversing decoration
shading).

2. By the (algebraic) Weingarten formula, if the number p of U boxes is
different from the number of Ū boxes, then ED � 0.

3. Otherwise, choose a pair of permutations pα, βq P S2
p . These

permutations will be used to pair decorations of U{Ū boxes.

4. For all i � 1, . . . , p, add a wire between each white decoration of the
i-th U box and the corresponding white decoration of the αpiq-th Ū
box. In a similar manner, use β to pair black decorations.

5. Erase all U and Ū boxes. The resulting diagram is denoted by Dpα,βq.

Theorem.
ED �

¸
α,βPSp

Dpα,βq Wgpd , αβ�1q.
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3. Otherwise, choose a pair of permutations pα, βq P S2
p . These

permutations will be used to pair decorations of U{Ū boxes.
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First example

� Compute E|uij |2 �
³
UpNq |uij |

2dU.

� Conclusion :
E|uij |2 �

³
|uij |

2dU � Dα�p1q,β�p1q � WgpN, p1qq � 1 � 1{N � 1{N.
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� Conclusion :
E|uij |2 �

³
|uij |

2dU � Dα�p1q,β�p1q � WgpN, p1qq � 1 � 1{N � 1{N.



First example

� Compute E|uij |2 �
³
UpNq |uij |

2dU.

U|j〉 〈i|
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Ū|j〉 〈i|

Figure: Erase U and Ū boxes.
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Second example

� Compute E|uij |4 �
³
UpNq |uij |

4dU.

� Conclusion :

E|uij |4 �
»
|uij |

4dU �
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Dp12q,p1qp2q � WgpN, p12qq�

Dp12q,p12q � WgpN, p1qp2qq
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2
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Random Tensor Network Integrator
� An implementation of the graphical Weingarten calculus in
Mathematica and python



Random Tensor Network Integrator



An application to QIT



Quantum information theory on one slide

� Classical information theory � Shannon theory. Classical states:
probability vectors p � pp1, . . . , pkq with pi ¥ 0,

°
i pi � 1

� Classical channels � Markov transition operators L : Rd Ñ Rk , Lij ¥ 0,°
i Lij � 1 for all j

� Quantum information theory � quantum Shannon theory. Quantum
states: positive semidefinite matrices of unit trace ρ P MkpCq with
ρ ¥ 0, Tr ρ � 1

� Quantum channels � trace preserving, completely positive linear maps
Φ : MdpCq Ñ MkpCq

� Completely positive: map PSD operators to PSD operators & stable by
tensoring with the id: rΦ b idspρq ¥ 0

� Trace preserving Tr Φpρq � Tr ρ � 1

� Stinespring dilation theorem: for any quantum channel Φ there exist an
integer dimension n ( size of the environment) and an isometry
V : Cd Ñ Ck b Cn such that

Φpρq � ridbTrspV ρV �q
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Graphical representation of quantum channels

� A quantum channel Φ : MdpCq Ñ MkpCq

V V ∗Φ(X) X=

� Decorations: �{
 Cd , �{
 Ck , �{� Cn

� Product of conjugate channels applied to the maximally entangled state
ω � d�1ΩΩ�

V V ∗

Z = [Φ ⊗ Φ̄](ω) =

V̄ V >

d−1



Graphical representation of quantum channels

� A quantum channel Φ : MdpCq Ñ MkpCq

V V ∗Φ(X) X=

� Decorations: �{
 Cd , �{
 Ck , �{� Cn

� Product of conjugate channels applied to the maximally entangled state
ω � d�1ΩΩ�

V V ∗

Z = [Φ ⊗ Φ̄](ω) =

V̄ V >

d−1



Classical capacity of quantum channels
� Capacity of a (quantum) channel: number of uses of channels needed to

reliably transmit 1 bit of information in the limit of large number of
channels uses.

� For classical channels, Shannon’s second coding theorem [Sha48]:

C pLq � max
X

I pp, Lpq,

where p is a probability distribution over the input.
� For quantum channels:

C pΦq � lim
nÑ8

1

n
χpΦbnq,

where χ is an entropic quantity called the Holevo capacity.
� Equivalence of additivity questions [Sho04]

1. additivity of the Holevo capacity χ
2. additivity of minimum output entropy

� von Neuman entropy Hpρq � �Trpρ log ρq.
� Minimal Output Entropy of a quantum channel

HminpΦq � min
ρPM1,�

d

HpΦpρqq

� The MOE is not additive! [HW08, Has09]
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Non-additivity: half of the story
� Additivity of MOE:

HminpΦ b Ψq � HminpΦq � HminpΨq @Φ,Ψ

� Only counterexamples known are random, with the choice Ψ � Φ̄.
Asymptotic regime: k fixed, n Ñ8, d � tkn for fixed t P p0, 1q.

Theorem. [CN10] For all k, t, almost surely as n Ñ8, the eigenvalues
of Zn � rΦ b Φ̄spωtnkq converge to

λ �

�
���t �

1 � t

k2
,

1 � t

k2
, . . . ,

1 � t

k2looooooooomooooooooon
k2�1 times

�
��
P ∆k2 .

We have HminpΦ b Φ̄q ¤ Hpλq.

� Previously known bound (deterministic, comes from linear algebra): for
all t, n, k, the largest eigenvalue of Zn is at least t.

� Two improvements:
1. “better” largest eigenvalue,
2. knowledge of the whole spectrum.
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Application: product of conjugate channels

� Method of moments: we want to compute, for all p ¥ 1, ETrpZ pq, in
the case where V is a random Haar isometry.

� One needs to compute the contribution of each diagram Dpα,βq, where
α, β P S2p.

� Dpα,βq is a collection of loops associated to vector spaces of dimensions
n, k and d .

� After doing the loop combinatorics, one is left with maximizing over S2
2p

quantities such as

#pγ�1αq � #pα�1βq � #pβ�1δq,

where γ and δ are permutations coding the initial wiring of U{Ū boxes
and #p�q is the number of cycles function.

� Use #α � 2p � |α|; dpα, βq � |α�1β| is a distance on S2p.

� Geodesic problems in symmetric groups ñ non-crossing partitions ñ
free probability.

� Asymptotic for Weingarten weights:

Wgpd , σq � d�pp�|σ|qpMobpσq � Opd�2qq.
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Example: ETrpZ 2q

� We have to compute a sum over all pairings of 4 “U” boxes with 4 “Ū”
boxes.

� Diagrams associated to pairings are indexed by 2 permutations
pα, βq P S2

4 . Consider the permutation δ � p1 4q p2 3q P S4.

The original diagram

U Ū

Ū U

U Ū

Ū U

� Contributions of diagrams  counting the loops  statistics over
permutations.
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