Spring School on Multi-Time Wave Functions Lecture 1: Introduction and Overview

Roderich Tumulka

April 10, 2019

1 Relativistic space-time

 $\mathscr{M} = \mathbb{R}^4$ Minkowski space-time [with points] $x = x^{\mu} = (x^0, \boldsymbol{x}) = (ct, \boldsymbol{x}), c = 1$, metric

$$g_{\mu\nu} = \eta_{\mu\nu} = \begin{pmatrix} 1 & & \\ & -1 & \\ & & -1 \\ & & & -1 \end{pmatrix}.$$
 (1)

[picture: light cone, sets of timelike/spacelike/lightlike = null vectors]

Lorentz group $\mathscr{L} = O(1,3)$ [= set of all Lorentz transformations including rotations in space], rotation group = SO(3).

Restricted Lorentz group $\mathscr{L}^+ \subset \mathscr{L}$ [contains those that don't reverse either time or space]

Poincaré group

$$\mathscr{P} = \left\{ x \mapsto a + \Lambda x : a \in \mathscr{M}, \Lambda \in \mathscr{L} \right\}$$
⁽²⁾

[includes space-time translations, correspondingly \mathscr{P}^+]

2 Dirac equation

Wave function $\psi(t, \mathbf{x}) \in \mathbb{C}^4$ spin space, Dirac eq $(\hbar = 1)$

$$i\frac{\partial\psi}{\partial t} = -i\boldsymbol{\alpha}\cdot\nabla\psi + \beta m\psi =: H_{\text{Dirac}}\psi$$
(3)

or, [equivalently,]

$$i\gamma^{\mu}\partial_{\mu}\psi = m\psi$$
 or $i\partial\!\!\!/\psi = m\psi$. (4)

Here, $\beta = \gamma^0$, $\alpha^i = \gamma^0 \gamma^i$ (i = 1, 2, 3), $\psi = v_\mu \gamma^\mu$. Clifford relation $\gamma^\mu \gamma^\nu + \gamma^\nu \gamma^\mu = 2\eta^{\mu\nu}I$, in particular $\gamma^0 \gamma^0 = I$. Hamiltonian formulation: Hilbert space $\mathscr{H} = L^2(\mathbb{R}^3, \mathbb{C}^4)$ with [inner product]

$$\langle \phi | \psi \rangle = \int_{\mathbb{R}^3} d^3 \boldsymbol{x} \, \phi^{\dagger}(\boldsymbol{x}) \, \psi(\boldsymbol{x}) \tag{5}$$

with [inner product in spin space]

$$\phi^{\dagger}\psi = \sum_{s=1}^{4} \phi_s^* \psi_s \,. \tag{6}$$

 \exists self-adjoint version of $H_{\text{Dirac}} \Rightarrow U_t := e^{-iHt} : \mathscr{H} \to \mathscr{H}$ is unitary.

Space-time formulation: $\psi : \mathscr{M} = \mathbb{R}^4 \to \mathbb{C}^4$. Spinors transform under $\Lambda \in \mathscr{L}^+$ [according to]

$$\pm S(\Lambda) : \mathbb{C}^4 \to \mathbb{C}^4 \,, \tag{7}$$

[i.e., S is a (projective) representation of \mathscr{L}^+ . Thus,]

$$\psi'(x) = S(\Lambda)\psi(\Lambda^{-1}x).$$
(8)

[If Λ = rotation through angle φ , then $S(\Lambda)$ is a rotation through angle $\varphi/2$; that's why it's called spin- $\frac{1}{2}$.]

Theorem. Every $\Lambda \in \mathscr{L}^+$ leaves γ^{μ} invariant, $\gamma^{\mu} = (\gamma')^{\mu} = S(\Lambda) \Lambda^{\mu}_{\nu} \gamma^{\nu} S(\Lambda)^{-1}$.

Corollary. The Dirac eq is Lorentz invariant.

Remark. [The inner product] (6) is *not* Lorentz invariant. However, the following product is:

$$\overline{\phi}\,\psi := \phi^{\dagger}\gamma^{0}\psi\,. \tag{9}$$

Definition. For every $\psi : \mathscr{M} \to \mathbb{C}^4$, the probability current 4-vector field is

$$j^{\mu}(x) = \overline{\psi(x)}\gamma^{\mu}\psi(x).$$
(10)

- j(x) is defined in a covariant way,
- causal = timelike or lightlike, $j^{\mu}(x) j_{\mu}(x) \ge 0$.
- future-pointing, $j^0(x) \ge 0$.
- $j^0 = \overline{\psi} \gamma^0 \psi = \psi^{\dagger} \gamma^0 \gamma^0 \psi = \psi^{\dagger} \psi = \sum_{s=1}^4 |\psi_s|^2 = \rho$ = probability density according to Born's rule
- $\partial_{\mu} j^{\mu} = 0$ (continuity eq $\partial_t \rho = -\text{div}_3 \boldsymbol{j}$) [exercise]

• By the Gauss integral theorem, for spacelike hypersurfaces Σ, Σ' ,

$$\int_{\Sigma} d^{3}\sigma(x) j^{\mu}(x) n_{\mu}(x) = \int_{\Sigma'} d^{3}\sigma(x) j^{\mu}(x) n_{\mu}(x)$$
(11)

with $d^3\sigma(x) = d^3x\sqrt{\det {}^3g(x)} = 3$ -volume defined by metric on Σ , provided $j^{\mu} \to 0$ fast enough as " $x \to \infty$ spacelike." [exercise]

• propagation locality: If $\psi(t = 0)$ is concentrated in $A \subset \mathbb{R}^3$ (i.e., $\psi(0, \boldsymbol{x}) = 0$ for all $\boldsymbol{x} \notin A$), then ψ is concentrated in future($\{0\} \times A$) \cup past($\{0\} \times A$). [picture] [no propagation faster than light]

3 What is a multi-time wave function?

Ordinary wf of QM of N particles

$$\varphi(t, \boldsymbol{x}_1, \dots, \boldsymbol{x}_N) \tag{12}$$

[evolves according to] Schrödinger eq

$$i\frac{\partial\varphi}{\partial t} = H\varphi \quad \Leftrightarrow \quad \varphi(t) = e^{-iHt}\varphi(0)$$
 (13)

with H = Hamiltonian operator.

[Uniquely determined by] initial data $\varphi(0)$ on \mathbb{R}^{3N} .

Not covariant: [refers to space-time points] $(t, \boldsymbol{x}_1), \ldots, (t, \boldsymbol{x}_N)$ simultaneous [w.r.t. chosen Lorentz frame; picture]

Multi-time wf [Dirac 1932]

$$\psi(t_1, \boldsymbol{x}_1, \dots, t_N, \boldsymbol{x}_N) = \psi(x_1, \dots, x_N)$$
(14)

Example 1 (non-interacting). $\psi_{s_1s_2}(x_1, x_2), \psi : \mathscr{M}^2 \to \mathbb{C}^4 \otimes \mathbb{C}^4$,

$$\psi(t_1, \cdot, t_2, \cdot) = e^{-iH_1t_1 - iH_2t_2} \tag{15}$$

with $H_j = H_{\text{Dirac}}$ acting on \boldsymbol{x}_j, s_j . [Uniquely determined by] initial data $\psi(0,0) : \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{C}^4 \otimes \mathbb{C}^4$. Obeys multi-time Schrödinger eqs

$$i\frac{\partial\psi}{\partial t_1} = H_1\psi\tag{16}$$

$$i\frac{\partial\psi}{\partial t_2} = H_2\psi \tag{17}$$

Note:

$$\varphi(t, \boldsymbol{x}_1, \boldsymbol{x}_2) := \psi(t, \boldsymbol{x}_1, t, \boldsymbol{x}_2)$$
(18)

obeys [by the chain rule]

$$i\frac{\partial\varphi}{\partial t} = i\frac{\partial\psi}{\partial t_1}\Big|_{(t,t)} + i\frac{\partial\psi}{\partial t_2}\Big|_{(t,t)} = (H_1 + H_2)\varphi,$$
(19)

so $H = H_1 + H_2$ (non-interacting).

Remark: works also for non-relativistic Schrödinger eq. $H_j = -\frac{1}{2m_j}\Delta_j$ Likewise for N particles.

Challenge: include interaction. (Lectures 2–7)

Example 2 (second-order equations). [Also possible] $\psi : \mathcal{M}^2 \to \mathbb{C}$,

$$\Box_1 \psi = m_1^2 \psi \tag{20}$$

$$\Box_2 \psi = m_2^2 \psi \tag{21}$$

with $\Box = \partial^{\mu}\partial_{\mu} = \partial_t^2 - \Delta$ d'Alembertian.

Example 3 (if you know QFT). Field operators $\Phi(t, \mathbf{x}) = e^{iHt}\Phi(0, \mathbf{x})e^{-iHt}$ (Heisenberg picture) on Fock space \mathcal{H} ,

$$\psi(x_1...x_N) := \frac{1}{\sqrt{N!}} \langle \emptyset | \Phi(x_1) \cdots \Phi(x_N) | \Psi \rangle$$
(22)

with $|\emptyset\rangle$ = Fock vacuum, $|\Psi\rangle \in \mathscr{H}$ = state vector. [Conversely, we will use ψ to construct QFTs in Lecture 4.]

Example 4 (detectors). N non-interacting particles, ideal hard detectors along timelike hypersurface $\Sigma = \partial \Omega$ [picture].

What is the probability of detection at $(y_1...y_N) \in \Sigma^N$?

Answer [Werner 1987, Tumulka 2016]: Solve (17) for 1...N on Ω^N with boundary condition (BC)

$$\#_j(x_j)\,\psi(x_1...x_N) = \#_j(x_j)\,\psi(x_1...x_N) \tag{23}$$

for all $j \in \{1...N\}$, $x_j \in \Sigma$, $x_1...x_N \in \overline{\Omega}$. Here $n_{\mu}(x)$ = unit normal to Σ , $u_{\mu}(x)$ = unit timelike vector of detector frame (tangent to Σ), and ψ_j means $v_{\mu}\gamma^{\mu}$ acting on s_j .

$$\operatorname{Prob}\left(Y_{1} \in d^{3}y_{1}, ..., Y_{N} \in d^{3}y_{N}\right) = \overline{\psi}(y_{1}...y_{N}) \, \psi(y_{1}...y_{N}) \, \psi(y_{1}...y_{N}) \, d^{3}\sigma(y_{1}) \cdots d^{3}\sigma(y_{N}) \,. \tag{24}$$

Remark: also for non-relativistic with BC $\boldsymbol{n}(x_j) \cdot \nabla_j \psi(x_1...x_N) = i\kappa(x_j)\psi(x_1...x_N)$ with detector-dependent $\kappa > 0$.

Example 5 (scattering cross section). [Soft detectors along distant sphere,] $\Omega = \mathbb{R} \times B_R(\mathbf{0})$ in the limit $R \to \infty$; still, use (17) and (24), no BC necessary in the limit; no interaction after initial period [because particles are far from each other].

[Leads to] prob distr on $((time axis) \times \mathbb{S}^2)^{\overline{N}}$ with $\mathbb{S}^2 = \partial B_1(\mathbf{0})$ given in the non-rel. case by [Dürr and Teufel 2004]

$$\lim_{R \to \infty} \operatorname{Prob} \left(Y_1 \in Rdt_1 Rd^2 \boldsymbol{\omega}_1, ..., Y_N \in Rdt_N Rd^2 \boldsymbol{\omega}_N \right) = \left| \mathscr{F} \varphi_0 \left(\frac{m \boldsymbol{\omega}_1}{t_1}, \dots, \frac{m \boldsymbol{\omega}_N}{t_N} \right) \right|^2 dt_1 d^2 \boldsymbol{\omega}_1 \cdots dt_N d^2 \boldsymbol{\omega}_N.$$
(25)

with \mathscr{F} = Fourier transformation, φ_0 = initial wf after interaction period

Example 6 (curved Born rule). N non-interacting Dirac particles, detectors along spacelike hypersurface Σ [picture], detection at $Y_1, ..., Y_N$, prob again given by (24). In short, [Bloch 1934]

$$\rho_{\Sigma} = |\psi_{\Sigma}|^2$$
 (26)

[in the appropriate basis in spin space] with

$$\psi_{\Sigma}(x_1...x_N) = \psi(x_1...x_N).$$
(27)

In fact, $\psi_{\Sigma} \in \mathscr{H}_{\Sigma}$, which contains functions $\Sigma^N \to (\mathbb{C}^4)^{\otimes N}$ with inner product

[More detail and interacting case in Lecture 6 on Friday morning.]

4 Multi-time Schrödinger eqs

Non-interacting: Want $\psi(x_1...x_N)$ determined by initial data for $t_1 = ... = t_N = 0$; this suggests [Dirac 1932] (alternative: integral eqs \rightarrow Lecture 7)

÷

$$i\frac{\partial\psi}{\partial t_1} = H_1\psi \tag{29}$$

$$i\frac{\partial\psi}{\partial t_N} = H_N\psi,\tag{31}$$

again $\varphi(t, \boldsymbol{x}_1, ..., \boldsymbol{x}_N) = \psi(t, \boldsymbol{x}_1, ..., t, \boldsymbol{x}_N) \implies H = \sum_{j=1}^N H_j \Big|_{(t, t, ... t)}.$ $H_j =$ "partial Hamiltonian," now not the free H. Consistency question: Suppose first that each $H_j : L^2(\mathbb{R}^{3N}, \mathbb{C}) \to L^2(\mathbb{R}^{3N}, \mathbb{C})$ is time independent. Then [picture]

$$e^{-iH_2t_2}e^{-iH_1t_1}\psi(0,0) = \psi(t_1,t_2) = e^{-iH_1t_1}e^{-iH_2t_2}\psi(0,0)$$
(32)

If $\psi(0,0)$ can be arbitrary, this requires that

$$\left[e^{-iH_1t_1}, e^{-iH_2t_2}\right] = 0 \quad \forall t_1, t_2 \quad \Leftrightarrow \quad \left[H_1, H_2\right] = 0, \tag{33}$$

the consistency condition [Bloch 1934]. [More in Lecture 2.]

Example 7 (quantum control). $t_1 = \text{time}, t_2...t_N = \text{parameters that experimenters can control (external fields). We vary <math>t_2(t)...t_N(t)$ for $t \in [0, T]$ from $t_j(0)$ to $t_j(T)$. If the eqs satisfy the consistency condition, then $\varphi(T)$ depends only on the final parameters $t_j(T)$ but not on the path $t_j(T)$ in parameter space.

Definition. set of spacelike configurations of N particles

$$\mathscr{S}_{N} = \left\{ (x_{1}, ..., x_{N}) \in \mathscr{M}^{N} : \forall j, k : (x_{j} - x_{k})^{\mu} (x_{j} - x_{k})_{\mu} < 0 \text{ or } x_{j} = x_{k} \right\}$$
(34)

[picture]

Often, $\psi : \mathscr{S}_N \to \mathbb{C}^K$ instead of $\psi : \mathscr{M}^N \to \mathbb{C}^K$.

Tomonaga–Schwinger approach: [Closely related to multi-time wf.] Suppose we have

- \mathscr{H}_{Σ} for every spacelike hypersurface Σ ,
- $U_{\Sigma}^{\Sigma'}: \mathscr{H}_{\Sigma} \to \mathscr{H}_{\Sigma'}$ unitary time evolution,
- $\psi_{\Sigma'} = U_{\Sigma}^{\Sigma'} \psi_{\Sigma}$
- $F_{\Sigma}^{\Sigma'}: \mathscr{H}_{\Sigma} \to \mathscr{H}_{\Sigma'}$ free unitary time evolution.

Fix Σ_0 . Define interaction picture

$$\Psi_{\Sigma} := F_{\Sigma}^{\Sigma_0} U_{\Sigma_0}^{\Sigma} \psi_{\Sigma_0} \,. \tag{35}$$

Tomonaga–Schwinger eq: For Σ' infinitesimally close to Σ [picture]

$$i(\Psi_{\Sigma'} - \Psi_{\Sigma}) = \int_{\Sigma}^{\Sigma'} d^4 x \,\mathcal{H}_I(x) \,\Psi_{\Sigma} \,. \tag{36}$$

 $\mathcal{H}_{I}(x)$ is called the interaction Hamiltonian density. Consistency condition

$$[\mathcal{H}_I(x), \mathcal{H}_I(y)] = 0$$
 for spacelike separated $x, y.$ (37)

[More in Lectures 4–6.]