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1 Relativistic space-time

A = R* Minkowski space-time [with points] x = z# = (2°,z) = (ct, ), ¢ = 1, metric
1
—1
uv = N = 1 . (]‘)

—1

[picture: light cone, sets of timelike/spacelike/lightlike = null vectors|

Lorentz group . = O(1,3) [= set of all Lorentz transformations including rotations in
space], rotation group = SO(3).

Restricted Lorentz group £ C % [contains those that don’t reverse either time or
space]

Poincaré group

P ={x—a+Ae : ac M \e L} (2)

[includes space-time translations, correspondingly &7*]

2 Dirac equation

Wave function ¢ (¢, z) € C* spin space, Dirac eq (h = 1)

Zaa—’f =~ - V@ZJ + Bmw = HDiracw (3)
or, [equivalently,]
O = my or iy = mu. (4)

Here, 8 =1°, o' =4 (i =1,2,3), ¥ = v,y".
Clifford relation y#y” + yYy* = 2n* I, in particular 49 = I.



Hamiltonian formulation: Hilbert space 5 = L*(R?,C?*) with [inner product]

6lo) = [ dadl(@)via) (5)
R3
with [inner product in spin space]
4
Sy = it (6)
s=1

3 self-adjoint version of Hpjipae = Uy := et . J# — I is unitary.

Space-time formulation: ¢ : .# = R* — C*. Spinors transform under A € £+
laccording to]

+ S(A) : C* — C*, (7)
i.e., S is a (projective) representation of £ . Thus,)|
V(x) = S(A) (A "a). (8)

[If A = rotation through angle ¢, then S(A) is a rotation through angle ¢/2; that’s why
it’s called spin-1.]

Theorem. Every A € £ leaves 4* invariant, 7" = (v)* = S(A) Ay S(A)~1
Corollary. The Dirac eq is Lorentz invariant.

Remark. [The inner product] (6) is not Lorentz invariant. However, the following
product is:

oY= 9", (9)
Definition. For every v : .# — C*, the probability current 4-vector field is

3"(x) = (e (). (10)

e j(z) is defined in a covariant way,

causal = timelike or lightlike, j*(z) j,(x) > 0.

future-pointing, j°(z) > 0.

30 = Yy = YTy = iy = Zi‘zl 19s|> = p = probability density according
to Born’s rule

0,j" = 0 (continuity eq Oyp = —divsj) [exercise]



e By the Gauss integral theorem, for spacelike hypersurfaces 3, >,

[ o@ @ nla) = [ Eotw) @) n (1)
E !
with dc(z) = d®>z+/det 3g(x) = 3-volume defined by metric on X, provided j* — 0
fast enough as “z — oo spacelike.” [exercise]

e propagation locality: If ¢ (¢ = 0) is concentrated in A C R? (i.e., ¥(0,x) = 0 for
all x ¢ A), then v is concentrated in future({0} x A) U past({0} x A). [picture]
[no propagation faster than light]

3 What is a multi-time wave function?

Ordinary wf of QM of N particles

et 1, ..., zN) (12)
[evolves according to] Schrodinger eq

Oy

igr =He & o) =e""0(0) (13)

with H = Hamiltonian operator.

[Uniquely determined by] initial data ¢(0) on R3Y.

Not covariant: [refers to space-time points| (¢, 1), ..., (t,zy) simultaneous [w.r.t. cho-
sen Lorentz frame; picture]

Multi-time wf [Dirac 1932]

w(tlail?l»---atNaiBN):¢($17---,$N) (14)

Example 1 (non-interacting). v, (71, 13), ¢ : A#* — C* @ C*,
Ultnsta,7) = ot (15
with H; = Hpirae acting on x;, s;.

[Uniquely determined by] initial data +(0,0) : R3 x R® — C* @ C*.
Obeys multi-time Schrodinger eqs

oY
Z(?_tl = Hy (16)
o

Z(‘?_tg = Hyt) (17)



Note:

@(t,$1,m2) = w(tambtva) (18)
obeys [by the chain rule]
Op 0y Oy
A = o v = (H; + H, 19
! ot Z@tl (t,t) +Z@t2 (t,t) (Hy + Hy)e, (19)

so H = H, + H, (non-interacting).

Remark: works also for non-relativistic Schrodinger eq. H; = —ﬁAj
Likewise for N particles.

Challenge: include interaction. (Lectures 2-7)

Example 2 (second-order equations). [Also possible] ¢ : .#% — C,
Lhey = miw (20)
with O = 99, = 92 — A d’Alembertian.

Example 3 (if you know QFT). Field operators ®(t,z) = ¢1'®(0, z)e *H! (Heisen-
berg picture) on Fock space 72,
1

VN!

with |0) = Fock vacuum, |¥) € J# = state vector.
[Conversely, we will use 9 to construct QFTs in Lecture 4.]

D(ar.ay) = (0@ (21) - - Blay)|T) (22)

Example 4 (detectors). N non-interacting particles, ideal hard detectors along time-
like hypersurface ¥ = 0 [picture].
What is the probability of detection at (y;...yy) € LV7?
Answer [Werner 1987, Tumulka 2016]: Solve (17) for 1...N on Q¥ with boundary con-
dition (BC)

() p(@ran) = ihi(z;) Y(21..2n) (23)

for all j € {1..N}, x; € 3, z1...xy € Q. Here n,(z) = unit normal to 3, u,(z) = unit
timelike vector of detector frame (tangent to X), and ¢; means v,y acting on s;.
Prob(Yl e Py, ...Yy € dSyN> =
P(yryn) (1) -t (yn) Y (yryn) do(y) - dolyn) . (24)

Remark: also for non-relativistic with BC n(z;) - V;9¥(x1...2n) = ik(z;)Y(21...2n) with
detector-dependent x > 0.



Example 5 (scattering cross section). [Soft detectors along distant sphere,] @ =
R x Bg(0) in the limit R — oo; still, use (17) and (24), no BC necessary in the limit;
no interaction after initial period [because particles are far from each other].

[Leads to] prob distr on ((time axis) x SQ)N with S? = 9B, (0) given in the non-rel. case
by [Diirr and Teufel 2004]

lim Prob <Y1 € Rdt,Rd%w,. ... Yy € RdtNRdeN> _

R—o

2
‘c%o(m““ ey ) ‘ dtiPw; - dtyd*wy . (25)

with .# = Fourier transformation, ¢y = initial wf after interaction period

Example 6 (curved Born rule). N non-interacting Dirac particles, detectors along
spacelike hypersurface ¥ [picture], detection at Y1, ..., Yy, prob again given by (24). In
short, [Bloch 1934]

“ps = [Us] 7 (26)

[in the appropriate basis in spin space] with

Us(zy..xn) = Y(T1...2N). (27)

In fact, ¢z € %, which contains functions ¥V — (C*)®N with inner product

(xlp) = /EN PPo(ay) - do(en) X(z1..an) h(21) - -y (2n) e(21..228) . (28)

[More detail and interacting case in Lecture 6 on Friday morning.]

4 Multi-time Schrodinger eqs

Non-interacting: Want 1 (z;...zy) determined by initial data for ¢t; = ... = t5 = 0; this
suggests [Dirac 1932] (alternative: integral eqs — Lecture 7)

oY

- —H 29

? ot 1Y ( )

: (30)
oY

— = H 31

N
again gp(t,$1...,$]v):¢(t7$17“'7t7w1\7) = H:ZHJ (t,t...t)

H; = “partial Hamiltonian,” now not the free H.



Consistency question: Suppose first that each H; : L*(R*N,C) — L?*(R3*" C) is time
independent. Then [picture]

efngtgefiHltlwa)’ O) — w(tlatQ) — e*iH1t1 e*iHQth(O’ O) (32)

If 4)(0,0) can be arbitrary, this requires that

B_iHltl, e—iH2t2 =0 \V/tl, to = [Hl, HQ} = 0, (33)

the consistency condition [Bloch 1934]. [More in Lecture 2.

Example 7 (quantum control). t; = time, t,...t; = parameters that experimenters
can control (external fields). We vary t5(t)...t5 () for ¢ € [0, 7] from ¢;(0) to ¢t;(7T"). If the
egs satisfy the consistency condition, then ¢(7T") depends only on the final parameters
t;(T) but not on the path ¢;(7") in parameter space.

Definition. set of spacelike configurations of N particles
SN = {(:1:1, ory) €MN VY ko (xj —ap)"(x; —xp)y <Oorx; = xk} (34)

[picture]
Often, 1 : ./ — C¥ instead of ¢ : . #~ — CK.

Tomonaga—Schwinger approach: [Closely related to multi-time wf.] Suppose we
have

o 5 for every spacelike hypersurface ¥,
° UZE' . 5 — Ry unitary time evolution,
o Vs =Ug'vs
° FEZ' . 5 — A5y free unitary time evolution.
Fix Y. Define interaction picture
Uy, = F° Uss, s, - (35)

Tomonaga—Schwinger eq: For Y infinitesimally close to X [picture]

Y

iUy — Uy) = /Z d*r Hi(x) Uy . (36)

H;(z) is called the interaction Hamiltonian density. Consistency condition
[Hi(z),Hi(y)] =0 for spacelike separated z,y. (37)

[More in Lectures 4-6.]



