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Exercise 1. No-go theorem for potentials in multi-time equations with Laplacians

Consider the multi-time system

i∂t1ψ = (−∆1 + V1(x1,x2))ψ,

i∂t2ψ = (−∆2 + V2(x1,x2))ψ (1)

for a multi-time wave function ψ : R4 × R4 → C. Here, ∆i denotes the Laplacian
with respect to xi, i = 1, 2 and V1, V2 : R6 → R are smooth functions.

(a) State the appropriate consistency condition.

(b) Show that this consistency condition is only satis�ed if V1 does not depend on
x2 and V2 does not depend on x1.

Exercise 2. Space-like con�gurations

Consider the case of N = 2 particles. We denote the set of space-like con�gurations
(including collision con�gurations) by

S = {(x1, x2) ∈ R4 × R4 : |x0
1 − x0

2| < |x1 − x2| or x0
1 = x0

2,x1 = x2}. (2)

Show that S is the smallest Poincaré invariant set which contains the equal-time
con�gurations

E = {(x1, x2) ∈ R4 × R4 : x0
1 = x0

2}. (3)

Exercise 3. Multi-time equations for φ4 theory

φ4 theory is a quantum �eld theory model in which the Heisenberg �eld operators
φ(x) obey the evolution equation

(� +m2)φ(x) = φ3(x). (4)

Use this equation and the expression of multi-time wave functions via �eld operators,

ψ(n)(x1, ..., xn) =
1√
n!
〈0|φ(x1) · · ·φ(xn)|ψH〉, (5)

to derive multi-time equations for ψ(n). (These equations should only contain ψ(m)

for di�erent values for m, not any �eld operators.)



Exercise 4. Continuity equation from Dirac equation

Derive the continuity equation ∂µj
µ = 0 from the Dirac equation iγµ∂µψ = mψ and

the de�nition jµ = ψγµψ.
Hint: Use that the adjoint of γµ is γµ† = γ0γµγ0, as can be veri�ed in (e.g.) the

standard representation

γ0 =

(
I 0
0 −I

)
, γi =

(
0 σi

−σi 0

)
with I =

(
1 0
0 1

)
and Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

Generalization: Suppose that ψ : R4N → (C4)⊗N satis�es the free multi-time
Dirac equations iγµj ∂xµj ψ = mψ, where γµj is γµ acting on sj. Let ψ = ψ†γ0

1 · · · γ0
N

and
jµ1...µN (x1...xN) = ψ(x1...xN) γµ11 · · · γ

µN
N ψ(x1...xN).

Show that ∂
x
µj
j
jµ1...µN (x1...xN) = 0 for all j = 1...N .

Exercise 5. Creation and Annihilation Operators

Let us consider the scalar bosonic creation and annihilation operators de�ned by

(a(x)ϕ)(x1, . . . ,xN) =
√
N + 1ϕ(x1, . . . ,xN ,x),

(a†(x)ϕ)(x1, . . . ,xN) =
1√
N

N∑
j=1

δ(3)(xj − x)ϕ(x1, . . . , x̂j, . . . ,xN), (6)

where (̂·) denotes omission.
Show that for any operator H : L2(R3)→ L2(R3) we have that∫

R3

d3x a†(x)Hxa(x)ϕ(x1, . . . ,xN) =
N∑
j=1

Hxjϕ(x1, . . . ,xN). (7)

Exercise 6. Poincaré invariant interaction potential in multi-time Dirac equations

Consider the Poincaré invariant multi-time equations(
iγµk∂xµk −mk −

e2

2
√
|(x1 − x2)2|

)
ψ(x1, x2) = 0, k = 1, 2, (8)

where (x1 − x2)2 = (x0
1 − x0

2)2 − |x1 − x2|2.

(a) Demonstrate that the single-time wave function ϕ(t,x1,x2) = ψ(t,x1, t,x2)
satis�es a Schrödinger-like equation with a potential ∝ e2

|x1−x2| .

(b) Write down the appropriate consistency condition for (8).

(c) Show through an explicit calculation that the consistency condition is violated.



Exercise 7. Probability conservation on space-like hypersurfaces

Let N ∈ N and ψ ∈ C1(R4N ,C4N ) be a solution of the free multi-time Dirac equa-
tions (iγµk∂xµk −mk)ψ = 0, k = 1, ..., N which is compactly supported in space for
all �xed time variables. For every smooth space-like hypersurface Σ with future-
pointing unit normal vector �eld n, we de�ne

P (Σ) =

∫
Σ

dσ(x1) · · ·
∫

Σ

dσ(xN) ψ(x1, ..., xN)n/1(x1) · · ·n/N(xN)ψ(x1, ..., xN).

(a) Show that P (Σ) = P (Σ′) for all pairs of smooth space-like hypersurfaces Σ,Σ′.
Hint: Apply the Gauss integral theorem to the volume between Σ and Σ′, with
a limit of mantle surfaces moving to spacelike in�nity.

(b) Let ψ, φ be two solutions of the same initial value problem ψ|ΣN0 = φ|ΣN0 = ψ0

for some given function ψ0 ∈ C∞c (ΣN
0 ,C4N ). Show that (a) implies ψ|ΣN =

φ|ΣN for all smooth spacelike hypersurfaces Σ.
Hint: You can use that ψ(x1, ..., xN)n/1(x1) · · ·n/N(xN)ψ(x1, ..., xN) ≥ 0 for all
future-pointing time-like or light-like vector �elds n.



Exercise 8. Finite Propagation Speed (Domain of Dependence)

(a) Consider the 4-volume C depicted in a 2-dimensional way in Figure 1. C is the
volume enclosed by Σ0, Σt, and Σs. Let j : R4 → R4 be a continuously di�er-
entiable vector �eld. Taking R4 as a coordinate space with Euclidean metric,
what are the outward unit normal vectors for Σ0, Σt, and Σs? Then, write out
explicitly the 4-dimensional Gauss integral theorem for

∫
C
d4x div4(j).

(b) Consider the one-particle Dirac equation iγµ∂µψ =
(
m+V (x)

)
ψ with smooth

self-adjoint external potential V ∈ C∞(R3,C4×4). For smooth initial data
ψ0 ∈ C∞(R3,C4) it is known that there is a unique smooth solution ψ ∈
C∞(R4,C4). We denote the open ball with radius r around y by Br(y) :={
x ∈ R3 : |x − y| < r

}
. Prove that ψ(t,x) for x ∈ BT−t(y) is uniquely

determined by specifying the initial conditions on BT (y).
Hint: Because of linearity, it su�ces to consider ψ(0,x) = 0. Use ∂µj

µ = 0
and part (a).

Figure 1: Σ0 and Σt are parts of equal time hypersurfaces, Σs is part of the past light

cone of (T,y). Σ0, Σt and Σs enclose a volume in R4, a truncated cone.


