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Exercise 1. No-go theorem for potentials in multi-time equations with Laplacians

Consider the multi-time system

0,0 = (=A1 + Vi(x1,%2))1),
(0,1 = (—Ag + Va(x1, X)) (1)

for a multi-time wave function ¢ : R* x R* — C. Here, A; denotes the Laplacian
with respect to x;, i = 1,2 and V4, V5 : RS — R are smooth functions.

(a) State the appropriate consistency condition.

(b) Show that this consistency condition is only satisfied if V; does not depend on
X5 and V5 does not depend on x;.

Exercise 2. Space-like configurations
Consider the case of N = 2 particles. We denote the set of space-like configurations
(including collision configurations) by

S ={(x1,5) € R* x R*: |29 — 2| < |x; —xo] or ¥ = 25, x; =%}, (2)

Show that .# is the smallest Poincaré invariant set which contains the equal-time

configurations
& = {(x1, 1) € R* x R* : 2¥ = 25}, (3)

Exercise 3. Multi-time equations for ¢* theory

¢* theory is a quantum field theory model in which the Heisenberg field operators
¢(x) obey the evolution equation

(O +m*)(x) = ¢’ (). (4)
Use this equation and the expression of multi-time wave functions via field operators,
1

e

to derive multi-time equations for /(™). (These equations should only contain 1™
for different values for m, not any field operators.)



Exercise 4. Continuity equation from Dirac equation

Derive the continuity equation d,j* = 0 from the Dirac equation iy*9d,1¢ = m1 and
the definition j* = 1y*4).

Hint: Use that the adjoint of v* is v#T = 7%9#+° as can be verified in (e.g.) the
standard representation

o (I 0 i (0 o
T=No =1) 7T T\ 0

with 7 = (§9) and Pauli matrices

b (01 5, (0 =\ 5 (1 0
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Generalization: Suppose that 1 : R — (CH®N satisfies the free multi-time
Dirac equations i7; 1o uw = m), where fyj is 7* acting on s;. Let =Tyl A%
and

GEN (o) = (o) YA Yoy,
Show that 0 u; j#t#N(xy...vy) = 0 for all j = 1...N.

Exercise 5. Creation and Annihilation Operators

Let us consider the scalar bosonic creation and annihilation operators defined by

(a(x)@)(x1,. .., xn) = VN + 1o(xX1, ..., XN, X),
(at(x)@)(x1,...,x Z Jo(X1, s Ky XN), (6)

w

where ( ) denotes omission.
Show that for any operator H : L?(R3) — L?(R3) we have that

/R3 d*x a' (x) Hya(x)p(x1, ..., Xy) = Z Hy o(x1,...,Xn). (7)

Exercise 6. Poincaré invariant interaction potential in multi-time Dirac equations
Consider the Poincaré invariant multi-time equations

e2

(71 — 12)?|

(Z,yl/:aivl,: — Mg — ) w(xhx?) = 07 k= 17 2a (8)

where (21 — 22)% = (29 — 29)? — |x; — xo|2.

(a) Demonstrate that the single-time wave function ¢(¢,x1,x2) = ¥(t,x3,t,X3)
satisfies a Schrodinger-like equation with a potential o m

(b) Write down the appropriate consistency condition for (§)).

(c) Show through an explicit calculation that the consistency condition is violated.



Exercise 7. Probability conservation on space-like hypersurfaces

Let N € N and ¢ € CHR*N,C*") be a solution of the free multi-time Dirac equa-
tions (z"y,’:axi —my)y =0, k= 1,..., N which is compactly supported in space for
all fixed time variables. For every smooth space-like hypersurface ¥ with future-
pointing unit normal vector field n, we define

P(%) :/Eda(xl)---/zda(m]\z) (w1, .y on) oy (21) - opn () (2, o 2.

(a) Show that P(X) = P(X’) for all pairs of smooth space-like hypersurfaces 3, ¥'.
Hint: Apply the Gauss integral theorem to the volume between X and Y, with
a limit of mantle surfaces moving to spacelike infinity.

(b) Let 4, ¢ be two solutions of the same initial value problem ¢[xy = @xy = ¢
for some given function 1y € C(XY,C*"). Show that (a) implies 1h|xv =
¢|s~ for all smooth spacelike hypersurfaces X.

Hint: You can use that ¢(xy,...,xn) f1(z1) - - - v (zn)(21, ..., zn) > 0 for all
future-pointing time-like or light-like vector fields n.



Exercise 8. Finite Propagation Speed (Domain of Dependence)

(2)

Consider the 4-volume C depicted in a 2-dimensional way in Figure[l] C is the
volume enclosed by g, ¥, and ¥%. Let j : R* — R* be a continuously differ-
entiable vector field. Taking R* as a coordinate space with Euclidean metric,
what are the outward unit normal vectors for ¥q, 3, and X°7 Then, write out
explicitly the 4-dimensional Gauss integral theorem for [ d*z divy(j).

Consider the one-particle Dirac equation iy*9,1¢ = (m+ V(x))@/) with smooth
self-adjoint external potential V € C*(R3 C***). For smooth initial data
Yo € C®(R3 C*) it is known that there is a unique smooth solution ¥ €
C>(R* C*). We denote the open ball with radius r around y by B,(y) :=
{x € R® : |x —y| < r}. Prove that ¢(t,x) for x € Br_;(y) is uniquely
determined by specifying the initial conditions on Br(y).

Hint: Because of linearity, it suffices to consider 1(0,x) = 0. Use J,j* = 0
and part (a).
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Figure 1: Xy and X; are parts of equal time hypersurfaces, ¥° is part of the past light
cone of (T,y). Xo, ¥; and ¥* enclose a volume in R*, a truncated cone.



