
Spring School on Multi-Time Wave Functions

Lecture 1: Introduction and Overview

Roderich Tumulka

April 10, 2019

1 Relativistic space-time

M = R4 Minkowski space-time [with points] x = xµ = (x0,x) = (ct,x), c = 1, metric

gµ⌫ = ⌘µ⌫ =

0

BB@

1
�1

�1
�1

1

CCA . (1)

[picture: light cone, sets of timelike/spacelike/lightlike = null vectors]
Lorentz group L = O(1, 3) [= set of all Lorentz transformations including rotations in
space], rotation group = SO(3).
Restricted Lorentz group L

+
⇢ L [contains those that don’t reverse either time or

space]
Poincaré group

P =
�
x 7! a+ ⇤x : a 2 M ,⇤ 2 L

 
(2)

[includes space-time translations, correspondingly P
+]

2 Dirac equation

Wave function  (t,x) 2 C4 spin space, Dirac eq (~ = 1)

i
@ 

@t
= �i↵ ·r + �m =: HDirac (3)

or, [equivalently,]
i�µ@µ = m or i@/ = m . (4)

Here, � = �0, ↵i = �0�i (i = 1, 2, 3), v/ = vµ�µ.
Cli↵ord relation �µ�⌫ + �⌫�µ = 2⌘µ⌫I, in particular �0�0 = I.

1



Hamiltonian formulation: Hilbert space H = L2(R3,C4) with [inner product]

h�| i =

Z

R3

d3x�†(x) (x) (5)

with [inner product in spin space]

�† =
4X

s=1

�⇤
s
 s . (6)

9 self-adjoint version of HDirac ) Ut := e�iHt : H ! H is unitary.

Space-time formulation:  : M = R4
! C4. Spinors transform under ⇤ 2 L

+

[according to]
± S(⇤) : C4

! C4 , (7)

[i.e., S is a (projective) representation of L
+. Thus,]

 0(x) = S(⇤) (⇤�1x) . (8)

[If ⇤ = rotation through angle ', then S(⇤) is a rotation through angle '/2; that’s why
it’s called spin-12 .]

Theorem. Every ⇤ 2 L
+ leaves �µ invariant, �µ = (�0)µ = S(⇤)⇤µ

⌫
�⌫S(⇤)�1.

Corollary. The Dirac eq is Lorentz invariant.

Remark. [The inner product] (6) is not Lorentz invariant. However, the following
product is:

� := �†�0 . (9)

Definition. For every  : M ! C4, the probability current 4-vector field is

jµ(x) =  (x)�µ (x) . (10)

• j(x) is defined in a covariant way,

• causal = timelike or lightlike, jµ(x) jµ(x) � 0.

• future-pointing, j0(x) � 0.

• j0 =  �0 =  †�0�0 =  † =
P4

s=1 | s|
2 = ⇢ = probability density according

to Born’s rule

• @µjµ = 0 (continuity eq @t⇢ = �div3j) [exercise]
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• By the Gauss integral theorem, for spacelike hypersurfaces ⌃,⌃0,
Z

⌃

d3�(x) jµ(x)nµ(x) =

Z

⌃0
d3�(x) jµ(x)nµ(x) (11)

with d3�(x) = d3x
p

det 3g(x) = 3-volume defined by metric on ⌃, provided jµ ! 0
fast enough as “x ! 1 spacelike.” [exercise]

• propagation locality: If  (t = 0) is concentrated in A ⇢ R3 (i.e.,  (0,x) = 0 for
all x /2 A), then  is concentrated in future({0} ⇥ A) [ past({0} ⇥ A). [picture]
[no propagation faster than light]

3 What is a multi-time wave function?

Ordinary wf of QM of N particles

'(t,x1, . . . ,xN) (12)

[evolves according to] Schrödinger eq

i
@'

@t
= H' , '(t) = e�iHt'(0) (13)

with H = Hamiltonian operator.
[Uniquely determined by] initial data '(0) on R3N .
Not covariant: [refers to space-time points] (t,x1), . . . , (t,xN) simultaneous [w.r.t. cho-
sen Lorentz frame; picture]

Multi-time wf [Dirac 1932]

 (t1,x1, . . . , tN ,xN) =  (x1, . . . , xN) (14)

Example 1 (non-interacting).  s1s2(x1, x2),  : M
2
! C4

⌦ C4,

 (t1, ·, t2, ·) = e�iH1t1�iH2t2 (15)

with Hj = HDirac acting on xj, sj.
[Uniquely determined by] initial data  (0, 0) : R3

⇥ R3
! C4

⌦ C4.
Obeys multi-time Schrödinger eqs

i
@ 

@t1
= H1 (16)

i
@ 

@t2
= H2 (17)
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Note:
'(t,x1,x2) :=  (t,x1, t,x2) (18)

obeys [by the chain rule]

i
@'

@t
= i

@ 

@t1

���
(t,t)

+ i
@ 

@t2

���
(t,t)

= (H1 +H2)', (19)

so H = H1 +H2 (non-interacting).
Remark: works also for non-relativistic Schrödinger eq. Hj = �

1
2mj
�j

Likewise for N particles.
Challenge: include interaction. (Lectures 2–7)

Example 2 (second-order equations). [Also possible]  : M
2
! C,

⇤1 = m2
1 (20)

⇤2 = m2
2 (21)

with ⇤ = @µ@µ = @2
t
�� d’Alembertian.

Example 3 (if you know QFT). Field operators �(t,x) = eiHt�(0,x)e�iHt (Heisen-
berg picture) on Fock space H ,

 (x1...xN) :=
1

p
N !

h;|�(x1) · · ·�(xN)| i (22)

with |;i = Fock vacuum, | i 2 H = state vector.
[Conversely, we will use  to construct QFTs in Lecture 4.]

Example 4 (detectors). N non-interacting particles, ideal hard detectors along time-
like hypersurface ⌃ = @⌦ [picture].
What is the probability of detection at (y1...yN) 2 ⌃N?
Answer [Werner 1987, Tumulka 2016]: Solve (17) for 1...N on ⌦N with boundary con-
dition (BC)

n/j(xj) (x1...xN) = u/j(xj) (x1...xN) (23)

for all j 2 {1...N}, xj 2 ⌃, x1...xN 2 ⌦. Here nµ(x) = unit normal to ⌃, uµ(x) = unit
timelike vector of detector frame (tangent to ⌃), and v/j means vµ�µ acting on sj.

Prob
⇣
Y1 2 d3y1, ..., YN 2 d3yN

⌘
=

 (y1...yN)n/1(y1) · · ·n/N(yN) (y1...yN) d
3�(y1) · · · d

3�(yN) . (24)

Remark: also for non-relativistic with BC n(xj) ·rj (x1...xN) = i(xj) (x1...xN) with
detector-dependent  > 0.
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Example 5 (scattering cross section). [Soft detectors along distant sphere,] ⌦ =
R ⇥ BR(0) in the limit R ! 1; still, use (17) and (24), no BC necessary in the limit;
no interaction after initial period [because particles are far from each other].

[Leads to] prob distr on
�
(time axis) ⇥ S2

�N
with S2 = @B1(0) given in the non-rel. case

by [Dürr and Teufel 2004]

lim
R!1

Prob
⇣
Y1 2 Rdt1Rd2!1, ..., YN 2 RdtNRd2!N

⌘
=

���F'0

�
m!1
t1

, . . . , m!N
tN

����
2

dt1d
2!1 · · · dtNd

2!N . (25)

with F = Fourier transformation, '0 = initial wf after interaction period

Example 6 (curved Born rule). N non-interacting Dirac particles, detectors along
spacelike hypersurface ⌃ [picture], detection at Y1, ..., YN , prob again given by (24). In
short, [Bloch 1934]

“ ⇢⌃ = | ⌃|
2 ” (26)

[in the appropriate basis in spin space] with

 ⌃(x1...xN) =  (x1...xN). (27)

In fact,  ⌃ 2 H⌃, which contains functions ⌃N
! (C4)⌦N with inner product

h�|'i =

Z

⌃N

d3�(x1) · · · d
3�(xN)�(x1...xN)n/1(x1) · · ·n/N(xN)'(x1...xN) . (28)

[More detail and interacting case in Lecture 6 on Friday morning.]

4 Multi-time Schrödinger eqs

Non-interacting: Want  (x1...xN) determined by initial data for t1 = ... = tN = 0; this
suggests [Dirac 1932] (alternative: integral eqs ! Lecture 7)

i
@ 

@t1
= H1 (29)

... (30)

i
@ 

@tN
= HN , (31)

again '(t,x1...,xN) =  (t,x1, ..., t,xN) ) H =
NX

j=1

Hj

���
(t,t...t)

.

Hj = “partial Hamiltonian,” now not the free H.
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Consistency question: Suppose first that each Hj : L2(R3N ,C) ! L2(R3N ,C) is time
independent. Then [picture]

e�iH2t2e�iH1t1 (0, 0) =  (t1, t2) = e�iH1t1e�iH2t2 (0, 0) (32)

If  (0, 0) can be arbitrary, this requires that
h
e�iH1t1 , e�iH2t2

i
= 0 8t1, t2 ,

⇥
H1, H2

⇤
= 0, (33)

the consistency condition [Bloch 1934]. [More in Lecture 2.]

Example 7 (quantum control). t1 = time, t2...tN = parameters that experimenters
can control (external fields). We vary t2(t)...tN(t) for t 2 [0, T ] from tj(0) to tj(T ). If the
eqs satisfy the consistency condition, then '(T ) depends only on the final parameters
tj(T ) but not on the path tj(T ) in parameter space.

Definition. set of spacelike configurations of N particles

SN =
n
(x1, ..., xN) 2 M

N : 8j, k : (xj � xk)
µ(xj � xk)µ < 0 or xj = xk

o
(34)

[picture]
Often,  : SN ! CK instead of  : M

N
! CK .

Tomonaga–Schwinger approach: [Closely related to multi-time wf.] Suppose we
have

• H⌃ for every spacelike hypersurface ⌃,

• U⌃0
⌃ : H⌃ ! H⌃0 unitary time evolution,

•  ⌃0 = U⌃0
⌃  ⌃

• F⌃0
⌃ : H⌃ ! H⌃0 free unitary time evolution.

Fix ⌃0. Define interaction picture

 ⌃ := F⌃0
⌃ U⌃

⌃0
 ⌃0 . (35)

Tomonaga–Schwinger eq: For ⌃0 infinitesimally close to ⌃ [picture]

i( ⌃0 � ⌃) =

Z ⌃0

⌃

d4xHI(x) ⌃ . (36)

HI(x) is called the interaction Hamiltonian density. Consistency condition
⇥
HI(x),HI(y)

⇤
= 0 for spacelike separated x, y. (37)

[More in Lectures 4–6.]
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